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1. Introduction

The Ackermann function was proposed in 1926 by W. Ackermann (see [1]) as a simple example of

a total recursive function which is not primitive recursive. It is often presented, as done initially by

R. Péter, under the form of a two argument function A ∶N×N→N.

The function n↦ A(n,n) grows extremely fast (asymptotically faster than any primitive recur-

sive function). Hence its inverse, denoted α , grows very slowly; it is known to be primitive re-

cursive. The function α appears to express time complexities in data structure analysis as in the

work of E. Tarjan [2] and in algorithmic geometry as in the work of B. Chazelles [3]. It is also used by

G. Nivasch, R. Seidel and M. Sharir without reference to the original Ackermann function A in [4, 5, 6].

In a previous work [7], we needed a bound on the amount of time spent to compute the function α .

But except for the fact that α is primitive recursive, we could not find a documented reference. This is

why we proposed a detailed proof of the fact that α is computable in linear time (on a multitape Turing

machine). Once our work was made public, L. Tran, A. Mohan and A. Hobor [8] informed us that they
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had obtained a similar result by totally different methods (functional programming techniques). Our

demonstration is elementary and builds partly on the exposition by G. Tourlakis [9] of the primitive

recursiveness of the graph of A.

2. A few classical definitions

2.1. Some notation

N,Z and R represent respectively the set of natural, integer and real numbers. {0,1}∗ and {0,1}N

denote the sets of finite and infinite binary sequences. N
∗ and N

N are the sets of finite and infinite

sequences of natural numbers.

Definition 2.1.

1. Let x be a finite or infinite sequence. For an integer i ∈N, x ↾i is the restriction of x onto the

set {0,1, . . . , i−1}.

2. If x is a finite sequence, then ∣x∣ denotes its length.

3. <lex is the lexicographic order on N
∗.

4. Let n ∈N. Then ∣n∣ is the length of the string σn corresponding to n under binary representation.

For n ≥ 1, ∣n∣ = ⌊log2 n⌋+1 (∣0∣ = 1) and n < 2∣n∣ ≤ 2n.

5. Let log ∶N∖{0} →N be defined, for n ≥ 1 by log(n) = ⌈log2(n)⌉. Then ∣n∣−1 ≤ log(n) ≤ ∣n∣.

All complexity notions refer to binary representation of integers. Given a function f ∶N→N which

is time constructible (see [10]) and such that f (n) ≥ n for all n ∈ N, we shall consider predicates

checkable in time O( f (n)) and functions computable in time O( f (n)).

2.2. Definition of the Ackermann function

There exist different versions of Ackermann function depending on the initial definitions (i.e. the

values of A(0,n) and of A(k,0), for k,n ∈N). We refer to the definition in [11] and freely use the

properties proved in this textbook.

Definition 2.2. ([11, 5.2.1])

(a) Let A ∶N×N→N be defined as follows: for k,n ∈N,

• A(0,n) = 2n,

• A(k,0) = 1,

• A(k+1,n+1) = A(k,A(k+1,n)).
(b) For k ∈N, let Ak ∶N→N be such that for all n ∈N, Ak(n) = A(k,n).
(c) Let Ack ∶N→N be such that Ack(n) = A(n,n).
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We chose this version rather than Tourlakis’ one because it allows some simplifications and be-

cause it is closely related to the version AT proposed by Tarjan [2] and refered to in [3]. AT is defined

as follows:

• for n ∈N, AT(0,n) = 2n,

• for k ∈N, AT(k,0) = 0 and AT(k,1) = 2,

• for k ∈N, n ≥ 1, AT(k+1,n+1) = AT(k,AT (k+1,n)).
One can check that for any k ∈N, n ≥ 1, AT(k+1,n) = A(k,n).

We recall the notion of inverse. The methods developed in this paper can be applied to inverse func-

tions with two parameters (see [3, 2]), but we shall not consider them here. We should also mention

the work of [6, 5] using “inverse Ackermann functions” without refering explicitely to the Ackermann

function itself.

Definition 2.3.

• Let f ∶ N→N be unbounded and nondecreasing. The inverse of f denoted Inv f is defined as

follows: for any n ∈N, Inv f (n) is the least k ∈N such that f (k) ≥ n.

• Let α ∶N→N be InvAck.

Because of the above relation between A and AT , results about A, Ack and α can thus be applied

to AT and its related “inverses”.

We recall some basic properties of the functions Ak, for k ∈N:

Lemma 2.4. For any k ∈N,

(a) Ak is strictly increasing (see [11, lemma 5.7]),

(b) for any n ≥ 1, Ak(n) ≤ Ak+1(n) (see [11, lemma 5.8]),

We shall consider iterates of a function:

Definition 2.5. Given a function g ∶ N→N and m ∈N, the mth iterate of g, denoted g(m) is defined

inductively by: g(0)(n) = n and g(m+1)(n) = g(g(m)(n)).
To simplify notation (avoiding towers of exponentials), we shall apply the notion to the following

function:

Definition 2.6. Let exp ∶N→N be such that exp(n) = 2n, for n ∈N.

3. Properties of the functions AkAkAk and of their inverses

We first note some elementary properties of A:

Fact 3.1. For any i ∈N,

(1) A(i,1) = 2,

(2) A(i,2) = 4,

(3) A(1, i) = exp(i)(1).
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Proof:

1. A(0,1) = 2 by definition, and for any i ∈N,
A(i+1,1) = A(i,A(i+1,0)) = A(i,1).

2. A(0,2) = 22 = 4 by definition, and for any i ∈N,
A(i+1,2) = A(i,A(i+1,1)) = A(i,2) by (1).

3. A(1,0) = 1 = exp(0)(1) by definition, and for any i ∈N,
A(1, i+1) = A(0,A(1, i)) = exp(A(1, i)).

⊓⊔

The link between Ak and Ak+1 is the following one:

Fact 3.2. For any k, n ∈N, Ak+1(n) = A
(n)
k
(1).

Proof:

Let k be fixed. This is true for n = 0: Ak+1(0) = 1 = A
(0)
k
(1).

Let us assume the equality holds for n ∈N. Then

Ak+1(n+1) = Ak(Ak+1(n)) = Ak(A(n)k
(1)) = A

(n+1)
k
(1). ⊓⊔

We deduce from Fact 3.1, some lower bounds:

Fact 3.3. A3(3) > exp(4)(3).

Proof:

A3(3) = A2(A3(2))
= A2(4) (by 3.1(2))

= A1(A2(3))
= A1(A1(A2(2)))
= A1(A1(4)) (by 3.1(2))

= A1(exp(4)(1)) (by 3.1(3))

= A1(216)
= exp(2

16−2)(4) (by 3.1(3))

> exp(4)(3). ⊓⊔

Claim 3.4. For any n ≥ 3, A3(n) > exp(4)(n).

Proof:

By the previous fact, this is true for n = 3.

We thus argue by induction, assuming the inequality holds for n ≥ 3. Then

A3(n+1) = A2(A3(n)) > A2(exp(4)(n)) ≥ A0(exp(4)(n))
≥ exp(5)(n) = exp(4)(2n) ≥ exp(4)(n+1). ⊓⊔
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Claim 3.5. For any k ≥ 3, Ak(3) > exp(4)(k).

Proof:

By 3.3, this holds for k = 3.

We assume Ak(3) > exp(4)(k) for k ≥ 3. Then

Ak+1(3) = Ak(Ak+1(2)) =
(3.1)

Ak(4) = Ak−1(Ak(3)) >
ind.

A0(exp(4)(k) = exp(4)(2k) ≥ exp(4)(k+1). ⊓⊔

We now evaluate the complexity of the functions InvAk
, for k ∈N.

Lemma 3.6. log is computable in linear time.

Proof:

This is folklore. We propose a simple argument suggested by one referee: one counts in binary the

number of digits of the input x.

The counter being written in reverse order, we change the first digit of the counter for all browsed

positions on the input tape, change the second digit for every position out of 2,..., change the kth digit

for every position r on the input tape such that r−1 has binary representation of the form u1k−1...

Hence for some constant B, if 2r ≤ ∣x∣ < 2r+1, the number of steps required to obtain ∣x∣ in binary is

bounded by B(∣x∣+∑k=r
k=1 2r−(k−1)) = O(∣x∣). ⊓⊔

One notes that InvA0
= ⌈log2⌉ = log. Hence we can state:

Claim 3.7. InvA0
is computable in linear time.

We now relate InvAk+1
to InvAk

, for k ∈N.

Definition 3.8. Let m,k ≥ 0 and let the sequence of integers (nr)r≤s be defined inductively as follows:

• n0 =m,

• for r ≥ 0 and nr defined,

– if nr ≤ 1, then we stop the construction and set s = r,
– otherwise let nr+1 = InvAk

(nr).

Claim 3.9. Let m,k,s be as in the above definition.

(a) The construction does stop.

(b) InvAk+1
(m) = s.

Proof:

(a) If m ≤ 1, then the construction stops at the first step and s = 0.

Hence let m > 1. We check that the sequence (nr)r is strictly decreasing.

By definition, as long as nr+1 is defined,

Ak(nr+1−1) < nr ≤ Ak(nr+1) (1)



350 C. Sureson / The Inverse of Ackermann Function is Computable in Linear Time

Hence 2nr+1−1 = A0(nr+1−1) ≤ Ak(nr+1−1) < nr. This gives 2nr+1 < 2nr . Since for any t ∈N, 2t ≥ 2t,

we deduce nr+1 < nr.

(b) If m ≤ 1, then Ak+1(0) ≥m. Hence InvAk+1
(m) = 0 = s.

Otherwise s ≥ 1 and we verify both inequalities: Ak+1(s) ≥m and Ak+1(s−1) <m.

Ak+1(s) ≥mAk+1(s) ≥mAk+1(s) ≥m :

We check by induction on t ≤ s that ns−t ≤ A
(t)
k
(1).

- This is true for t = 0 since ns ≤ 1.

- We assume this holds for t ≥ 0. By (1), we deduce

ns−(t+1) ≤ Ak(ns−t) ≤
ind.

Ak(A(t)k
(1)) ≤ A

(t+1)
k
(1).

By applying the inequality to t = s, we obtain from Fact 3.2

m = n0 ≤ A
(s)
k
(1) = Ak+1(s) .

Ak+1(s−1) <mAk+1(s−1) <mAk+1(s−1) <m :

We check by induction on 1 ≤ t ≤ s that A
(t−1)
k
(1) < ns−t .

- Let t = 1. then ns−1 > 1 = A
(0)
k
(1). Hence the inequality holds.

- We assume ns−t > A
(t−1)
k
(1) for t ≥ 1. Hence A

(t−1)
k
(1) ≤ ns−t −1. We deduce

A
(t)
k
(1) = Ak(A(t−1)

k
(1)) ≤ Ak(ns−t −1) <

(1)
ns−(t+1).

Applying the inequality to t = s, we obtain m = n0 > A
(s−1)
k
(1) =

Fact3.2
Ak+1(s−1).

We conclude that InvAk+1
(m) = s. ⊓⊔

From this characterization of InvAk+1
, we shall derive:

Lemma 3.10. For any k ∈N, InvAk
is computable in linear time.

Proof:

We shall argue by induction on k ∈N.

- This holds for k = 0 by Claim 3.7.

- We assume now that InvAk
is computable in linear time and we check that it is also the case for

InvAk+1
.

Starting with m ≥ 24, we shall evaluate the time required to obtain the sequence (nr)r≤s of Defi-

nition 3.8. We recall that nr+1 = InvAk
(nr), if nr > 1.

Since ns−1 > 1, Ak(0) = 1, ns ≤ 1 and ns = InvAk
(ns−1), necessarily ns = 1.

Claim 3.11. For m ≥ 4, s ≤ 2 log(2)(m).

Proof:

We note that since Ak(1) = 2 <m = n0, necessarily n1 > 1 and s ≥ 2.
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By definition, n1 and n2 satisfy the following:

2n1−1 ≤ Ak(n1 −1) <m and 2n2−1 ≤ Ak(n2−1) < n1.

Now 2n1 < 2m gives n1 ≤ log(m). Similarly we obtain n2 ≤ log(n1) and hence

n2 ≤ log(2)(m) (2)

Since (nr)r≤s is strictly decreasing and ns = 1, one checks that n2 ≥ 1+(s−2).
Hence s ≤ n2+1 ≤

(2)
log(2)(m)+1 ≤ 2 log(2)(m) (the last inequality holds because log(2)(m) ≥ 1). ⊓⊔

Let m ≥ 24. By induction hypothesis, there is a constant C such that for any u ∈N, the computation

of InvAk
(u) takes at most C∣u∣ steps.

- Hence the obtention of n1 and n2 takes at most 2C∣m∣ steps.

- We now bound the time required to compute (nr)2<r≤s. For each 2 ≤ r < s, the obtention of nr+1

(given nr) takes at most C∣n2∣ steps. Since m ≥ 24, we have:

∣n2∣ ≤
(2)
∣log(2)(m)∣ ≤ log(3)(m)+1 ≤ 2 log(3)(m),

Hence to treat all 2 ≤ r < s, by Claim 3.11, one needs at most 4Clog(2)(m) log(3)(m) steps.

There is a constant D such that for any m ∈N, one has

log(2)(m) log(3)(m) ≤ Dlog(m) ≤ D ∣m∣.
Hence we deduce that InvAk+1

(m) is computable in time O(∣m∣). ⊓⊔

There may be a way to use G. Nivasch (see [4]) development on inverse Ackermann function to

evaluate the complexity of the functions InvAk
. One would have to clarify the link between Nivasch’s

function αk and our InvAk
.

4. Encoding sequences

In this section, we introduce the coding of couples, triples or finite sequences of integers of arbitrary

length.

Definition 4.1.

• For u, v ∈N, let ⟨u,v⟩ = (u+v)(u+v+1)
2

+v. Then ⟨⋅, ⋅⟩ ∶N×N→N is a bijection.

• Let (⋅)0 and (⋅)1 be the “inverses” of ⟨⋅, ⋅⟩: for any w ∈N, ⟨(w)0,(w)1⟩ = w.

Classically one has:

Claim 4.2. The function ⟨⋅, ⋅⟩ and its inverses (⋅)0, (⋅)1 are polynomial time computable.

Proof:

To answer a referee’s request, we justify the second assertion.

Let s ∈ N. We must find the integer a such that a(a+ 1) ≤ 2s < (a+ 1)(a+ 2) because if ∆ =
s−
(a(a+1))

2
, then one has (s)0 = a−∆ and (s)1 = ∆.
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It takes quadratic time to get the “square root” of 2s: the integer α such that

α2 ≤ 2s < (α +1)2. Then either α or α −1 is the expected a. ⊓⊔

We derive the coding of triples:

Definition 4.3. For u,v,w ∈N, let ⟨u,v,w⟩ = ⟨⟨u,v⟩,w⟩.

Claim 4.4. For u,v,w ∈N, ⟨u,v,w⟩ ≤ 8(u+v+w)4.

Proof:

If u+v = k, then ⟨u,v⟩ < ⟨k+1,0⟩. Hence

⟨u,v⟩ ≤ (k+1)(k+2)
2

−1 ≤ 2k2 = 2(u+v)2 (3)

We deduce

⟨u,v,w⟩ ≤ ⟨⟨u,v⟩,w⟩ ≤ ⟨2(u+v)2,w⟩ (by (3))

≤ 2(2(u+v)2 +w)2 (by (3))

≤ 8(u+v+w)4. ⊓⊔

In order to deal with finite sequences of arbitrary length of integers, we follow one referee’s sug-

gestion: writing successively the integers under binary representation while separating them with a

new symbol. To keep binary sequences, we replace the symbol 0 by 00, 1 by 11 and the new symbol

by 01. We thus consider the following:

Definition 4.5. Let Seq be the predicate on N defined as follows: for s ∈N,

1. Seq(s) iff s =∑i<2t εi2
i
, for t > 1 such that

a) ε0 = ε1

b) ε2t−2 = 0, ε2t−1 = 1

c) for any j < t −2, if ε2 j = 0,ε2 j+1 = 1, then ε2 j+2 = ε2 j+3.

2. Let S(s) = {i < t ∶ ε2i = 0, ε2i+1 = 1} and l(s) = ∣S(s)∣ (the cardinality of S(s)). If (i j) j<l(s) is

an increasing enumeration of S(s), then we set

• s(0) =∑n<i0
ε2n2i0−1−n and

• for 1 ≤ j < l(s), s( j) =∑i j−1<n<i j
ε2n2(i j−1)−n.

(s( j)) j<l(s) is the sequence of integers encoded in s.

We note the following:

Fact 4.6. Let µ , l ∈ N and a = (ai)i<l be a sequence of integers such that for any i < l, ai ≤ µ .

Then by the previous definition, we can encode a in s ∈ N such that Seq(s) holds, l(s) = l, for any

i < l(s), s(i) = ai and 2l ≤ ∣s∣ ≤ 2l(∣µ ∣+1).
One easily checks:

Claim 4.7. The predicate Seq can be checked in polynomial time and the functions s→ l(s) and

(s, i)→ s(i), for i < l(s), are computable in polynomial time.
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5. The tree associated with the computation of AAA

This section is greatly inspired from Tourlakis’ exposition [9, Section 2.4.4] of the fact that graph(A)=
{(u,v,w) ∶ A(u,v) =w} is primitive recursive (where A is defined with different initial conditions). In

order to deal with the inverse α of the function u↦A(u,u), we shall consider in addition the predicate

A(u,v) < w. To control the size of Tourlakis’ type tree witnessing Ak(n) <m, it will be helpful to add

new leaves.

Let us first note that for u,v ≥ 1, since Au(v) = Au−1(Au(v−1)), one gets the following equiva-

lences:

Au(v) =w ⇔ there exists w′ > 0 such that

⎧⎪⎪⎨⎪⎪⎩
Au(v−1) =w′ and

Au−1(w′) =w
(4)

Au(v) <w ⇔ there exists w′ > 0 such that

⎧⎪⎪⎨⎪⎪⎩
Au(v−1) =w′ and

Au−1(w′) <w
(5)

(w′ > 0 because for any x,y ∈N, Ax(y) ≥ A0(0) = 1 > 0)

As in [9], one can thus unroll a labeled binary tree witnessing the fact that Ak(n) <m. We shall

restrict to the case k ≥ 4 and n ≥ 3. For some unique sequence (wi)i, the labels of the nodes in the

following tree are true statements

Ak(n) <m

Ak−1(w0) <m

Ak−2(w2) <m

leaves

Ak−1(w0−1) = w2

leaves

Ak(n−1) = w0

Ak−1(w1) = w0

leaves

Ak(n−2) = w1

leaves

Let us describe the structure of the tree and the labeling of nodes:

• the root is labeled Ak(n) <m.

• A node which is not a leaf is labeled

– either by Au(v) =w for u,v ≥ 1, and admits for a unique w′ > 0, a left son labeled

Au(v−1) =w′ and a right son labeled Au−1(w′) =w,

– or by Au(v) <m for u ≥ 4, v ≥ 1, and admits for a unique w′ > 0, a left son labeled

Au(v−1) =w′ and a right son labeled Au−1(w′) <m.
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• A node is a leaf if it is labeled

– either by A0(v) = 2v,

– or by Au(0) = 1,

– or by Au(v) <m with u ≤ 3 or v = 0.

Claim 5.1. Let us consider a binary tree witnessing Ak(n) <m, for k ≥ 4, n ≥ 3.

(a) 1. If a node in the tree is labeled Au(v) =w, then u,v,w < log(4)(m).
2. If it is labeled Au(v) <m, then 3 ≤ u,v < log(4)(m).

(b) If a node labeled Au(v) = w or Au(v) < m admits a son labeled Au′(v′) = w′ or Au′(v′) < m,

then (u′,v′) <lex (u,v).

Proof:

(a) We argue by induction on the level of the node:

Level 0: The root is labeled Ak(n) <m. By hypothesis, k,n ≥ 3. Hence

exp(4)(n) ≤ A3(n) ≤ Ak(n) <m (by Claim 3.4)

exp(4)(k) ≤ Ak(3) ≤ Ak(n) <m (by Claim 3.5)

Therefore both k,n < log(4)(m) and (a) 2. holds.

Level 1: there are two nodes of level 1: the left node is labeled Ak(n−1) =w0 and the right node

Ak−1(w0) <m.

k ≥ 4 implies k−1 ≥ 3. Also Ak(n−1) ≥ A0(2) = 22 implies w0 ≥ 4 ≥ 3.

It remains to check w0 < log(4)(m). By Claim 3.4, k−1 ≥ 3 and w0 ≥ 3 imply

exp(4)(w0) ≤ A3(w0) ≤ Ak−1(w0) <m.

Hence (a) 1. and (a) 2. hold at level 1.

level r+1r+1r+1 with r ≥ 1r ≥ 1r ≥ 1: We assume the properties hold for the nodes at level r and we check that

it is also true for their sons.

• Let thus the node of level r be labeled Au(v) = w with u,v,w < log(4)(m).
– Its left son is labeled Au(v−1) = w′,

– its right son is labeled Au−1(w′) =w.

Since w′ = Au(v−1) < Au(v) = w, (a) 1. holds for both sons.

• Let now the node of level r be labeled Au(v) < m with 3 ≤ u,v < log(4)(m). Since it is not a

leaf, u ≥ 4.

– Its left son is labeled Au(v−1) = w′,

– its right son is labeled Au−1(w′) <m.

As for level 1, v−1 ≥ 2 implies w′ = Au(v−1) ≥ A0(2) ≥ 3. Also u−1 ≥ 3 and Au−1(w′) < m

give w′ < log(4)(m). We thus deduce that (a) 1. holds for the left son and (a) 2. for the right

one.
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(b) Keeping the notation of the claim, we simply note (u′,v′) =
⎧⎪⎪⎨⎪⎪⎩
(u−1,w′) or

(u,v−1).
Hence (u′,v′) <lex (u,v). ⊓⊔

Remark 5.2.

• (a) 2. implies that the last type of leaf labeled Au(v) <m with u ≤ 3 or v = 0, is necessarily of

the form A3(v) <m for v ≥ 3.

• We also deduce from this claim that the binary tree witnessing Ak(n) <m, for k ≥ 4, n ≥ 3, has

height at most (log(4)(m))2.

We do not know whether different nodes in the tree may have the same label. This made the

exposition a bit more tedious. We now focus on labels (which are true statements) occuring in the

binary tree witnessing Ak(n) <m and encode this set.

let us first note that if Au(v) = w, then w ≥ A0(0) = 1. Hence we shall represent the label Au(v) = w

by the integer ⟨u,v,w⟩ and the label Au(v) <m by the integer ⟨u,v,0⟩ (this will reduce the size of the

encoding). We identify the label with its code. Let us introduce the following notation:

Definition 5.3. If x′ = ⟨u′,v′,w′⟩ and x = ⟨u,v,w⟩, then

x′ <3
lex x iff (u′,v′,w′) <lex (u,v,w).

By Claim 5.1 (b), if ⟨u′,v′,w′⟩ labels the son of a node labeled ⟨u,v,w⟩, then ⟨u′,v′,w′⟩ <3
lex

⟨u,v,w⟩. This motivates the following:

Claim 5.4. Let aaa = (ai)i<l enumerate, according to increasing <3
lex order, all labels occuring in the

tree witnessing Ak(n) <m, for k ≥ 4, n ≥ 3. Then

(a) al−1 = ⟨k,n,0⟩ and for any i < l,

• either (ai labels a leaf) ai =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

⟨0,v,2v⟩ or

⟨v,0,1⟩ or

⟨3,v,0⟩,
• or ai = ⟨u,v,w⟩ and there exist j, j′ < i, w′ > 0 such that

a j = ⟨u,v−1,w′⟩ and a j′ = ⟨u−1,w′,w⟩.
(b) 2 ≤ l ≤ (log(4)(m))3 and for each i < l, ai < 64(log(4)(m))4.

Proof:

(a) holds by definition of the labeled tree, Claim 5.1 (b) and Remark 5.2.

(b) By Claim 5.1 (a), if ⟨u,v,w⟩ labels a node, then u,v,w < log(4)(m). Hence l ≤ (log(4)(m))3. By

Claim 4.4, ⟨u,v,w⟩ ≤ 8(u+v+w)4. Hence

⟨u,v,w⟩ < 2334(log(4)(m))4 ≤ 64(log(4)(m))4. ⊓⊔

To reduce the time of computation, instead of checking for several v’s whether A3(v) < m (to

recognize a leaf), we shall compute once rm = InvA3
(m) and then check v < rm, for the different v’s.

We thus set:
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Definition 5.5. Let us consider the predicate Comput< defined as follows: for s,k,n,r ∈N,

Comput<(s,k,n,r) iff Seq(s)∧ s(l(s)−1) = ⟨k,n,0⟩∧ ∀ i < l(s)
[∃v(s(i) = ⟨0,v,2v⟩ ∨ (s(i) = ⟨v,0,1⟩∨

(s(i) = ⟨3,v,0⟩ ∧ v < r))]∨

[∃u,v,w ∃w′ > 0 ∃ j, j′ < i (s(i) = ⟨u,v,w⟩ ∧
s( j) = ⟨u,v−1,w′⟩ ∧ s( j′) = ⟨u−1,w′,w⟩)].

We obtain:

Claim 5.6. There exists C ∈N such that for all k ≥ 4, n ≥ 3, m ≥ 0 if Ak(n) <m and rm = InvA3
(m),

then there is s ≤Clog(2)(m) such that Comput<(s,k,n,rm) holds.

Proof:

Let aaa = (ai)i<l be the sequence of Claim 5.4 enumerating the different labels occuring in the tree

witnessing Ak(n) < m. By (b) of this claim, if µ = (6 log(4)(m))4, then for any i < l, ai < µ . By

Fact 4.6, let s ∈N encode aaa and satisfy ∣s∣ ≤ 2l(∣µ ∣+1).
- We first note that Comput(s,k,n,rm) holds: if for some i< l, s(i)= ai = ⟨3,v,0⟩, then this implies

A3(v) <m and hence v < rm.

- It remains to bound s. By Claim 5.4 (b), one has l ≤ (log(4)(m))3. Since ∣s∣ ≤ 2l(∣µ ∣+1) for

µ = (6 log(4)(m))4, applying s < 2∣s∣ and 2∣µ ∣ ≤ 2µ , we obtain s ≤ 22l(∣µ ∣+1) ≤ (2µ)2l22l .

Hence s ≤ (6log(4)(m))8(log(4)(m))3 ⋅22(log(4)(m))3 . There exists K,K′ (independent of m) such that

(6log(4)(m))8(log(4)(m))3
⋅22(log(4)(m))3 ≤ K2(log(4)(m))4

≤ KK′2log(3)(m)

≤ 2KK′log(2)(m).

(We use the fact that if f (m) ≤ g(m) almost everywhere, then there is θ such that f (m) ≤ g(m)+θ for

all m, and hence 2 f (m) ≤ 2θ 2g(m) for all m).

Therefore s ≤ 2KK′log(2)(m). ⊓⊔

Conversely, one obtains:

Claim 5.7. Let m ∈ N and rm = InvA3
(m). If Comput<(s,k,n,rm) holds for some s,k,n ∈ N, then

Ak(n) <m.

Proof:

We assume Comput<(s,k,n,rm) is satisfied and we check by induction on i < l(s) that

(a) if s(i) = ⟨u,v,w⟩ with w > 0, then Au(v) = w.
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(b) if s(i) = ⟨u,v,0⟩, then Au(v) <m.

Let us note that by definition, l(s) ≥ 2.

- Let i = 0. By definition of Comput<, s(i) is necessarily of a “leaf type”. That is

• either s(i) = ⟨0,v,2v⟩ or ⟨u,0,1⟩, and by definition of the function A, (a) is satisfied,

• or s(i) = ⟨3,v,0⟩ and Comput(s,k,n,rm) implies v < rm. Therefore one has A3(v) <m and (b)

holds.

- Let now i > 0. We assume that for any j < i, according to the nature of s( j), (a) or (b) holds for

s( j).
If s(i) is of the “leaf type”, then one argues as for i = 0. Otherwise s(i) = ⟨u,v,w⟩ and there exist

j, j′ < i and w′ > 0 such that we have s( j) = ⟨u,v−1,w′⟩ and s( j′) = ⟨u−1,w′,w⟩.
By induction hypothesis,

● Au(v−1) = w′ (the fact that w′ > 0 is important)

● and

⎧⎪⎪⎨⎪⎪⎩
if w = 0, Au−1(w′) <m,

if w > 0, Au−1(w′) = w.

We thus deduce Au(v) = Au−1(Au(v−1)) = Au−1(w′). Hence according to whether w = 0 or not, we

conclude that (a) or (b) holds for s(i) = ⟨u,v,w⟩.
Hence by (b) applied to i = l(s−1) and s(l(s)−1) = ⟨k,n,0⟩, we derive Ak(n) <m. ⊓⊔

Combining Claims 5.6 and 5.7, we obtain:

Lemma 5.8. There is C ≥ 1 such that for any k ≥ 4, n ≥ 3, m ∈N, if rm = InvA3
(m), then the following

equivalence holds:

Ak(n) <m iff ∃s ≤Clog(2)(m) Comput<(s,k,n,rm).

6. Computation time

We first estimate the complexity of Comput<:

Claim 6.1. There exist B,t ∈ N such that the predicate “k ≥ 4 ∧ n ≥ 3 ∧

Comput<(s,k,n,r)” can be checked in at most B(max(∣s∣, ∣k∣, ∣n∣, ∣r∣))t steps.

Proof:

This is a consequence of Claim 4.7 about the complexity of Seq, the definition of Comput< (Defini-

tion 5.5) and the fact that l(s) ≤ ∣s∣ (see Fact 4.6). ⊓⊔

Our goal is now to obtain:

Lemma 6.2. There is D ∈N such that the predicate “k ≥ 4 ∧ n ≥ 3 ∧ Ak(n) <m” can be checked in at

most D max(∣k∣, ∣n∣, ∣m∣) steps.
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Proof:

Let C ≥ 1 be the constant mentioned in Lemma 5.8.

The algorithm which decides the predicate “k ≥ 4 ∧ n ≥ 3 ∧ Ak(n) <mk ≥ 4 ∧ n ≥ 3 ∧ Ak(n) <mk ≥ 4 ∧ n ≥ 3 ∧ Ak(n) <m”:

(1) We check k ≥ 4, n ≥ 3 and then k,n ≤ log(2)(m),
(2) we compute rm = InvA3

(m) and check rm > 3.

(3) If these previous steps have been successfully completed, we try all s ≤Clog(2)(m) to obtain

Comput<(s,k,n,rm). If we fail to obtain such an s or to satisfy steps (1) and (2), then we output

“No”. Otherwise it is “yes”.

We note that rm ≤ 3 implies A3(3) ≥m and hence Ak(n) ≥ A3(3) ≥m. Hence as the requirement

“k,n ≤ log(2)(m)”, the condition rm > 3 can be harmlessly added in the definition of the algorithm.

Their role is only to reduce the running time of the algorithm.

By Lemma 5.8, the algorithm is correct.

Running time:

(1) By Lemma 3.6, step (1) requires at most O(max(∣k∣, ∣n∣, ∣m∣)) steps

(2) By Lemma 3.10, step (2) needs at most O(∣m∣) steps.

(3) If rm > 3, then rm−1 ≥ 3 and A3(rm−1) <m implies because of Claim 3.4 rm ≤ log(4)(m). We

thus have s,k,n,rm ≤ C ⋅ log(2)(m) and hence

∣s∣, ∣k∣, ∣n∣, ∣rm ∣ ≤ 2C ⋅ log(3)(m)
(because if d, log(v) ≥ 1, then u ≤ dv implies ∣u∣ ≤ 2d log(v)).
By Claim 6.1, there are B,t ∈N such that, for each s ∈N, checking

Comput<(s,k,n,rm) takes at most B(max(∣s∣, ∣k∣, ∣n∣, ∣rm ∣))t steps.

Hence checking for all s ≤Clog(2)(m), whether Comput<(s,k,n,rm) holds, requires at most

T = B2tCt+1log(2)(m)(log(3)(m))t steps.

There is K ∈N (independent of m) such that T ≤ K(log(2)(m))2
Using (log(r))2 ≤ 4r, for r ≥ 4, we deduce T ≤ 4K log(m) ≤ 4K∣m∣.

Lemma 6.2 follows from the time estimates of (1),(2) and (3). ⊓⊔

It suffices now to remove the hypothesis “k ≥ 4 ∧ n ≥ 3”.

Lemma 6.3. There is a constant D ∈N such that for any k,n,m ∈N, the predicate “Ak(n) <m” can be

checked in at most D max(∣k∣, ∣n∣, ∣m∣) steps.

Proof:

Let U(k,n,m) iff k ≥ 4 ∧ n ≥ 3 ∧ Ak(n) <m,

V(n,k,m) iff k ≤ 3 ∧ Ak(n) <m,

W(k,n,m) iff n ≤ 2 ∧ Ak(n) <m.

Then Ak(n) <m iff U(k,n,m) ∨V(k,n,m) ∨W(k,n,m).
- By Lemma 6.2, U(k,n,m) can be checked in O(max(∣k∣, ∣n∣, ∣m∣)) steps.
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- For any k,n,m, one has the equivalence: V(k,n,m) ⇔ k ≤ 3 ∧ InvAk
(m) > n

Hence by Lemma 3.10, V(k,n,m) can be checked in O(max(∣k∣, ∣n∣, ∣m∣)) steps.

- By Fact 3.1, for any k,n,m, one has the equivalences:

W (k,n,m)⇔ (n = 0 ∧ Ak(0) <m) ∨ (n = 1 ∧ Ak(1) <m) ∨ (n = 2 ∧ Ak(2) <m)
⇔ (n = 0 ∧ m > 1) ∨ (n = 1 ∧ m > 2) ∨ (n = 2 ∧ m > 4).

Hence W (k,n,m) can also be verified in O(max(∣k∣, ∣n∣, ∣m∣)) steps. ⊓⊔

Let Graph(A) = {(k,n,m) ∈N3 ∶ Ak(n) =m}. We deduce:

Proposition 6.4. The predicate “(k,n,m) ∈Graph(A)” is checkable in linear time.

Proof:

For any k,n,m ∈N, Ak(n) =m iff Ak(n) <m+1 ∧ ¬(Ak(n) <m). ⊓⊔

Let us recall that the function Ack is such that, for any k ∈ N, Ack(k) = A(k,k) and α is its

inverse InvAck (definitions 2.2(c) and 2.3).

To obtain the fact that Graph(A) is checkable in linear time, we could have as in Tourlakis’ book,

considered the predicate “Ak(n) = m” in place of “Ak(n) < m”. But to prove that α itself, can be

computed in linear time, it seemed to us that the use of the predicate “Ak(n) < m” was necessary. It

is not the case for some approximations; for instance α ′ ∶ n↦ α(log(2)(n)) satisfies for any n ∈ N,
0 ≤ α(n)−α ′(n) ≤ 2 and the fact that it is computable in linear time can be deduced from the fact that

Graph(A) is checkable in linear time.

Proposition 6.5. The function α is computable in linear time.

Proof:

Let C ≥ 1 be the constant of Lemma 5.8. We now propose an algorithm which on input m ∈N, outputs

α(m).
The algorithm: let m ∈N.

(1) For each k ≤ 3, we compute ρk = InvAk
(m). If there is k ≤ 3 such that ρk ≤ k, then we output

the least such k. Otherwise we go to step 2.

(2) We compute log(4)(m) (we shall see that necessarily it is greater or equal to 4). For each j

such that 4 ≤ j ≤ log(4)(m), we test all s ≤Clog(2)(m) to obtain Comput<(s, j, j,ρ3).
We output the least j0 ≥ 4 for which we fail to find such an s ≤Clog(2)(m).

Validity of the algorithm:

(1) If we stopped after step (1) and k0 ≤ 3 is least such that ρk0
≤ k0, then

k0 ≥ InvAk0
(m) implies

Ak0
(k0) ≥m. (6)

• If k0 = 0, then by (6) α(m) = 0,
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• otherwise, by definition, ρk0−1 > k0−1. Hence ρk0−1−1 ≥ k0−1 and we deduce

Ak0−1(k0 −1) ≤ Ak0−1(ρk0−1−1) < m. (7)

(6)+(7) give α(m) = k0.

(2) We thus assume now that for any k ≤ 3, ρk > k. Hence ρ3 > 3 and A3(3) <m. By Fact 3.3

log(4)(m) > 3. (8)

Hence the following inequalities hold:

A(log(4)(m), log(4)(m)) ≥ A3(log(4)(m)) (by (8))

≥ exp(4)(log(4)(m)) (by (8) and Claim 3.4)

≥ m.

Hence 4 ≤ α(m) ≤ log(4)(m). Let j0 = α(m). Then for any i < j0, one has A(i, i) < m. By

Lemma 5.8, we must succeed in finding s ≤Clog(2)(m) such that Comput<(s, i, i,ρ3) and we

must fail in finding one such s satisfying Comput<(s, j0, j0,ρ3) since A( j0, j0) ≥m.

Hence the algorithm outputs α(m).
Running time of the algorithm:

(1) By Lemma 3.10, step (1) takes O(∣m∣) steps.

(2) We know ρ3 > 3. By Claim 3.4, ρ3−1 ≥ 3 and A3(ρ3 −1) <m imply ρ3−1 < log(4)(m) and

ρ3 ≤ log(4)(m).
For each 4 ≤ j ≤ log(4)(m) and for all s ≤Clog(2)(m), we check

Comput<(s, j, j,ρ3).
Since s, j,ρ3 ≤ Clog(2)(m), as in the proof of Lemma 6.2, we obtain

∣s∣, ∣ j∣, ∣ρ3 ∣ ≤ 2Clog(3)(m).
By Lemma 6.1, there are B,t ∈ N such that Comput<(s, j, j,ρ3) can be checked in at most

B(max(∣s∣, ∣ j∣, ∣ρ3∣))t steps.

We deduce that step (3) can be completed in at most

T = B2tCt+1log(2)(m) log(4)(m)(log(3)(m))t steps.

There is K ∈N (independent of m) such that T ≤K log(m) ≤ K ∣m∣.
Hence steps (1) and (2) take time O(∣m∣). ⊓⊔

These methods can be applied to the different two argument inverse Ackermann functions pro-

posed in [2, 3, 6, 5].
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