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Abstract. A zero forcing set is a set S of vertices of a graph G, called forced vertices of G,

which are able to force the entire graph by applying the following process iteratively: At any

particular instance of time, if any forced vertex has a unique unforced neighbor, it forces that

neighbor. In this paper, we introduce a variant of zero forcing set that induces independent edges

and name it as edge-forcing set. The minimum cardinality of an edge-forcing set is called the

edge-forcing number. We prove that the edge-forcing problem of determining the edge-forcing

number is NP-complete. Further, we study the edge-forcing number of butterfly networks. We

obtain a lower bound on the edge-forcing number of butterfly networks and prove that this bound

is tight for butterfly networks of dimensions 2, 3, 4 and 5 and obtain an upper bound for the higher

dimensions.
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1. Introduction

A propagation model can be related to an activation process in a graph. By iteratively applying an

activation rule and by using an initial set of active vertices, the remaining vertices are activated in a

graph. This process ends when there are no more vertices to be activated. This paper aims to find the

minimum size of a set of such initially active vertices in a graph with a well defined forcing rule.

The zero forcing problem states that, for graph G, the goal is to find a minimum set of nodes S
that forces all the other nodes, where a node v is forced if and only if, v is an element of the set S or

v has a neighbor u such that u and all of its neighbors except v are forced. The minimum cardinality

of any such set is called zero forcing number of G [1].

Equivalently, we have the following definition:

Definition 1.1. [2] For a graph G = (V,E) and a set T ⊆ V , the closure of T in G denoted by

CG(T )is recursively defined as follows: Start with CG(T ) = T . As long as exactly one of the

neighbors of some element of CG(T ) is not in CG(T ), add that neighbor to CG(T ). If CG(T ) = V
at some stage, then T is a zero forcing set of G. A forcing set of minimum cardinality is called the

forcing number and is denoted by ζ(G). The forcing process is also called Graph Infection or Graph

Propagation.

Zero forcing number is a graph parameter introduced as a tool for solving minimum rank problem

[3]. The idea of zero forcing set which is also termed “infecting set” was introduced in 2007 by [4]

and [5] in relation to quantum systems. The zero forcing problem of determining the forcing number

is NP-complete [6]. It is also used in theoretical computer science as a fast mixed search model [2].

Zero forcing number was obtained in different types of graphs namely generalised Petersen graphs [7],

cacti graphs [8], graphs of large girth [9], fixed bipartite graphs, random and pseudo-random graphs

[10]. In addition to this, zero forcing was effected in snake graphs [11], wheel graphs [12], fan graphs,

friendship graphs, helm graphs [13] and generalised Sierpinski graphs [14]. An upper bound for zero

forcing number of butterfly networks of dimension r has been obtained as
1

9
[(3r + 7)2r + 2(−1)r]

in [15]. The influence of removing a vertex or edge on the zero forcing number was studied and the

propagation time for zero forcing on a graph was also determined in [16].

In electrical power systems, where an electrical node is represented as a vertex and a transmission

line joining two electrical nodes by an edge, Phase Measurement Units (PMUs) are placed at selected

vertices to regularly access or monitor electrical parameters like phase and voltage. Due to the high

cost of a PMU, placing them at the locations of a minimum zero forcing set of the system, helps the

monitoring of the entire system.

Variants of forcing such as total forcing [17], connected forcing [15, 18, 10, 19] and k-forcing

[20, 4, 21] have been considered by several authors. The total forcing problem has been proved to be

NP-complete [22].

In this paper, we introduce a new problem called Edge-Forcing problem and it is defined as fol-

lows:
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Definition 1.2. Let G be a graph. For a set K of independent edges in G, define T (T depends

on K) to be the set of all end points of edges in K . The closure of T in G denoted by CG(T ) is

recursively defined as follows: Start with CG(T ) = T . As long as exactly one of the neighbors of

some element of CG(T ) is not in CG(T ), add that neighbor to CG(T ). If at some stage, CG(T ) = V ,

then K is called an edge-forcing set of G. The minimum cardinality of an edge-forcing set of G is

the edge-forcing number of G and is denoted by ζe(G). The edge-forcing problem of a graph G is to

determine ζe(G).

The above problem may also be viewed as coloring of vertices originating from a set of indepen-

dent edges. Let G be a graph in which every vertex is initially colored either black or white with

at least one edge with both ends colored black. Let e = (u, v) be an edge such that both u and v
are colored black. If u or v is adjacent to exactly one white neighbor, say x, then we change the

color of x to black; this rule is called the color change rule. In this case we say “e forces x” which

is denoted by e → x. At a time, e may force two vertices. The procedure of coloring a graph us-

ing the color change rule is called a forcing process. Given an initial coloring of G in which a set

of vertices inducing a set of independent edges is black and all other vertices are white, the derived

set is the set of all black vertices resulting from repeatedly applying the color change rule until no

more changes are possible. If the derived set from an independent set of edges is the entire vertex

set of the graph, then the set of initial edges is called an edge-forcing set. It is also addressed as

P2-forcing set.

In Figure 1, the edge marked in red in graph G is an edge-forcing set. At the first time step, vertex

2 forces vertex 4, at second time step, vertex 1 forces vertex 3, at third time step, vertex 3 or 4 forces

vertex 5, in the fourth time step, vertex 5 forces vertex 6.

(a) (b) (c)

21

43

5

6

21

43

5

6

21

43

5

6

21

43

5

6

(d) (e)

G: 21

43

5

6

Figure 1. Illustration of color change in G, with ζe(G)=1. (a) K = {(1, 2)} with vertices 1 and 2 colored

black, (b) 2 forces 4, (c) 1 forces 3, (d) 3 forces 5, (e) 5 forces 6

Edge-forcing set ensures more reliability in the system. For example, the PMUs placed adja-

cent to each other in an electrical system can be used as backup servers so that if one becomes

faulty, the adjacent PMU can support the system, thereby monitoring the entire system without any

interruption.
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2. Complexity of edge-forcing problem

In this section we prove that edge-forcing problem is NP-complete. The reduction will be from the

NP-completeness of zero forcing problem [6]. Let G = (V,E) be a graph. For x ∈ V , let N(x) denote

the open neighborhood of x in G. Then construct the graph Ḡ = (V̄ , Ē) as follows. The vertex set

V̄ = V ∪V ′, where V ′ = {x′ : x ∈ V }. The edge set Ē = E∪E′∪E′′, where E′ = {(x, x′) : x ∈ V
and x′ ∈ V ′} and E′′ = {(y, x′) : y ∈ N(x), x, y ∈ V }. See Figure 2.

u

v

w

(a)

m z

y

x

u

v

w

(b)

m z

y

x

x'v'

u'

w'

m'

y'

z'

Figure 2. (a) Graph G = (V,E), with zero forcing set marked in red, (b) Ḡ = (V̄ , Ē), with edge-forcing set

marked in red

Lemma 2.1. If X is an edge-forcing set of Ḡ, then there exists an edge-forcing set Y of Ḡ with

|Y | = |X|, such that Y ⊆ E′.

Proof:

We have the following two cases.

Case 1: If X ⊆ E′, then Y = X.

Case 2: If X 6⊆ E′, then X may contain edges from E as well as E′′. Suppose X contains an edge

(u, v′) ∈ E′′. Then replace the edge (u, v′) in X with (u, u′), since the vertices {u, u′} force all

the vertices which the vertices {u, v′} would force. Suppose X contains an edge (a, b) ∈ E. Then
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replace the edge (a, b) in X with either (a, a′) or (b, b′), since the vertices {a, a′} or {b, b′} force all

the vertices which the vertices {a, b} would force. The final set of edges thus obtained on replacing

edges of E ∪E′′ with the respective edges in E′, is taken as Y . Clearly Y is an edge-forcing set of Ḡ
with |Y | = |X| and Y ⊆ E′. ⊓⊔

Now we can prove the essential part for our reduction.

Lemma 2.2. Every zero forcing set of G induces an edge-forcing set of Ḡ of the same cardinality and

conversely.

Proof:

Suppose S is a zero forcing set of G. Considering the edge set S′ = {(x, x′) : x ∈ S} in Ḡ, if u ∈ S
forces a vertex v ∈ V \S in G, then in Ḡ initially u′ forces v, after which u forces v′. Thus the vertices

{u, u′} ∈ S′ force the vertices {v, v′} ∈ V ′\S′ in Ḡ. It is clear that vertices of set S′ iteratively force

all the vertices of Ḡ. Hence S′ is an edge-forcing set of Ḡ.

Conversely, suppose X is an edge-forcing set of Ḡ. By Lemma 2.1 we can obtain a set S′ ⊆ E′

which is an edge-forcing set of Ḡ. Consider vertex set S = {x : (x, x′) ∈ S′} in G. If the vertices

{u, u′} ∈ S′ force the vertices {v, v′} ∈ V ′\S′ in G, it is evident that u ∈ S forces the vertex

v ∈ V \S in G. Hence S is a zero forcing set of G. ⊓⊔

Note that Lemma 2.2 also implies that S ⊆ V is a minimum zero forcing set of G if and only if

S′ = {(x, x′) : x ∈ S} is a minimum edge-forcing set of Ḡ. Combining this result with the fact that

the graph Ḡ can clearly be constructed from G in polynomial time, we arrive at the following main

result.

Theorem 2.3. The edge-forcing problem is NP-complete.

3. Butterfly networks

Interconnection network is a connection pattern of the components in a system. This is necessary for

fast and trusted communication among systems in any parallel computer. The development of large

scale integrated circuit technology has led to the growth of complex interconnection networks [23].

Graph Theory is used in the analysis and design of these complex networks [24].

An interconnection network is characterised as a model in graph theory where vertices and edges

are represented by devices and their communication links respectively. In a multistage network, N
inputs are connected to N outputs. The butterfly network is an important multistage interconnection

network which has an attractive architecture for communication [25]. It overcomes few of the disad-

vantages of the hypercube, which is the standard network used in industries. Some of its advantages

are high bandwidth, small diameter and constant degree switches. Butterfly networks are used to

perform a method to demonstrate fast fourier transform used in the area of signal processing [26].
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Definition 3.1. [26] The r-dimensional butterfly network BF (r), has a vertex set V = {[(x1, x2, . . . ,
xr) ; i] /xi = 0 or 1, 0 ≤ i ≤ r} and vertices [(x1, x2, . . . , xr) ; i] and [(y1, y2, . . . , yr) ; j] are con-

nected if j = i + 1 and either (x1, x2, . . . , xr) = (y1, y2, . . . , yr) or (x1, x2, . . . , xr) and

(y1, y2, . . . , yr) differ precisely in the jth bit.

Remark 3.2. The vertices [(x1, x2, . . . , xr) ; i] are said to be at Level i, 0 ≤ i ≤ r. If the end vertices

of [(x1, x2, . . . , xr) ; i] and [(y1, y2, . . . , yr) ; i+ 1] of an edge satisfy the condition that (x1, x2, . . . , xr)
= (y1, y2, . . . , yr), then the edge is called a straight edge. Otherwise the edge is called a cross edge.

It is customary to write the binary sequence (x1, x2, . . . , xr) as a decimal number.

(a) (b)

[1,0]
[1,1] [1,2]

[1,3]

[2,0]
[2,1] [2,2]

[2,3]

[3,0]
[3,1] [3,2]

[3,3]

[4,0]

[4,1]

[4,2]
[4,3]

[5,0]
[5,1] [5,2]

[5,3]

[6,0]
[6,1] [6,2]

[6,3]

[7,0]

[7,1] [7,2]
[7,3]

[0,0] [0,1] [0,2] [0,3]

Binding vertex
Binding edge

[0,3]

[1,2][0,2]

[3,1][1,1][2,1][0,1]

[1,3]

[2,3]

[3,3]

[4,3]

[5,3]

[6,3]

[7,3]

[5,1]

[5,2]

[7,1]

[7,2][6,2]

[6,1][4,1]

[4,2]

[0,0] [4,0]

[6,0][2,0]

[1,0]

[3,0]

[5,0]

[7,0]

[2,2] [3,2]

u

x y

v

Horizontal binding diamond

Vertical binding diamond

Figure 3. Butterfly network BF (3); (a) Normal representation with vertices labelled using decimal numbers,

(b) Corresponding diamond representation

An efficient representation for butterfly network has been obtained by Manuel et al., [25]. The

butterfly network in Figure 3(a) is the normal representation; an alternative representation, called the

diamond representation, is given in Figure 3(b). By a diamond we mean a cycle of length 4. Two nodes

[w, i] and [w′, i′] in BF (r) are said to be mirror images of each other if w and w′ differ precisely in

the first bit. The removal of Level 0 vertices {v1, v2, . . . , v2r} of BF (r) gives two subgraphs H1 and

H2 of BF (r), each isomorphic to BF (r − 1). Since {v1, v2, . . . , v2r} is a vertex-cut of BF (r), the

vertices are called binding vertices of BF (r). If a 4-cycle in BF (r) has binding vertices then it is

called a binding diamond. The edges of binding diamonds are called binding edges. Such diamonds

are also obtained when vertices of BF (r) at Level (r + 1) are removed. To distinguish between the

two, we call the binding diamonds defined by removing the vertices at Level 0 as vertical binding
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diamonds and those defined by removing vertices at Level (r + 1) as horizontal binding diamonds.

The two types of diamonds are shown in Figure 3(b).

4. Edge-forcing in butterfly networks

For determining a lower bound for the edge-forcing number in butterfly networks we consider the di-

amond representation of BF (r), and for the actual computation of edge-forcing number, we consider

the normal representation. We observe that when r is even, the number of levels in BF (r) is odd and

vice versa.

Theorem 4.1. The edge-forcing set does not exist for BF (2).

Proof:

There are four edge disjoint 4-cycles in BF (2). If none of the edges in a 4-cycle is present in an

edge-forcing set, then both vertices of degree 2 in the 4-cycle cannot be forced by any edge in the

edge-forcing set. Hence every 4-cycle contributes an edge to the forcing set. See Figure 4. Choice

of these independent edges cannot force the left out vertices of degree 2. Hence one more edge is

required in the forcing set but this induces a path of length 2 in the forcing set, a contradiction. ⊓⊔

Figure 4. Independent set of edges marked in red in BF (2)

Lemma 4.2. The edge-forcing number of BF (r), r ≥ 3 is at least 2r .

Proof:

Consider a binding diamond D of BF (r). Assume that none of the edges of D belongs to an edge-

forcing set of BF (r). Let x and y be the binding vertices of degree 2 in D. Both x and y are adjacent

to two vertices u and v of degree 4 in D. For illustration, see Figure 3(b). Hence even if u and v are

forced, both x and y cannot be forced. Hence at least one edge of D should be present in the forcing

set. There are 2r binding diamonds in BF (r), r ≥ 3. Hence ζe(BF (r)) ≥ 2r. ⊓⊔

Determining ζe(BF (r)), r ≥ 3 has proved to be very challenging. In this section, ζe(BF (r))
for r = 3, 4 and 5 have been determined. Using the recursive nature of BF (r), an upper bound

has been derived for all r ≥ 6. It is also conjectured that this upper bound is the exact value of

ζe(BF (r)), r ≥ 6.

We begin with an algorithm to determine ζe(BF (3)).
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Edge-forcing Algorithm BF (3):

Input: BF (3), the butterfly network of dimension 3

Algorithm:

Step 1: Choose the edges ([2i − 1, 0], [2i − 1, 1]), 1 ≤ i ≤ 4;

Step 2: Choose the edges ([2,2], [6,3]), ([3,2], [7,3]), ([0,3], [4,2]), ([1,3], [5,2]) from Levels 2 and 3.

Output: An edge-forcing set having cardinality 8

Proof of Correctness:

The selected edges between Level 0 and Level 1 force all vertices of Level 1. See Figure 5(a). The

edges chosen between Levels 2 and 3 force all vertices of Level 2. See Figure 5(b). Thus in the first

(a) (b)

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 Level 3

Level 2

Level 1

Level 0

(c)

Figure 5. (a) BF (3) Algorithm-Step 1, (b) BF (3) Algorithm-Step 2, (c) Edge-forcing of BF (3)
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step, all vertices of Level 1 are forced. In the second step of the forcing process, the left out vertices

of BF (3) are forced. Figure 5(c) illustrates the edge-forcing of BF (3) and also the different Levels

in a butterfly network.

By edge-forcing algorithm BF (3), ζe(BF (3)) ≤ 8. Combining this with Lemma 4.2, we have

the following result.

Theorem 4.3. The edge-forcing number of BF (3) is 8, that is ζe(BF (3)) = 8.

We next compute the edge-forcing number of BF (4).

Lemma 4.4. The edge-forcing number of BF (4) is at least 25, that is ζe(BF (4)) ≥ 25.

Proof:

There are 16 binding diamonds in BF (4). 16 edges are chosen, one edge from every binding diamond

as in the Lemma 4.2. This leaves all vertices in Levels 1 and 3 forced. Level 0 has 8 unforced

vertices. The parallel edges connecting vertices of Level 1 and Level 2 are partitioned into 4 subsets

S0, S1, S2 and S3 of 4 edges each, where end vertices of edges in Si are labelled ([4i, 1], [4i, 2]),
([4i+1, 1], [4i+1, 2]), ([4i+2, 1], [4i+2, 2]), ([4i+3, 1], [4i+3, 2]), i = 0, 1, 2, 3. An edge chosen

with one end in Level 1 and another end in Level 2 in any Si, does not force any of the 8 unforced

vertices in Level 0. But a pair of edges in Si, i = 0, 1, 2, 3 forces 2 vertices of the corresponding

vertices at Level 0. Thus to force vertices at Level 0, 8 edges are necessary in the edge-forcing set.

There are vertices in Level 2 which are yet to be forced, hence at least one more edge has to be chosen

in the edge-forcing set. Therefore ζe(BF (4)) ≥ 25. ⊓⊔

Edge-forcing Algorithm BF (4):

Input: BF (4), the butterfly network of dimension 4

Algorithm:

Step 1: Choose the edges ([2i−1, 0], [2i−1, 1]), 1 ≤ i ≤ 8 and the edges ([i, 4], [8i+1, 3]), 0 ≤ i ≤ 8,

([i, 3], [8 + i, 4]), 4 ≤ i ≤ 7;

Step 2: Choose the edges ([4i, 1], [4i + 4, 2]) and ([4i, 2], [4i + 2, 1]), i = 1, 2;

Step 3: Choose the edges ([i, 2], [i, 3]), i = 0, 1 and edges ([i, 3], [i, 2]), i = 14, 15;

Step 4: Select edge ([3,3], [7,2]).

Output: An edge-forcing set having cardinality 25

Proof of Correctness:

In Step 1, we have chosen 16 binding edges of BF (4), one from each binding diamond. The edges

selected in Step 1 force all vertices in Levels 1 and 3. See Figure 6(a). The edges selected using Step

2 and 3 force the remaining 8 vertices in Level 0. See Figure 6(b) and Figure 6(c). Any edge between

the end vertices in Levels 2 and 3 will force all the remaining unforced vertices in Levels 2 and 4. See

Figure 6(d).

By edge-forcing algorithm BF (4), ζe(BF (4)) ≤ 25. Combining this with Lemma 4.4, we have

the following result.
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(a)

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,312,3 13,3 14,3 15,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,413,4 14,4 15,4

(b)

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,212,2 13,2 14,2 15,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,312,3 13,3 14,3 15,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,4 13,4 14,4 15,4

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3 10,3 11,3 12,3 13,3 14,3 15,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0 12,0 13,0 14,0 15,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1 10,1 11,1 12,1 13,1 14,1 15,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2 10,2 11,2 12,2 13,2 14,2 15,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4 10,4 11,4 12,4 13,4 14,4 15,4

(d)(c)

11,0 12,0 13,0 14,0 15,010,0

10,1 11,1 12,1 13,1 14,1 15,1

10,2 11,2 12,2 13,2 14,2 15,2

10,3 11,3 12,3 13,3 14,3 15,3

10,4 11,4 12,4 13,4 14,4 15,4

Figure 6. (a) BF (4) Algorithm-Step 1, (b) BF (4) Algorithm-Step 2, (c) BF (4) Algorithm-Step 3, (d) BF (4)
Algorithm-Step 4 and Edge-forcing of BF (4)

Theorem 4.5. The edge-forcing number of BF (4) is 25, that is ζe(BF (4)) = 25.

We now consider BF (r), where r = 5.

Lemma 4.6. The edge-forcing number of BF (5) is at least 47, that is ζe(BF (5)) ≥ 47.

Proof:

There are 32 binding diamonds in BF (5). 32 edges are chosen, one edge from every binding diamond

as in Lemma 4.2. This leaves all vertices in Level 1 and Level 4 forced. Level 0 has 16 unforced

vertices. The parallel edges connecting vertices of Level 1 and Level 2 are partitioned into 8 subsets

S0, S1, S2 and S3,. . . ,S7 of 4 edges each, where end vertices of edges in Si are labelled ([4i, 1], [4i, 2]),
([4i+1, 1], [4i+1, 2]), ([4i+2, 1], [4i+2, 2]), ([4i+3, 1], [4i+3, 2]), i = 0, 1, 2, 3, . . . , 7. Choosing

an edge with one end in Level 1 and another end in Level 2 in any Si, does not force any of the 8
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11,310,3 12,3 13,3 15,3 19,3 20,3 24,3 25,3 26,3 28,3 29,3 30,314,3 16,3 17,3 18,3 21,3 22,3 23,3 27,3 31,3

0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0 10,0 11,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5 16,5 17,5 18,5 19,5 20,5 21,522,5 23,5 24,5 25,5 26,5 27,5 28,5 29,5 30,5 31,5

10,4 11,4 12,4 13,4 14,4 15,4 16,4 17,4 18,4 19,4 20,4 21,422,4 23,4 24,4 25,4 26,4 27,4 28,4 29,4 30,4 31,4

11,210,2 12,2 13,2 15,2 19,2 20,2 24,2 25,2 26,2 28,2 29,2 30,214,2 16,2 17,2 18,2 21,2 22,2 23,2 27,2 31,2

11,110,1 12,1 13,1 15,1 19,1 20,1 24,1 25,1 26,1 28,1 29,1 30,114,1 16,1 17,1 18,1 21,1 22,1 23,1 27,1 31,1

12,0 13,0 15,0 19,0 20,0 24,0 25,0 26,0 28,0 29,0 30,014,0 16,0 17,0 18,0 21,0 22,0 23,0 27,0 31,0

Figure 7. BF (5) Algorithm-Step 1

unforced vertices in Level 0. But pairs of edges in Si, i = 0, 1, 2, 3, . . . , 6 force 2 vertices of the

corresponding vertices at Level 0. This accounts for an additional 12 edges in the edge-forcing set.

Since all the vertices in the higher levels are already forced, only 3 edges are necessary from S7 to

force the remaining vertices. Therefore ζe(BF (5)) ≥ 47. ⊓⊔

Edge-forcing Algorithm BF (5):

Input: BF (5), the butterfly network of dimension 5

Algorithm:

Step 1: Choose the edges ([2i − 1, 0], [2i − 1]), 1 ≤ i ≤ 16 and edges ([i, 5], [i + 16, 4]) , 0 ≤ i ≤ 7;

Step 2: Choose the edges ([i + 1, 5], [i + 1, 3]), 0 ≤ i ≤ 18, 15 ≤ i ≤ 18, 23 ≤ i ≤ 25.

Output: An edge-forcing set having cardinality 47

Proof of Correctness:

In Step 1, we have chosen 32 binding edges of BF (5), one from each of the binding diamonds. The

edges selected using Step 1 force all the vertices in Level 1 and Level 4. See Figure 7. The 15 edges

chosen in Levels 2 and 3 by Step 2 are sufficient to force all vertices in Levels 2 and 3 and in turn all

vertices in Levels 0 and 5. See Figure 8.

By edge-forcing algorithm BF (5), ζe(BF (5)) ≤ 47. Combining this with Lemma 4.6, we have

the following result.

Theorem 4.7. The edge-forcing number of BF (5) is 47, that is ζe(BF (5)) = 47.
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0,0 1,0 2,0 3,0 4,0 5,0 6,0 7,0 8,0 9,0

0,1 1,1 2,1 3,1 4,1 5,1 6,1 7,1 8,1 9,1

0,2 1,2 2,2 3,2 4,2 5,2 6,2 7,2 8,2 9,2

0,3 1,3 2,3 3,3 4,3 5,3 6,3 7,3 8,3 9,3

0,4 1,4 2,4 3,4 4,4 5,4 6,4 7,4 8,4 9,4

10,0 11,0 12,0 13,0 15,0 19,0 20,0 24,0 25,0 26,0 28,0 29,0 30,014,0 16,0 17,0 18,0 21,0 22,0 23,0 27,0 31,0

11,210,2 12,2 13,2 15,2 19,2 20,2 24,2 25,2 26,2 28,2 29,2 30,214,2 16,2 17,2 18,2 21,2 22,2 23,2 27,2 31,2

11,110,1 12,1 13,1 15,1 19,1 20,1 24,1 25,1 26,1 28,1 29,1 30,114,1 16,1 17,1 18,1 21,1 22,1 23,1 27,1 31,1

11,310,3 12,3 13,3 15,3 19,3 20,3 24,3 25,3 26,3 28,3 29,3 30,314,3 17,3 18,3 21,3 22,3 23,3 27,3 31,316,3

10,4 11,4 12,4 13,4 14,4 15,4 16,4 17,4 18,4 19,4 20,4 21,422,4 23,4 24,4 25,4 26,4 27,4 28,4 29,4 30,4 31,4

0,5 1,5 2,5 3,5 4,5 5,5 6,5 7,5 8,5 9,5 10,5 11,5 12,5 13,5 14,5 15,5 16,5 17,5 18,5 19,5 20,5 21,522,5 23,5 24,5 25,5 26,5 27,5 28,5 29,5 30,5 31,5

Figure 8. BF (5) Algorithm-Step 2 and Edge-forcing of BF (5)

Now, we will prove the upper bound of the edge-forcing number of BF (r), r ≥ 3.

Lemma 4.8. For r odd, r ≥ 3, ζe(BF (r)) ≤
⌈

r

2

⌉

2r−1.

Proof:

The result is true for r = 3 and 5 by Theorems 4.3 and 4.7 respectively. For r ≥ 7, r odd, BF (r)
contains 4 vertex disjoint copies of BF (r − 2) induced by vertices in Level 0 to Level (r − 2). The

edges in the subgraph induced by vertices in Level r and Level (r− 1) are not adjacent to any edge in

the four isomorphic copies of BF (r − 2). Hence using recursion,

ζe(BF (r)) ≤ 4ζe(BF (r − 2)) + 2r−1

≤ 4(4ζe(BF (r − 4)) + 2r−3) + 2r−1

= 42ζe(BF (r − 4)) + 2× 2r−1

≤ 4

(

r − 3

2

)

× ζe(BF (r − (r − 3))) +

(

r − 3

2

)

2r−1

= 2r−3 × 8 + (r − 3) 2r−2

= (r + 1) 2r−2

=
⌈r

2

⌉

2r−1.

Thus ζe(BF (r)) ≤
⌈

r

2

⌉

2r−1; r ≥ 3 and r odd. ⊓⊔

Combining Lemma 4.2 with Lemma 4.8, we arrive at the following result.
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Theorem 4.9. For r ≥ 3, r odd, 2r ≤ ζe(BF (r)) ≤
⌈

r

2

⌉

2r−1.

Lemma 4.10. For r ≥ 4, r even, ζe(BF (r)) ≤
(r

2
+ 2

)

2r−1.

Proof:

By Theorem 4.5, the result is true for r = 4. For r ≥ 6, r even, BF (r) contains four vertex disjoint

copies of BF (r − 2) induced by vertices in Level 0 to Level (r − 2). The edges in the subgraph

induced by vertices in Level r and Level (r − 1) are not adjacent to any edge in the four isomorphic

copies of BF (r − 2). Hence using recursion,

ζe(BF (r)) ≤ 4ζe(BF (r − 2)) + 2r−1

≤ 4(4ζe(BF (r − 4)) + 2r−3) + 2r−1

= 42ζe(BF (r − 4)) + 2× 2r−1

≤ 4

(

r − 4

2

)

× ζe(BF (r − (r − 4))) +

(

r − 4

2

)

2r−1

= 2r−4 × 25 + (r − 4) 2r−2

=

(

4r + 9

8

)

2r−1

≤
(r

2
+ 2

)

2r−1.

Thus ζe(BF (r)) ≤
(r

2
+ 2

)

2r−1; r ≥ 4 and r even. ⊓⊔

Combining Lemma 4.2 with Lemma 4.10, we arrive at the following result.

Theorem 4.11. For r ≥ 4, r even, 2r ≤ ζe(BF (r)) ≤
(r

2
+ 2

)

2r−1.

5. Conclusion

In this paper, we have introduced the edge-forcing problem in line with ‘total forcing’, ‘connected

forcing’ and ‘k-forcing’ studied by various authors. We have established the NP-completeness of

the edge-forcing problem. We have obtained a lower bound for the edge-forcing number of butterfly

networks BF (r), r ≥ 3. Further, we have proved that this lower bound is sharp for BF (r), r = 3,

4, 5 and have obtained an upper bound for higher dimensions. Determining edge-forcing number for

higher dimensions of butterfly networks is a challenging open problem.
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