
Appeared in Fundamenta Informaticae 182(3) : 257–283 (2021). 257
Available at IOS Press through:
https://doi.org/10.3233/FI-2021-2073

Efficient Algorithms for Maximum Induced Matching Problem in
Permutation and Trapezoid Graphs

Viet Dung Nguyen, Ba Thai Pham, Phan Thuan Do*

Hanoi University of Science and Technology

1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet Nam

dungnv@soict.hust.edu.vn, thai.pb144038@sis.hust.edu.vn, thuandp@soict.hust.edu.vn

Abstract. We first design an O(n2) solution for finding a maximum induced matching in per-
mutation graphs given their permutation models, based on a dynamic programming algorithm
with the aid of the sweep line technique. With the support of the disjoint-set data structure, we
improve the complexity toO(m+n). Consequently, we extend this result to give anO(m+n) al-
gorithm for the same problem in trapezoid graphs. By combining our algorithms with the current
best graph identification algorithms, we can solve the MIM problem in permutation and trape-
zoid graphs in linear and O(n2) time, respectively. Our results are far better than the best known
O(mn) algorithm for the maximum induced matching problem in both graph classes, which was
proposed by Habib et al.

Keywords: permutation graph, trapezoid graph, induced matching, sweep line, disjoint set

1. Introduction

The maximum matching problem is one of the most fundamental and applicable problems in graph
theory. Given a graph G = (V,E), a maximum matching is a subset M ⊆ E of maximum size
so that every two distinct edges in M do not share a common vertex. Its applications can be found
everywhere, from VLSI circuit design [1] to archaeology and chemistry [2]. The best-known algorithm

*Address for correspondence: Hanoi University of Science and Technology, 1 Dai Co Viet, Hai Ba Trung, Ha Noi, Viet
Nam.

Received July 2021; revised July 2021.

ar
X

iv
:2

10
7.

08
48

0v
2

 [
cs

.D
S]

 5
 N

ov
 2

02
1

https://doi.org/10.3233/FI-2021-2073

258 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

for the maximum matching problem in general graphs is O(
√
V E) [3]. However, we can achieve

better running time on many special graph classes thanks to their particular properties.
If every two distinct edges in a matching M are not connected by an edge in G, then M is called

an induced matching. Recently, the maximum induced matching (MIM) problem has drawn enormous
attention among researchers because of its importance in many fields such as artificial intelligence (co-
operative path-finding problem [4], neural information processing [5]), VLSI design [6], and marriage
problems [7]. The problem is proved to be NP-hard in general graphs [7]. Some exponential time
algorithms for the MIM problem in general graphs are proposed recently by Chang et al. [8] and Xiao
et al. [9]. Besides, it is known for polynomial-time maximum induced matching on special graph
classes such as co-comparability graphs (including circular-arc graphs [10], interval graphs [11], etc.),
circular-convex bipartite and triad-convex bipartite graphs [12], AT-free graphs [13] and hexagonal
graphs [14]. In chordal graphs, finding a MIM can be done in linear time [15].

Dagan et al. [1] introduced trapezoid graphs in 1988. Given two parallel horizontal lines, a trape-
zoid is formed by two points on the upper line and two points on the lower line. A trapezoid graph
is an intersection graph, i.e., a graph representing the pattern of intersections of a family of sets, built
from such a set of trapezoids. A trapezoid representation (or trapezoid model) of a trapezoid graph in-
cludes two such horizontal lines and the set of trapezoids, which is used to forms that trapezoid graph.
A permutation graph is a particular case of trapezoid graphs, in which the two intervals that define
each trapezoid in the trapezoid representation shrink into two points only. Therefore, a permutation
representation can be represented as a permutation of the first n positive integers.

Permutation graphs, as well as trapezoid graphs, are weakly chordal graphs [16]. They are also
Asteroidal-Triple-free (AT-free) graphs. In [13], by applying the result from [17], MIM was solved in
polynomial time for AT-free graphs. In [18], the authors proposed a linear time algorithm for MIM on
bipartite permutation graphs (which are bipartite AT-free graphs).

Denote n and m as the number of vertices and edges in a graph, respectively. Do et al. [19] in-
troduced an efficient algorithm to find a maximum matching in trapezoid graphs in O(n(log n)2). On
the other hand, Rhee et al. [20] proposed an O(n log log n) algorithm for such problems in permuta-
tion graphs. However, to the best of our knowledge, the MIM problem has not been mentioned with
specific algorithms on permutation graphs. The best-known algorithm for finding a weighted induced
matching for all co-comparability graphs, which are a superclass of permutation graphs and trapezoid
graphs, has time complexity ofO(mn) [21]. So far, there is no other superclass of permutation graphs
and trapezoid graphs on which the MIM problem is proved to be solvable in faster time than O(mn).
Consequently, we can consider O(mn) the fastest time complexity to find a MIM on a permutation
graph or a trapezoid graph.

In this paper, we introduce more efficient algorithms for the MIM problem in both permuta-
tion graphs and trapezoid graphs. We first design in Section 2 an O(n2) algorithm and then an
O(m log log n+n) algorithm for finding a MIM in permutation graphs given their permutation models.
These algorithms are based on a dynamic programming method with the aid of the sweep line tech-
nique on a geometry representation of permutation graphs. Our approach is to construct the longest
chain of ordered edges, which form an induced matching. A sweep line moving from right to left
correctly determines the order of dynamic processes. The edge set of the given permutation graph can
be built from the vertex set of that graph inO(m+n) time by employing the benefits of the linked list

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 259

data structure. Especially, with the support of the disjoint-set data structure, we improve the overall
running time for finding a MIM to O(m+ n) time in permutation graphs. Furthermore, in Section 3,
we generalize this algorithm with the same running timeO(m+n) to trapezoid graphs given trapezoid
models. With the combination of our algorithms and the current best graph identification algorithms
that generate presentation models for permutation graphs and trapezoid graphs, we can solve the MIM
problem in permutation and trapezoid graphs in linear and O(n2) time, respectively. Our results are
far better than the best knownO(mn) algorithm [21] in both graph classes. This paper is the complete
version including preliminary results of our conference papers [22] and [23].

2. Fundamental definitions

2.1. Maximum induced matching

A subset M ⊆ E is an induced matching of graph G = (V,E) if for every two distinct edges
e1 = u1v1 and e2 = u2v2 in M we have u1u2 /∈ E, u1v2 /∈ E, v1u2 /∈ E and v1v2 /∈ E. We denote
L(G) as the line graph of G, i.e., each vertex of L(G) represents an edge of G. Two vertices in L(G)
are adjacent if and only if their corresponding edges share a common endpoint in G. We also denote
G2 as the graph having the same vertex set as G and two vertices are adjacent if their distance, i.e.,
the number of edges in a shortest path connecting them, is at most 2 in G. Then, the problem to find
an induced matching of maximum cardinality is exactly the maximum independent set problem on
L(G)2.

2.2. Permutation graph

Let π = (π(1), π(2), ..., π(n)) be a permutation of the first n positive integers. We build an undirected
graph G(π) = (V,E) in which the vertex set V = {1, 2, ..., n} and an edge uv ∈ E if and only if
(u − v)(π−1(u) − π−1(v)) < 0, where π−1(i) is the position of i in π. An undirected graph G is
called a permutation graph if there is a permutation π such that G(π) is isomorphic to G (see Figure
1 for an example), and π is called a permutation representation (or permutation model) of G.

2.3. Trapezoid graph

We assume that a trapezoid model is given by a set of trapezoids τ . Given two parallel horizontal axes:
x-axis and y-axis, each trapezoid A ∈ τ is given by four values x1, x2, y1, y2 (x1 ≤ x2, y1 ≤ y2)
such that [x1, x2] and [y1, y2] are the two intervals on these two axes that form the trapezoid A. The
segment connecting the point x1 on the x-axis and the point y2 on the y-axis is called a diagonal of A.
Similarly, the segment connecting the point x2 on the x-axis and the point y1 on the y-axis is another
diagonal of A. A trapezoid has at most two diagonals and at least one diagonal (when x1 = x2 and
y1 = y2). We assume that all corners of each trapezoid in the model have mutually different x- and y-
coordinates. Otherwise, we may obtain this property by perturbing the corner points without changing
the relationship between trapezoids [24]. Therefore, we can assume that all x- and y-coordinates are
integers in the interval [1, 2n], where n = |τ | is the number of trapezoids by mapping each coordinate
to an integer in this interval and keeping their cardinality order (see Figure 6 for an example).

260 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

1 2 3 4 5 6 7 8 9 10 11 12

12 345 67 8 91011 12

i

π(i)1
2

5

7

3

4

6

8

10

11

9

12 1 2 3 4 5 6 7 8 9 10 11 12

12 345 67 8 91011 12

i

π(i)

(a)

(b)

(c)

Figure 1: A permutation graph G (a) and one of its corresponding permutation representation (b),
which has π = (5, 7, 2, 1, 4, 8, 11, 10, 3, 6, 12, 9). A trapezoid model of the trapezoid graph L(G)2,
partially shown in (c), can be constructed from the permutation representation of G. A maximum
induced matching for G is M = {(1, 5), (6, 8), (9, 12)}, also seen as a maximum independent set of
L(G)2.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

x

y

1
2 3 4 5

6

1
2

3

4 5 6
1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

x

y

(a)

(b)

(c)

Figure 2: A trapezoid graph G (a) and one of its corresponding trapezoid representations (b). A trape-
zoid model of L(G)2, partially shown in (c), can be constructed from the trapezoid representation of
G. A maximum induced matching forG isM = {(1, 3), (5, 6)}, also seen as a maximum independent
set of L(G)2.

We construct an undirected graph G(τ) = (V,E) by setting the vertex set V = {1, 2, ..., |τ |} and
labeling each trapezoid in τ as a distinct number from 1 to |τ |. Then, AB is an edge of G(τ) if and
only if trapezoid A ∈ τ and trapezoid B ∈ τ intersect (i.e. when a diagonal of A intersects with
a diagonal of B). An undirected graph G is a trapezoid graph if there exists a set τ such that G is
isomorphic to G(τ).

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 261

3. Maximum induced matching in permutation graphs

3.1. An O(n2) maximum induced matching algorithm in permutation graphs

Permutation π−1 = (π−1(1), π−1(2), ..., π−1(n)) can be represented as points on 2-dimensional
SPACE(π−1) with horizontal axis i and vertical axis π−1. Each element π−1(i) corresponds to the
point (i, π−1(i)) on SPACE(π−1). An edge xy of G(π) (or equivalently, vertex xy of L(G)2) is de-
scribed as a rectangle whose sides are parallel to the axes and having two opposite corners (x, π−1(x))
and (y, π−1(y)) (see Figure 3 for an example). The problem could be viewed from a different angle
as finding a longest sequence of disjoint rectangles such that the next rectangle is completely at the
top-right of the previous rectangle in the sequence, since such a sequence corresponds to a maximum
independent set in L(G)2 and vice versa. This geometric representation reveals special benefits based
on the sweep line techniqueThis geometric representation reveals special benefits based on the sweep
line technique that plays an essential role in our algorithms. A sweep line moving from right to left
on SPACE(π−1) determines the order of dynamic programming processes, which helps to find a MIM
correctly and efficiently.

π−1(i)

6

5

4

3

2

1

1 2 3 4 5 6 i

1

1

2

2

3

3

4

4

5

5

6

6

i

π(i)

(a)

(b)

Figure 3: The presentation of permutation π−1 = (3, 1, 2, 4, 6, 5) on SPACE(π−1) (a) and the corre-
sponding diagram of permutation π (b). There are three matches: (1, 2), (1, 3) and (5, 6). Match (5,
6) is greater than the other two matches. A longest chain of length 2 is (1, 3), (5, 6).

We first briefly describe an algorithm that finds a MIM onG(π) inO(n2) time. LetG(π) = (V,E)
where π is a permutation of length n and E is the edge set of size m. We show some following
definitions.

Definition 3.1. An ordered pair (x, y) is called a match if 1 ≤ x < y ≤ n and π−1(x) > π−1(y). For
a match (x, y), x is called the left end and y is called the right end of the match.

262 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

One can see that each match (x, y) corresponds to the edge xy of G(π), so the number of distinct
matches in SPACE(π−1) is m. Denote by E′ the set of all matches in SPACE(π−1). In our algorithms,
the term match is used instead of edge. The utilization of match in place of edge is necessary to help
our sweep line correctly determine the order of the dynamic programming process lately described.

Definition 3.2. Given two matches e = (x, y) and e′ = (x′, y′), we define e < e′ if y < x′ and
π−1(x) < π−1(y′). We say that e is smaller than e′ and e′ is greater than e.

Definition 3.3. A sequence of matches e1, e2, ..., ek is called a chain if ei < ei+1 for all 1 ≤ i < k.
The length of the chain is k, and the match e1 is the smallest match of the chain.

Since a chain corresponds to a maximum independent set in L(G)2 and vice versa, the MIM
problem in permutation graphs turns out to be finding the longest chain on SPACE(π−1). It could be
solved by computing a function f : E′ → N, where f(e) is the length of the longest chain having e as
the smallest match. One can see that the maximum value of f(e) among all matches e is the size of a
MIM on G(π), which is what we need. We also compute a function link : E′ → E′, where link(e) is
a match such that f(e) = f(link(e)) + 1 and the match e is smaller than link(e). This link function
is utilized to construct a MIM in the end.

The whole algorithm can be summarized as follow:

Steps to find a MIM in G(π):
1. Construct all matches that exist on SPACE(π−1) and store them in adjacent lists.
2. Calculate two functions f and link for all matches e.
3. Build a MIM based on functions f and link calculated in step 2.

3.1.1. Construct all matches that exist on SPACE(π−1)

Throughout this paper, we denote A.x as the value x of an object A.
In the first step, we construct all matches that exist on SPACE(π−1). Let Match(x), where 1 ≤

x ≤ n, be the list of all y (1 ≤ y < x) having π−1(y) > π−1(x). The set {(y, x) | y ∈ Match(x)}
is the set of all matches with the right end x. These sets are pairwise disjoint for different values of x
and the union of them is all the matches that exist on SPACE(π−1). Match lists can be considered as
adjacent lists of the permutation graph, except that each edge is stored in only one list.

We use the linked list data structure to construct all matches that exist on SPACE(π−1) inO(m+n)
time (see Procedure 1 below). We create a linked list LL of n nodes numbered from 1 to n, where node
n is the head of LL, and the next node of node i is node (i − 1) for all 1 < i ≤ n. Initially, we set
Match(x) = ∅ for all x. We make a loop from a = n to a = 1. For each a, we start the visiting
process from the head of LL. When a node p is visited, if p > π(a), then we add π(a) to Match(p)
and move to the next node, else we remove p from LL.

For readability and simplicity, we only show a brief version of Procedure 1 here. For the complete
version of Procedure 1, please see Appendix A.

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 263

Procedure 1: buildAllMatches(π)

Description: Step 1: Construct all matches that exist on SPACE(π−1) and store them as adjacent lists.
11 /* initialize */

2 Create linked list LL of n nodes numbered from 1 to n, where LL.head = n, and i.next = i− 1 for all
1 < i ≤ n

3 Match(x)← ∅ for all 1 ≤ x ≤ n
4

55 /* build Match lists */

6 for a← n down to 1 do
7 p← LL.head
8 while p > π(a) do
9 add π(a) to Match(p)

10 p← p.next

11 remove node p from LL

12

13 return {Match(x) | 1 ≤ x ≤ n}

Lemma 3.4. Procedure buildAllMatches correctly constructs the listMatch(x) for all 1 ≤ x ≤ n.

Proof:
Because the nodes in the linked list LL are sorted in decreasing order from head to tail and there are n
distinct nodes at the beginning, the while-loop on line 8 always terminates when p = π(a). Therefore,
when a = i for some 1 ≤ i ≤ n, only the nodes π(n), π(n− 1), ..., π(i+ 1) are removed from LL. It
means that when a = i, we have π−1(π(a)) = a = i > π−1(p) for all p > π(a). Consequently, all
the elements added to the list Match(p) on line 9 are valid.

On the other hand, suppose that when a = i for some 1 ≤ i ≤ n, there is some removed node q
where (π(a), q) is a match, we will show a contradiction. Indeed, if q is removed before, q must belong
to the set {π(n), π(n−1), ..., π(i+1)}. It leads to the fact that π−1(q) ≥ i+1 > i = a = π−1(π(a)),
so (π(a), q) is not a match, contradicts with the assumption. Hence, when a = i, all the nodes p where
(π(a), p) is a match still remain in the linked list LL. The while-loop on line 8 can iterate through all
such nodes since p > π(a) when (π(a), p) is a match as definition.

Based on these two conclusions, for all 1 ≤ x ≤ n, Procedure buildAllMatches correctly con-
structs the list Match(x). ut

Lemma 3.5. Procedure buildAllMatches takes O(m+ n) time.

Proof:
The time complexity of procedure buildAllMatches is the LL’s building time plus the number of
times we add a new element to a Match list. Since each Match list does not have duplicate elements
and each match corresponds to a unique edge in G(π), this procedure takes O(m+ n) time. ut

264 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

3.1.2. Calculate two functions f and link

In the second step, we calculate two functions f and link. We make a sweep line Lmoving from right
to left and visit every coordinate i = x (1 ≤ x ≤ n). On L, we maintain n memory units called cells.
Each time when L stays at i = x, each cell Ly (1 ≤ y ≤ n) is a pair (len, trace), where len is the
length of a longest chain where the smallest match is any match trace = (z, t) satisfying z > x and
π−1(t) = y. An algorithm to calculate the function f can be built with the aid of the sweep line L.
First of all, let Sx be a list, which stores pairs of match e and its corresponding f(e), for all matches
e having x as its left end. The Sx lists are needed later for the cell updating process in our dynamic
algorithm. Initially, we set Sx = ∅, also set all Ly to be (0, NULL). Then, we start to move the sweep
line L. When reaching the coordinate i = x, we calculate f(e) and link(e) for all matches e = (y, x)
where y ∈Match(x) by the following formulae:

• f(e) = 1 + max
j>π−1(y)

Lj .len

• link(e) = Lj .trace
j>π−1(y),f(e)=Lj .len+1 (∗)

(for an arbitrary j satisfies (*))

After having f(e), we add (f(e), e) into the list Sy. After the calculations of f(e) and link(e) for
all e having x as their right end, we start to update cells on L. This process is done by going through
all elements in the list Sx: for each element (f(e), e) where e = (x, a), if Lπ−1(a).len < f(e), we set
Lπ−1(a) = (f(e), e) (see Figure 4b for an example). In the end, when all x are swept by L, we will
have the answer for the MIM problem by looking up the functions f and link.

A naive algorithm based on this method takes O(mn) time to run. Indeed, to calculate f(e) and
link(e) for each e, a single loop that runs inO(n) is required. As the number of matches ism, it takes
O(mn) overall. The main problem which causes the algorithm slow is the requirement of an O(n)
loop to calculate each match.

However, it is noticeable that the elements in each list Match(x) are arranged in decreasing
order of the function π−1 applying to them, i.e., element a is added before element b in Match(x) if
π−1(a) > π−1(b). The following lemma will prove this argument.

Lemma 3.6. The elements of each list Match(x) are arranged in decreasing order of the function
π−1 applying to them.

Proof:
Consider any pair (p, q) of elements inMatch(x), suppose that p = π(i) is added before q = π(j), we
can see that i > j since the for-loop iterator a in buildAllMatches decreases. Therefore, π−1(p) =
π−1(π(i)) = i > j = π−1(π(j)) = π−1(q), the lemma is proven. ut

By Lemma 3.6, we can reduce running time by using just O(n) operations to calculate f(e) and
link(e) for all e with the right end x. Hence, we have an O(n2) algorithm overall. We maintain a
decreasing-pointer z and two variablesmaxLen and tracewheremaxLen is max

i>z
(Li.len) and trace

is the corresponding Li.trace when Li.len reaches maximum. These two variables maxLen and

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 265

trace are updated each time we decrease z (see Figure 4a for an example). The following procedure
calculateFAndLink will represent step 2. For readability and simplicity, we only show a brief
version of Procedure 2 here. For the complete version of Procedure 2, please see Appendix B.

Procedure 2: calculateFAndLink(π−1,Match)

Description: Step 2: Calculate two functions f and link for all matches e.
11 /* initialize */

2 initialize S and L
3

44 /* calculate functions f and link */

5 for x← n down to 1 do
6 calculate f and link for all matches (∗, x) with pointer z decreasing from n
7 update elements in Sx to L
8

9 return (f, link)

π−1(i)

i

L

x

L’s data
(len, trace)

f(
e)
an
d
li
n
k(
e)

ca
lc
ul
at
in
g
di
re
ct
io
n

e1
e2

e3

π−1(i)

i

L

x

L’s data
(len, trace)

L moves after updates

(a) (b)

: pointer z visits

: update

Figure 4: Calculate f and link in G(π) in O(n2) time.
(a) When L stays at i = x, for all matches e = (y, x), f(e) and link(e) are calculated in decreasing
order of π−1(y). To obtain f(e) and link(e), every Lz such that π−1(y) < z ≤ n is visited. Then
(f(e), e) is added to the list Sy.
(b) Each element (f(e), e) having e = (x, y) in Sx is updated to the cell Lπ−1(y). After all, the sweep
line L moves to the coordinate i = x− 1.

3.1.3. Build a maximum induced matching

Let startChain be a match where f(startChain) is the maximum among all f(e). Consequently, a
MIM on G(π) will have the cardinality of f(startChain). Such a MIM could be built by tracing the
link function in O(|MIM|) which is O(n). Step 3 is implemented in Procedure buildMIM below.

266 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

Procedure 3: buildMIM(f, link)

Description: Step 3: Build a MIM based on functions f and link calculated in step 2.
11 /* initialize */

2 MIM← ∅
3 startChain← a (for an arbitrary a where f(a) is maximum)
4 e← startChain
5

66 /* build a MIM */

7 while e 6= NULL do
8 (x, y)← e
9 MIM← MIM ∪ xy

10 e← link(e)

11

12 return MIM

3.1.4. Summary

Given a permutation model π, a MIM of permutation graphG(π) can be found by calling the following
procedure maxInducedMatching.

Procedure 4: maxInducedMatching(π)

Description: Finding a MIM in G(π)
1 Match← buildAllMatches(π)
2 (f, link)← calculateFAndLink(π−1,Match)
3 return buildMIM(f, link)

Theorem 3.7. A maximum induced matching in permutation graphG(π) can be found inO(n2) time.

Proof:
Procedure 4 returns a MIM of permutation graph G(π). The first function buildAllMatches takes
O(m + n) time, proved by Lemma 3.5. The second function calculateFAndLink runs in O(n2), as
shown in Section 3.1.2. The last function buildMIM takesO(n) time to run, as shown in Section 3.1.3.
Therefore, Procedure 4 a maximum induced matching on G(π) in O(n2) time. ut

3.2. Faster maximum induced matching algorithms in permutation graphs

With the aid of a segment tree [25], we can build anO(m log n+n) algorithm for MIM in permutation
graphs from the O(n2) algorithm. Unlike the O(n2) algorithm in which the sweep line L stores an
array of cells, L here stores a segment tree. All operations, including updating a cell and finding the
maximum cell within an interval, are done in O(log n) time per each operation. As we mentioned, a
MIM on permutation graph G can be seen as a maximum independent set on trapezoid graph L(G)2.
Actually, this O(m log n + n) algorithm is similar to the maximum independent set algorithm for

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 267

trapezoid graph in [24], which could be improved to an O(m log log n + n) solution by using vEB
tree in [26]. A Van Emde Boas tree (or Van Emde Boas priority queue), also called vEB tree, supports
searching, inserting and deleting an element in O(log logM), where M = 2m is a fixed number
indicating the maximum number of nodes to be stored in the tree, and the elements are integers in
{1, 2, ...,M}. A vEB tree implements an associative array of m-bit integer keys in O(M) space.

We shall not show this algorithm in detail since our following O(m + n) algorithm does not use
the idea of segment tree nor vEB tree.

3.3. An O(m+ n) maximum induced matching algorithm in permutation graphs

To the best of our knowledge, there has not been existed any data structure that supports both query
and update operations in O(1) applicable for this problem. Therefore, improving an O(n2) algorithm
in Section 3.1 into anO(m+n) algorithm only by applying different data structures in Step 2 is quite
an impossible work.

Let pay attention to procedure maxInducedMatching. Although the idea of pointer z is essen-
tial to make the running time O(n2), it consumes O(n) calculations for each x from n to 1, and
becomes the most time-consuming part of the whole algorithm. Instead of O(n), if we can turn it to
O(|Match(x)|) for each x, we will acquire anO(m+n) for the overall algorithm. We show next the
most critical points for an O(m+ n) solution.

Assume that Ly now stores 3 values (len, trace, swept) in place of a pair (len, trace), where
swept equals to 1 if the sweep line L has passed the coordinate i = π(y) (Ly is called a swept cell)
or equal to 0 (Ly is called an unswept cell) otherwise. Some operations of our O(n2) algorithm are
going to be changed.

3.3.1. Adjustment of formulae

We call ϕ(a) the greatest number smaller than a having Lϕ(a).swept = 0 (if such ϕ(a) does not
exist then we assume ϕ(a) = 0). To calculate f(e) and link(e) for all matches e = (y, x) where
y ∈Match(x), their formulae are also adjusted as below:

• f(e) = 1 + max
j≥π−1(y), Lj .swept=0

Lj .len

• link(e) = Lj .trace
j≥π−1(y), Lj .swept=0, f(e)=Lj .len+1 (∗∗)

(for an arbitrary j satisfies (**))

With the new formulae, we do not need the pointer z decreasing from n anymore. We just need to
iterate through all Lπ−1(z) where n ≥ π−1(z) > π−1(x) and Lπ−1(z).swept = 0 (see Figure 5a for an
example). In this occasion, Lπ−1(z).swept = 0 also means z < x, because Lπ−1(z′).swept is set to 1
for all z′ > x when sweep line L stays at coordinate i = x. Amazingly, if we have π−1(z) > π−1(x)
and z < x, then (z, x) is a match. Therefore, the number of Lπ−1(z) we need to check for each x is
exactly O(|Match(x)|) as we need.

268 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

When going through all elements of the list Sx in the updating process, for each element (f(e), e)
where e = (x, a), we will update Lϕ(π−1(a)) instead of Lπ−1(a). If Lϕ(π−1(a)).len < f(e) then we set
Lϕ(π−1(a)).len = f(e) and Lϕ(π−1(a)).trace = e (see Figure 5b for an example).

Finally, before moving the sweep line L to the coordinate i = x − 1, we set Lπ−1(x).swept = 1,
Lπ−1(x) becomes a swept cell. In addition, if Lπ−1(x).len > Lϕ(π−1(x)).len, then we set Lϕ(π−1(x)) =
(Lπ−1(x).len, Lπ−1(x).trace, 0) (see Figure 5b for an example).

π−1(i)

i

L

x

f(
e)
an
d
li
n
k(
e)

ca
lc
ul
at
in
g
di
re
ct
io
n

e1
e2

e3

π−1(i)

i

L

x

L moves after updates

(a) (b)
: pointer z visits

: update

×

×

×
×

×
×

×

×

×
×

×
×

× π−1(x)

ϕ(π−1(x))

L’s data
(len, trace, swept)

L’s data
(len, trace, swept)

×

: swept = 0

: swept = 1

Figure 5: Calculate f and link in G(π) in O(m+ n) time.
(a) When L stays at i = x, for all matches e = (y, x), f(e) and link(e) are calculated in decreasing
order of π−1(y). To obtain f(e) and link(e), every Lz such that π−1(y) ≤ z ≤ n and Lz.swept = 0
is visited. Then (f(e), e) is added to the list Sy.
(b) Every element (f(e), e) having e = (x, y) in Sx is updated to the cell Lϕ(π−1(y)). Then
Lπ−1(x).swept is set to 1; Lπ−1(x).len and Lπ−1(x).trace are updated to Lϕ(π−1(x)). After all, the
sweep line L moves to the coordinate i = x− 1.

Let ψ(y) be the smallest number such that n ≥ ψ(y) > y and Lψ(y).swept = 0, if such ψ(y) does
not exist then we assume ψ(y) = n. We will prove the correctness of all these changes above through
Lemma 3.8.

Lemma 3.8. For all 1 ≤ x ≤ n, when the sweep lineLmoves from coordinate i = x+1 to coordinate
i = x, each cell Ly (1 ≤ y ≤ n) where Ly.swept = 0 contains 3 variables (len, trace, swept) that:

• Ly.len is the length of a longest chain among all chains having their smallest match (a, b)
satisfies a > x and y < π−1(b) ≤ ψ(y).

• Ly.trace is the smallest match of such a chain (if there are multiple choices, Ly.trace can be
any match).

• Ly.swept = 0.

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 269

Proof:
We will prove this lemma using the induction hypothesis as follows.

• The lemma is true for x = n since for all 1 ≤ y ≤ n, Ly = (0, NULL, 0).

• Suppose that the lemma is true for some x = t + 1 where 1 ≤ t < n, we will prove that the
lemma is correct for x = t. Indeed, suppose that π−1(t + 1) = k, we will have ϕ(ψ(k)) =
ϕ(k) and ψ(ϕ(k)) = ψ(k) after all update operations are done and before the sweep line L
moves from coordinate i = t + 1 to coordinate i = t. In addition, since we set Lϕ(k) =
(Lk.len, Lk.trace, 0) if Lk.len > Lϕ(k).len before L’s movement, the cell Lϕ(k) will satisfy
all the three properties mentioned in Lemma 3.8. Therefore, each cell Ly (1 ≤ y ≤ n) where
Ly.swept = 0 will also satisfy all these three properties.

By the induction hypothesis, we can conclude that the lemma applies for all 1 ≤ x ≤ n. ut

The last issue is whether there is a data structure, which helps to calculate all the ϕ operations in
O(m+ n). Here the disjoint-set data structure does the job.

3.3.2. Complexity improvement by the disjoint-set data structure

We consider a disjoint-set data structure d consists of n sets {1}, {2}, ..., {n}, where the name of the
set containing i is also i at the beginning. Each set in the disjoint-set structure corresponds to either
a single unswept cell or a set of consecutive swept cells on the sweep line L. The purpose of d is
to quickly jump through sets of consecutive cells that are swept, thus lead to quickly calculate the
function ϕ.

We define two operations on our disjoint-set data structure d as below:

• find(d, x): Return the name of the set containing x.

• union(d, x, y): Create a new set that is the union of the sets containing x and y. The name of
the new set is the name of the old set containing x. This operation assumes that x and y are
initially in different sets and destroys the old sets containing x and y.

In our algorithm, before moving the sweep line L from the coordinate i = x to the coordinate i =
x−1, we setLπ−1(x).swept = 1. After this operation, ifLπ−1(x)−1.swept = 1, then the set containing
π−1(x) will be united with the set containing π−1(x) − 1 by calling union(d, π−1(x) − 1, π−1(x)).
Similarly if Lπ−1(x)+1.swept = 1, we unite two sets where π−1(x) and π−1(x) + 1 belong to by
calling union(d, π−1(x), π−1(x) + 1).

Since these are the only union operations in our algorithm, we can see that the name of the set
containing x is always the minimum number in that set. Based on this observation, we have a simple
way to calculate ϕ as follows. If Lx−1.swept = 0, then ϕ(x) = x − 1. Otherwise, ϕ(x) is exactly
find(d, x− 1)− 1. This is correct since find(d, x− 1) is the smallest number in the set containing
(x− 1). In general, the function ϕ(x) is calculated by the procedure calϕ.

270 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

Procedure 5: calϕ(L, d, x)

Description: Calculate ϕ(x)
1 if x = 1 or Lx−1.swept = 0 then
2 return x− 1
3 else
4 return find(d, x− 1)− 1

Thanks to the disjoint-set structure in [27], all find and union operations in our algorithm can
be calculated in O(m + n). Because the total number of union and find operations in Procedure is
Θ(m+n), and according to [27], in our case, the union tree T is the tree where node i is the parent of
node (i+ 1) for all i : 1 ≤ i < n. Therefore, the O(m+ n) algorithm can be built by a modification
of the procedure calculateFAndLink, shown in Procedure 6 below. For readability and simplicity,
we only show a brief version of Procedure 6 here. For the complete version of Procedure 6, please see
Appendix C.

Procedure 6: calculateFAndLink(π−1,Match)

Description: Step 2: Calculate two functions f and link for all matches e.
11 /* initialize */

2 initialize S, L and d
3

44 /* calculate functions f and link */

5 for x← n down to 1 do
6 calculate f and link for all matches (∗, x) with pointer z decreasing from ϕ(n+ 1)
7 update elements in Sx to L
8 update L and d before L passes coordinate i = x

9

10 return (f, link)

Theorem 3.9. A maximum induced matching in permutation graph G(π) can be found in O(m+ n)
time.

Proof:
All union and find operations take O(m+ n) time as shown. Therefore, the cost for Procedure 6 is
O(m+n). By substituting Procedure 6 for Procedure 2, Procedure 4 can produce a maximum induced
matching for G(π) in O(m+ n) time. ut

McConnell and Spinrad [28] introduced an algorithm to construct a permutation model from a
permutation graph in linear time. This leads to a linear-time algorithm for the MIM problem in per-
mutation graphs by first generate a permutation model π from permutation graph G, and then find a
MIM in G(π) in O(m + n) time. Based on this result and Theorem 3.9, we conclude the section by
the following corollary.

Corollary 3.10. A maximum induced matching in a permutation graphG can be found in linear time.

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 271

4. Maximum induced matching in trapezoid graphs

Trapezoid graphs are a superclass of permutation graphs. Algorithms for solving the MIM problem
in trapezoid graphs, which will be proposed later in this paper, are pretty similar to those of permu-
tation graphs. Despite that, our procedures in Section 3 still need a huge modification in order to be
applicable in trapezoid graphs.

4.1. An O(m+ n) maximum induced matching algorithm in trapezoid graphs

A trapezoid graph can be represented as rectangular boxes on 2-dimensional SPACE(τ) in which each
trapezoid corresponds to a unique box. A trapezoid which is made by two intervals [x1, x2] and
[y1, y2], where x1 ≤ x2 and y1 ≤ y2, is described as a unique rectangle having bottom-left corner
(x1, y1), top-right corner (x2, y2) and edges parallel to x- and y-axis.

An edge AB of G(τ) (or equivalently, a vertex of L(G)2) is described as a big rectangle whose
sides are parallel to the axes and having two opposite corners (min(A.x1, B.x1),min(A.y1, B.y1))
and (max(A.x2, B.x2), max(A.y2, B.y2)) (see Figure 6 for an example). The problem could be
viewed as finding a longest sequence of the disjoint big rectangles such that the next rectangle is com-
pletely at the top-right of the previous rectangle in the sequence, since such a sequence corresponds
to a maximum independent set in L(G)2 and vice versa. We shall show some definitions similar to
Section 3.

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

x

y

1 2 3 4

5 6

1 2 3 4 5 6

x

y

y

12

11

10

9

8

7

6

5

4

3

2

1

1 2 3 4 5 6 7 8 9 10 11 12 x

1

2

3

4

5

6

(a)

(b)

(c)

Figure 6: Trapezoids with duplicate x- and y-coordinates (a) can be mapped to a new set of trapezoids
without duplicate x- or y-coordinates (b) and can be represented as boxes in 2-dimensional space (c).
All x- and y-coordinates lie inside [1, 2n]. There are four matches in this figure: (2, 1), (2, 3), (4, 3)
and (5, 6). Match (5, 6) is greater than all other matches. A longest chain of length 2 is (2, 3), (5, 6).

Definition 4.1. An ordered pair of trapezoids (A,B) is called a match if A.x2 < B.x2 and either
A.x2 ≥ B.x1 or A.y2 ≥ B.y1. For a match (A,B), A is called the left end and B is called the right
end of the match. The ordered pair (B,A) is called a reversed match.

272 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

One can see that each match (A,B) corresponds to the edgeAB ofG(τ), so the number of distinct
matches is equal to m. In our algorithm, the term match is used instead of edge.

Definition 4.2. Given two matches e=(A,B) and e′=(A′, B′), we define e < e′ if max(A.x2, B.x2)
< min(A′.x1, B

′.x1) and max(A.y2, B.y2) < min(A′.y1, B
′.y1). We say that e is smaller than e′

and e′ is greater than e.

In other words, e = (A,B) < e′ = (A′, B′) if and only if the big rectangle C ′ that covers A′ and
B′ is completely at the top-right of the big rectangle C that covers A and B in SPACE(τ).

Definition 4.3. A sequence of matches e1, e2, ..., ek is called a chain if ei < ei+1 for all 1 ≤ i < k.
The length of the chain is k, and the match e1 is the smallest match of the chain.

Since a chain corresponds to a maximum independent set in L(G)2 and vice versa, the MIM
problem in trapezoid graphs turns out to be the problem of finding the longest chain on SPACE(τ). We
introduce an O(m + n) algorithm for MIM problem in G(τ) where n = |V | = |τ | and m = |E|
using the same idea but a little bit more tricky than the permutation one. As well as in the permutation
case, we first build adjacent lists from pairs of intersecting trapezoids. Then, we calculate f and link
functions for all these pairs. Finally, we construct a MIM based on the functions we calculated.

Steps to find a MIM in G(τ):
1. Construct all matches that exist on SPACE(τ) and store them in adjacent lists.
2. Calculate two functions f and link for all matches e.
3. Build a MIM based on functions f and link calculated in step 2.

4.1.1. Construct all matches on SPACE(τ)

For each trapezoid A, let Match(A) be the list of all trapezoids B so that (B,A) is a match. Trape-
zoids in Match(A) are sorted in decreasing order of their y2 coordinate. It is noticeable that two
trapezoids A, B intersect if and only if there is a diagonal of A intersects with a diagonal of B. Since
x- and y-coordinates of all trapezoids are distinct as we assumed, all trapezoid diagonals form a per-
mutation graph, so Match lists can be constructed by a nearly similar algorithm written in procedure
buildAllMatches from Section 3.1.1. We present procedure buildAllMatches for the trapezoid
case as below. For readability and simplicity, we only show a brief version of Procedure 7 here. For
the complete version of Procedure 7, please see Appendix D.

As we assumed, x-coordinates and y-coordinates of all trapezoids are distinct and lie inside the
range [1, 2n]. Hence we can make an O(n) pre-process step to find in O(1) the trapezoid to which a
x- or y-coordinate belongs. Although a trapezoid B could appear many times in a list revMatch(A),
the number of B’s appearances is at most 4 since A and B have only two diagonals each. Therefore,
the number of elements in all revMatch lists is at most 4m, which leads to O(m + n) running time
of procedure buildAllMatches.

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 273

Procedure 7: buildAllMatches(τ)

Description: Step 1: Construct all matches on SPACE(τ) and store them as adjacent lists.
11 /* initialize */

2 Create linked list LL of n nodes numbered from 1 to 2n, where LL.head = 2n, and i.next = i− 1 for
all 1 < i ≤ 2n

3 set revMatch(A)← ∅ and Match(A)← ∅ for all 1 ≤ x ≤ 2n
4

55 /* build reversed match lists with possibly duplicate elements */

6 for y ← 2n down to 1 do
7 p← LL.head
8 suppose that y = R.y1 or y = R.y2 for some R ∈ τ
9 while true do

10 suppose that p = A.x1 or p = A.x2 for some A ∈ τ
11 if A = R then
12 if (p = R.x1 and y = R.y2) or (p = R.x2 and y = R.y1) then
13 break
14 else if A.x2 < R.x2 then add R to revMatch(A)
15 else add A to revMatch(R)
16 p← p.next

17 remove node p from LL

18

19 build Match lists from revMatch lists
20 return {Match(A) | A ∈ τ}

4.1.2. Calculate two functions f and link

The procedure calculateFAndLink (see Procedure 8) can be reused from Section 3.1.2 by applying
some minor adjustments without changing the time complexity (see Figure 7). For readability and
simplicity, we only show a brief version of Procedure 8 here. For the complete version of Procedure
8, please see Appendix E.

Procedure 8: calculateFAndLink(τ,Match)

Description: Step 2: Calculate 2 functions f and link for all matches e.
11 /* initialize */

2 initialize S, L and d
33 /* calculate functions f and link */

4 for x← 2n down to 1 do
5 if x = A.x2 for some A ∈ τ then
6 calculate f and link for all matches (∗, x) with pointer z decreasing from ϕ(2n+ 1)
7 update the L and d before L passes coordinate i = x

8 else // x = A.x1 for some A ∈ τ
9 update elements in Sx to L

10 return (f, link)

274 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

y

x

L

x = A.x2

B1.y2

B2.y2

B3.y2

B4.y2

f
(e
)
an

d
li
n
k
(e
)
ca
lc
u
la
ti
on

d
ir
ec
ti
on

L moves after update
L’s data
(len, trace, swept)

×

×

× A.y2
ϕ(A.y2)

y

x

L

x = A.x1

L moves after updates

×

×

(a)

(b)

×

×

×

: pointer z visits

: update ×

: swept = 0

: swept = 1

: swept = 1 by default

L’s data
(len, trace, swept)

B1

B2

B4

B3

A

A

e4

e3

e2

e1

Figure 7: Calculate f and link in G(τ) in O(m+ n) time.
(a) For all matches e = (B,A) where A.x2 = x, f(e) and link(e) are calculated in decreasing
order of B.y2. To obtain f(e) and link(e), every Lz such that max(A.y2, B.y2) ≤ z ≤ 2n and
Lz.swept = 0 is visited. Then (f(e), e) is added to the list Smin(A.x1,B.x1). After all, LA.y2 .swept
is set to 1; LA.y2 .len and LA.y2 .trace are updated to Lϕ(A.y2); and the sweep line L moves to the
coordinate i = x− 1.
(b) Every element (f(e), e) in Sx having e = (A,B) and A.x1 = x is updated to the cell
Lϕ(min(A.y1,B.y1)). After all, the sweep line L moves to the coordinate i = x− 1.

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 275

4.1.3. Build a maximum induced matching

The last procedure buildMIM from Section 3.1.3 can be completely reused.

4.1.4. Summary

All three main procedures have O(m + n) time complexity. Therefore, given τ , we can find a MIM
of trapezoid graph G(τ) in O(m+ n) time by calling the procedure maxInducedMatching below.

Procedure 9: maxInducedMatching(τ)

Description: Finding a MIM in G(τ)
1 Match← buildAllMatches(τ)
2 (f, link)← calculateFAndLink(τ,Match)
3 return buildMIM(f, link)

We summarize our approach in Theorem 4.4.

Theorem 4.4. A maximum induced matching in trapezoid graphG(τ) can be found inO(m+n) time.

Proof:
We can use the same technique in the proof of Theorem 3.9 to show that the overall running time
of Procedure 8 is O(m + n). In addition, since Procedure 7 runs in O(m + n) time and Procedure
buildMIM runs in O(n) time, Procedure 9 can produce a maximum induced matching for G(τ) in
O(m+ n) time. ut

By exploiting Cogis’ result [29] and matrix multiplication properties, Ma and Spinrad [30, 31,
32] created an algorithm that can recognize whether an undirected graph is a trapezoid graph or not
in O(n2). This algorithm is by far the fastest trapezoid graph recognition algorithm, and it can be
modified to give a trapezoid model in O(n2).

Based on this result and Theorem 4.4, we conclude the section by the following corollary.

Corollary 4.5. A maximum induced matching in a trapezoid graph G can be found in O(n2) time.

5. Conclusion

We have introduced efficient algorithms for the MIM problem in both permutation graphs and trape-
zoid graphs based on the combined technique of dynamic programming and geometrical sweep line.
This method is promising to apply to optimization problems in various special graph classes. We
finally summarize the main results in Table 1.

276 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

Table 1: Time complexity to find a MIM in particular graph classes.

Class of G
Input for G

π or τ V and E

Permutation graph
O(m+ n)

O(m+ n)

Trapezoid graph O(n2)

Acknowledgment

This research is funded by Vietnam National Foundation for Science and Technology Development
(NAFOSTED) under grant number 102.01-2019.302.

Viet Dung Nguyen was funded by Vingroup Joint Stock Company and supported by the Domestic
Master/ PhD Scholarship Programme of Vingroup Innovation Foundation (VINIF), Vingroup Big Data
Institute (VINBIGDATA), code VINIF.2020.ThS.BK.05.

References

[1] Dagan I, Golumbic MC, Pinter RY. Trapezoid graphs and their coloring. Discrete Applied Mathematics,
1988. 21(1):35–46. doi:10.1016/0166-218X(88)90032-7.

[2] Golumbic MC. Algorithmic graph theory and perfect graphs. Elsevier, 2004.

[3] Micali S, Vazirani VV. An O(
√
|V |.|E|) algorithm for finding maximum matching in general graphs.

In: Foundations of Computer Science, 1980., 21st Annual Symposium on. IEEE, 1980 pp. 17–27. doi:
10.1109/sfcs.1980.12.

[4] Surynek P. Compact representations of cooperative path-finding as SAT based on matchings in bipartite
graphs. In: Tools with Artificial Intelligence (ICTAI), 2014 IEEE 26th International Conference on. IEEE,
2014 pp. 875–882. doi:10.1109/ictai.2014.134.

[5] Kocaoglu M, Shanmugam K, Bareinboim E. Experimental design for learning causal graphs with latent
variables. In: Advances in Neural Information Processing Systems. 2017 pp. 7018–7028. doi:10.5555/
3295222.3295445.

[6] Golumbic MC, Lewenstein M. New results on induced matchings. Discrete Applied Mathematics, 2000.
101(1-3):157–165. doi:10.1016/S0166-218X(99)00194-8.

[7] Stockmeyer LJ, Vazirani VV. NP-completeness of some generalizations of the maximum matching prob-
lem. Information Processing Letters, 1982. 15(1):14–19. doi:10.1016/0020-0190(82)90077-1.

[8] Chang MS, Chen LH, Hung LJ. Moderately exponential time algorithms for the maximum induced match-
ing problem. Optimization Letters, 2015. 9(5):981–998. doi:10.1007/s11590-014-0813-z.

[9] Xiao M, Tan H. Exact algorithms for Maximum Induced Matching. Information and Computation, 2017.
256:196–211. doi:10.1016/j.ic.2017.07.006.

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 277

[10] Golumbic MC, Laskar RC. Irredundancy in circular arc graphs. Discrete Applied Mathematics, 1993.
44(1-3):79–89. doi:10.1016/0166-218X(93)90223-B.

[11] Cameron K. Induced matchings. Discrete Applied Mathematics, 1989. 24(1-3):97–102. doi:10.1016/
0166-218X(92)90275-F.

[12] Pandey A, Panda B, Dane P, Kashyap M. Induced matching in some subclasses of bipartite graphs.
In: Conference on Algorithms and Discrete Applied Mathematics. Springer, 2017 pp. 308–319. doi:
10.1007/978-3-319-53007-9.

[13] Köhler EG. Graphs without asteroidal triples. Cuvillier, 1999.

[14] Erveš R, Šparl P. Maximum Induced Matching of Hexagonal Graphs. Bulletin of the Malaysian Mathe-
matical Sciences Society, 2016. 39(1):283–295. doi:10.1007/s40840-015-0288-9.

[15] Brandstädt A, Hoàng CT. Maximum induced matchings for chordal graphs in linear time. Algorithmica,
2008. 52(4):440–447. doi:10.1007/s00453-007-9045-2.

[16] Cameron K, Sritharan R, Tang Y. Finding a maximum induced matching in weakly chordal graphs. Dis-
crete Mathematics, 2003. 266(1-3):133–142. doi:10.1016/S0012-365X(02)00803-8.

[17] Broersma H, Kloks T, Kratsch D, Müller H. Independent sets in asteroidal triple-free graphs. SIAM
Journal on Discrete Mathematics, 1999. 12(2):276–287. doi:10.1137/S0895480197326346.

[18] Chang JM. Induced matchings in asteroidal triple-free graphs. Discrete Applied Mathematics, 2003.
132(1-3):67–78. doi:10.1016/S0166-218X(03)00390-1.

[19] Do PT, Le NK, Vu VT. Efficient maximum matching algorithms for trapezoid graphs. Electronic Journal
of Graph Theory and Applications, 2017. 5(1):7–20. doi:10.5614/ejgta.2017.5.1.2.

[20] Rhee C, Liang YD. Finding a maximum matching in a permutation graph. Acta informatica, 1995.
32(8):779–792. doi:10.1007/bf01178659.

[21] Habib M, Mouatadid L. Maximum induced matching algorithms via vertex ordering characterizations.
Algorithmica, 2020. 82(2):260–278. doi:10.1007/s00453-018-00538-5.

[22] Nguyen VD, Pham BT, Tran VH, Do PT. A dynamic programming algorithm for the maximum induced
matching problem in permutation graphs. In: Proceedings of the Ninth International Symposium on
Information and Communication Technology. ACM, 2018 pp. 92–97. doi:10.1145/3287921.3287961.

[23] Nguyen VD, Do PT. Quadratic time algorithm for maximum induced matching problem in trapezoid
graphs. In: Proceedings of the 2019 2nd International Conference on Information Science and Systems.
ACM, 2019 pp. 185–189. doi:10.1145/3322645.3322653.

[24] Felsner S, Müller R, Wernisch L. Trapezoid graphs and generalizations, geometry and algorithms. Discrete
Applied Mathematics, 1997. 74(1):13–32. doi:10.1016/S0166-218X(96)00013-3.

[25] Bentley JL. Algorithms for Klee’s rectangle problems. Technical report, Technical Report, Computer,
1977.

[26] van Emde Boas P. Preserving order in a forest in less than logarithmic time and linear space. Information
processing letters, 1977. 6(3):80–82. doi:10.1016/0020-0190(77)90031-X.

[27] Gabow HN, Tarjan RE. A linear-time algorithm for a special case of disjoint set union. Journal of
computer and system sciences, 1985. 30(2):209–221.

[28] McConnell RM, Spinrad JP. Modular decomposition and transitive orientation. Discrete Mathematics,
1999. 201(1-3):189–241. doi:10.1016/S0012-365X(98)00319-7.

278 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

[29] Cogis O. On the Ferrers dimension of a digraph. Discrete Mathematics, 1982. 38(1):47–52. doi:10.1016/
0012-365X(82)90167-4.

[30] Ma TH, Spinrad JP. On the 2-chain subgraph cover and related problems. Journal of Algorithms, 1994.
17(2):251–268. doi:10.1006/jagm.1994.1034.

[31] Ma Th. Algorithms on special classes of graphs and partially ordered sets. Vanderbilt University, 1990.

[32] Ma TH, Spinrad JP. Avoiding matrix multiplication. In: International Workshop on Graph-Theoretic
Concepts in Computer Science. Springer, 1990 pp. 61–71. doi:10.1007/3-540-53832-1.

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 279

Appendix A.

Procedure 1: buildAllMatches(π)

Description: Step 1: Construct all matches that exist on SPACE(π−1) and store them as
adjacent lists.

11 /* initialize */

2 Create linked list LL of n nodes numbered from 1 to n, where LL.head = n, and
i.next = i− 1 for all 1 < i ≤ n (the next node of node numbered 1 is NULL)

3 for x← 1 to n do
4 Match(x)← ∅
5

66 /* build Match lists */

7 for a← n down to 1 do
8 p′ ← NULL // previous node

9 p← LL.head // current node

10 while p > π(a) do
11 add π(a) to Match(p)
12 p′ ← p
13 p← p.next

1414 /* remove node p */

15 if p′ 6= NULL then
16 p′.next← p.next
17 else
18 LL.head← p.next

19

20 return {Match(x) | 1 ≤ x ≤ n}

280 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

Appendix B.

Procedure 2: calculateFAndLink(π−1,Match)

Description: Step 2: Calculate 2 functions f and link for all matches e.
11 /* initialize S and L */

2 for x← 1 to n do
3 Sx ← ∅
4 Lx ← (0, NULL)

5

66 /* calculate functions f and link */

7 for x← n down to 1 do
88 /* calculate f and link for all matches (∗, x) with pointer z

decreasing from n */

9 z ← n
10 maxLen← 0
11 trace← NULL

12 for y ←Match(x).begin to Match(x).end do
13 while z > π−1(y) do
14 if Lz.len > maxLen then
15 maxLen← Lz.len
16 trace← Lz.trace

17 z ← z − 1

18 e← (y, x)
19 f(e)← maxLen+ 1
20 link(e)← trace
21 add (f(e), e) to the list Sy
22

2323 /* update elements in Sx to L */

24 for each (f(e), e) ∈ Sx where e = (x, a) do
25 if Lπ−1(a).len < f(e) then
26 Lπ−1(a) ← (f(e), e)

27

28 return (f, link)

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 281

Appendix C.

Procedure 8: calculateFAndLink(π−1,Match)

Description: Step 2: Calculate 2 functions f and link for all matches e.
11 /* initiallize S, L and d */

2 d← {{1}, {2}, ..., {n}}
3 for x← 1 to n do
4 Sx ← ∅, Lx ← (0, NULL, 0)
5

66 /* calculate functions f and link */

7 for x← n down to 1 do
88 /* calculate f and link for all matches (∗, x) with pointer z

decreasing from ϕ(n+ 1) */

9 z ← calϕ(L, d, n+ 1), maxLen← 0, trace← NULL

10 for y ←Match(x).begin to Match(x).end do
11 while z ≥ π−1(y) do
12 if Lz.len > maxLen then
13 maxLen← Lz.len, trace← Lz.trace
14 z ← calϕ(L, d, z)

15 e← (y, x)
16 f(e)← maxLen+ 1, link(e)← trace
17 add (f(e), e) to the list Sy
18

1919 /* update elements of Sx to L */

20 for each (f(e), e) ∈ Sx where e = (x, a) do
21 b← calϕ(L, d, π−1(a))
22 if b > 0 and Lb.len < f(e) then
23 Lb ← (f(e), e, 0)

24

2525 /* update L and d before L passes coordinate i = x */

26 Lπ−1(x).swept← 1

27 if π−1(x) > 1 and Lπ−1(x)−1.swept = 1 then
28 union(d, π−1(x)− 1, π−1(x))
29 if π−1(x) < n and Lπ−1(x)+1.swept = 1 then
30 union(d, π−1(x), π−1(x) + 1)
31 b← calϕ(L, d, π−1(x))
32 if b > 0 and Lb.len < Lπ−1(x).len then
33 Lb ← (Lπ−1(x).len, Lπ−1(x).trace, 0)

34

35 return (f, link)

282 V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs

Appendix D.

Procedure 9: buildAllMatches(τ)

Description: Step 1: Construct all matches on SPACE(τ) and store them as adjacent lists.
11 /* initiallize */

2 Create linked list LL of n nodes numbered from 1 to 2n, where LL.head = 2n, and
i.next = i− 1 for all 1 < i ≤ 2n (the next node of node numbered 1 is NULL)

3 for each A ∈ τ do
4 revMatch(A)← ∅ // A’s reversed match list with duplicable elements

5 Match(A)← ∅ // Match list of A

6

77 /* build reversed match lists with possibly duplicate elements */

8 for y ← 2n down to 1 do
9 p′ ← NULL // previous node

10 p← LL.head // current node

11 suppose that y = R.y1 or y = R.y2 for some R ∈ τ
12 while true do
13 suppose that p = A.x1 or p = A.x2 for some A ∈ τ
14 if A = R then
15 if (p = R.x1 and y = R.y2) or (p = R.x2 and y = R.y1) then
16 break
17 else if A.x2 < R.x2 then
18 add R to revMatch(A)
19 else
20 add A to revMatch(R)
21 p′ ← p, p← p.next

2222 /* remove node p */

23 if p′ 6= NULL then
24 p′.next← p.next
25 else
26 LL.head← p.next

27

2828 /* build Match lists from revMatch lists */

29 for y ← 2n down to 1 do
30 if y = A.y2 for some A ∈ τ then
31 for each B ∈ revMatch(A) do
32 if A is not added to Match(B) then
33 add A to Match(B)

34

35 return {Match(A) | A ∈ τ}

V.D. Nguyen et al. / Maximum Induced Matching in Permutation and Trapezoid Graphs 283

Appendix E.

Procedure 10: calculateFAndLink(τ,Match)

Description: Step 2: Calculate 2 functions f and link for all matches e.
11 /* initiallize S, L and d */

2 d← {{1}, {2}, ..., {2n}}
3 for x← 1 to 2n do
4 Sx ← ∅
5 if x = A.y2 for some A ∈ τ then Lx ← (0, NULL, 0)
6 else
7 Lx ← (0, NULL, 1)
8 if x > 1 and Lx−1.swept = 1 then union(d, x− 1, x)

9

1010 /* calculate functions f and link */

11 for x← 2n down to 1 do
12 if x = A.x2 for some A ∈ τ then
1313 /* calculate f and link for matches (∗, A), pointer z decreasing

from ϕ(2n+ 1) */

14 z ← calϕ(L, d, 2n+ 1), maxLen← 0, trace← NULL

15 for B ←Match(A).begin to Match(A).end do
16 while z ≥ max(A.y2, B.y2) do
17 if Lz.len > maxLen then maxLen← Lz.len, trace← Lz.trace
18 z ← calϕ(L, d, z)

19 e← (B,A)
20 f(e)← maxLen+ 1, link(e)← trace
21 add (f(e), e) to the list Smin(A.x1,B.x1)

22

2323 /* update L and d before L passes coordinate i = x */

24 LA.y2 .swept← 1
25 if A.y2 > 1 and LA.y2−1.swept = 1 then union(d,A.y2 − 1, A.y2)
26 if A.y2 < 2n and LA.y2+1.swept = 1 then union(d,A.y2, A.y2 + 1)
27 z ← calϕ(L, d,A.y2)
28 if z > 0 and Lz.len < LA.y2 .len then Lz ← (LA.y2 .len, LA.y2 .trace, 0)

29 else // x = A.x1 for some A ∈ τ
3030 /* update elements in Sx to L */

31 for each (f(e), e) ∈ Sx where e = (A,B) do
32 z ← calϕ(L, d,min(A.y1, B.y1))
33 if z > 0 and Lz.len < f(e) then
34 Lz ← (f(e), e, 0)

35

36 return (f, link)

	1 Introduction
	2 Fundamental definitions
	2.1 Maximum induced matching
	2.2 Permutation graph
	2.3 Trapezoid graph

	3 Maximum induced matching in permutation graphs
	3.1 An O(n2) maximum induced matching algorithm in permutation graphs
	3.1.1 Construct all matches that exist on SPACE(-1)
	3.1.2 Calculate two functions f and link
	3.1.3 Build a maximum induced matching
	3.1.4 Summary

	3.2 Faster maximum induced matching algorithms in permutation graphs
	3.3 An O(m + n) maximum induced matching algorithm in permutation graphs
	3.3.1 Adjustment of formulae
	3.3.2 Complexity improvement by the disjoint-set data structure

	4 Maximum induced matching in trapezoid graphs
	4.1 An O(m + n) maximum induced matching algorithm in trapezoid graphs
	4.1.1 Construct all matches on SPACE()
	4.1.2 Calculate two functions f and link
	4.1.3 Build a maximum induced matching
	4.1.4 Summary

	5 Conclusion

