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Abstract. Van der Aalst’s theorem is an important result for the analysis and synthesis of process
models. The paper proves the theorem by exhausting perpetual free-choice Petri nets by CP-subnets.
The resulting T -systems are investigated by elementary methods.
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1. Introduction

In the course of his work on the analysis and synthesis of process models van der Aalst introduced the
concept of a lucent process model [1], [3]. The global state of a lucent process model is known when
all actions that are possible in a given state are known. When expressed in the language of Petri nets
lucency means: If two reachable markings of the Petri net enable the same transitions (actions) then
the markings are equal, i.e. each state of the system is already determined by the set of its enabled
transitions.

How to decide by inspection of a Petri net whether it is lucent? Van der Aalst considers the class
of live and bounded Petri nets. He provides interesting examples from this class which are not lucent,
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even though they are safe. He names perpetual Petri nets the class of live and bounded Petri nets
with a ”regeneration point”, i.e. with a home marking which marks only the places of a distinguished
cluster. [1, Theor. 3] states:

Theorem [Van der Aalst’s theorem on lucency] Each perpetual free-choice system is lucent.

For the importance of lucency in the context of process discovery see [3]. The proof of the theorem
in [1] has a gap as van der Aalst remarks in [2]. To close the gap van der Aalst uploaded a revised
version of a previous paper, see [4, Theor. 3]. 1

The purpose of the present paper is to give a proof of van der Aalst’s theorem which uses some
fundamental results from the theory of free-choice systems. Notably we focus on the existence
of CP-subnets of well-formed free-choice nets. Hence our proof uses different ideas than those in
[1], [4]: We exhaust a well-formed free-choice net by a family of CP-subnets. In the end the problem
reduces to a statement about lucency of certain perpetual T -systems. Here the claim can be proved by
elementary methods. For a scheme of the proof in the present paper see Figure 3 in Section 4.

2. Basic concepts and results

To fix the notation and for the convenience of the reader we recall some basic concepts and results. As
common in mathematics we denote set inclusion by “⊂”. The sign covers both cases, proper inclusion
and equality; we de not use the sign “⊆”. The symbol ”⊂” also the denotes the inclusion of subnets.
Furthermore, we mostly follow the standard textbook about free-choice systems [5].

Remark 2.1. (Concepts, notations, basic results)
A net

N = (P,T,F)

is a bipartite, directed graph with nodes the set P of places and the set T of transitions, and the set of
edges

F ⊂ ((P×T )∪ (T ×P)) .

All nets are finite. We use also the notation NP := P, NT := T . We represent edges by arrows, pointing
from the first to the second component of the pair.

1. Structure: Two nets N j = (Pj,Tj,Fj), j = 1,2, are disjoint if

P1∩P2 = T1∩T2 = /0.

The disjoint union of a family of pairwise disjoint nets is the union of these nets. A net
N′ = (P′,T ′,F ′) is a subnet N′ ⊂ N if

P′ ⊂ P,T ′ ⊂ T,F ′ ⊂ F

1Added in proof: See also ”van der Aalst, Wil M.P.: Free-Choice Nets With Home Clusters Are Lucent. Fundamenta
Informaticae, 2021 (in print).”
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The subnet N′ ⊂ N is a full subnet if

F ′ = F ∩
(
(P′×T ′)∪ (T ′×P′)

)
If not explicitly stated otherwise the term subnet in the present paper means a full subnet. But
we will also consider subnets which are not full subnets. Each pair of subsets P′ ⊂ P, T ′ ⊂ T
generates a full subnet

spanN < P′,T ′ > ⊂ N

with node set P′∪T ′. For a full subnet N′ = (P′,T ′,F ′)⊂ N the complement

N′ := N \N′ ⊂ N

is the full subnet of N spanned by the nodes from (P∪ T ) \ (P′ ∪ T ′). A subnet N′ ⊂ N is
transition-bordered if its places p ∈ (N′)P satisfy •p∪ p• ⊂ N′.

A path of N is a non-empty sequence of nodes of N

δ = (x1, ...,xn) with (xi,xi+1) ∈ F, i = 1, ...,n−1.

We use the notation δ ⊂ N. The path δ is elementary if xi 6= x j for 1≤ i 6= j ≤ n. It is a circuit
if (xn,x1) ∈ F . The concatenation of two adjacent paths δ1 = (x1....,xn) and δ2 = (xn, ...,xn+k)
is

δ1 ∗δ2 := (x1, ...,xn,xn+1, ...,xn+k)

If x1 = xn+k then δ1 ∗δ2 induces the circuit (x1, ...,xn+k−1).

The net N is weakly connected or just connected when each two nodes x,y ∈ N satisfy

(x,y) ∈ (F ∪F−1)∗ (symmetric, reflexive and transitive closure)

The net is strongly connected when each two nodes x,y ∈ N can be joined by a path (x, ...,y)
leading from x to y, i.e. (x,y) ∈ F∗. If not stated otherwise nets are supposed to be connected.
For a node x the sets of nodes

•x := {y ∈ N : (y,x) ∈ F} and x• := {y ∈ N : (x,y) ∈ F}

denote respectively the pre-set and the post-set of x. The concept generalizes to the pre-set and
post-set of sets of nodes. The net N is a T -net if all places p ∈ P satisfy card p• = card •p = 1.
The net is a P-net if all transitions t ∈ T satisfy card t• = card •t = 1. The net N is a free-choice
net if for each pair (p, t) ∈ P×T

(p, t) ∈ F =⇒ •t× p• ⊂ F

The cluster of a node x is the smallest subnet cl ⊂ N which contains x and for each place p ∈ cl
also its post-set p• and for each transition t ∈ cl also its pre-set •t. For a free-choice net N and
a cluster cl ⊂ N holds: Each pair (p, t) ∈ clP× clT satisfies (x,y) ∈ F .

A P-component of N is a non-empty, strongly connected P-subnet C ⊂ N such that for each
place p ∈C holds •p∪ p• ⊂C.



366 J. Wehler / Perpetual Free-choice Petri Nets are Lucent

2. Structure and dynamics: A marking of N is a map

µ : NP −→ N

The token count at µ of a subset X of nodes of N is the number

‖µ‖X := ∑
p∈X∩NP

µ(p)

adding up all tokens marking places of X . A Petri net or marked net is a pair (N,µ) with µ a
marking of N. A T -system respectively a free-choice system is a Petri net (N,µ) with N a T -net
respectively a free-choice net.

A transition t ∈ T is enabled at the marking µ if all its pre-places are marked, i.e. if for all
p ∈ •t holds µ(p) ≥ 1. A transition t, which is enabled at µ , may fire. Firing t consumes one
token from each pre-place of t and creates one token at each post-place of t. The notation

µ
t−→ µpost

means: t is enabled at µ , and firing t at µ creates the marking µpost defined for each p ∈ NP as

µpost(p) :=


µ(p) if p ∈ •t ∩ t• or p 6∈ •t ∪ t•

µ(p)−1 if p ∈ •t \ t•

µ(p)+1 if p ∈ t• \• t

The set of all transitions of N enabled at the marking µ is denoted en(N,µ).

An occurrence sequence σ = (t1, ..., tn) is a sequence of transitions. It is enabled at a marking µ

if
µ

t1−→ µ1
t2−→ ...µn−1

tn−→ µn

The shorthand
µ

σ−→ µn

expresses the successive enabledness and firing of the component transitions of σ .

A marking µpost of a net N is reachable from a marking µpre if there exists an occurrence
sequence

µpre
σ−→ µpost

A marking µ is reachable in a Petri net (N,µ0) if µ is reachable from µ0. A marking which
is reachable from each reachable marking is a home marking. A Petri net (N,µ0) is live if for
each transition t and from each reachable marking a marking is reachable which enables t. A
Petri net (N,µ0) is bounded if there exists a constant K with µ(p) ≤ K for each reachable
marking µ and for all places p ∈ NP. The Petri net is safe if the bound K = 1 is possible.
A net N is well-formed if there exists a marking µ0 of N such that the Petri net (N,µ0) is live
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and bounded. Two reachable markings µ j, j = 1,2, of a live and bounded Petri net with µ1≥ µ2
are equal. We will often use the latter result without further mentioning.

Each well-formed free-choice net is covered by P-components. The token count of a P-compon-
ent is the same for all reachable markings of (N,µ0). Each strongly connected P-subnet of a
well-formed free-choice net, in particular each elementary circuit, is contained in a P-component,
[6, Chap. 5].

3. Greedy cluster: For a cluster cl ⊂ N we denote by µcl the marking of N

µcl : NP −→ N, µcl(p) :=

{
1 p ∈ clP
0 otherwise

Hence µcl is the characteristic function of the set of places of cl. If a Petri net (N,µ0) has a
reachable marking with µ = µcl for a given cluster cl ⊂ N, then cl shows a kind of “greediness”
- in particular if µ is a home marking. Greediness will be a fundamental property in this paper.

We emphasize the following properties of T -systems:

Remark 2.2. (T -nets and T -systems)
• The P-components of a T -net are its elementary circuits.

• In a T -system an enabled transition can lose its enabledness only by firing itself. During the
firing of an occurrence sequence the token count of a path (pin, ..., pout) joining two places can
change only by creating tokens at pin or consuming tokens at pout . The token count of a circuit
is the same for each reachable marking.

3. CP-subnets and CP-exhaustion

CP-subnets have been introduced by Desel and Esparza. Since then, CP-subnets are a standard tool
for the investigation of free-choice systems, [5, Def. 7.7, Theor. 7.13].

Definition 3.1. (CP-subnet)
Consider a net N.

1. A non-empty, weakly connected transition-bordered T -subnet

N̂ ⊂ N

is a CP-subnet of N if the complement

N := N \ N̂

contains some transition and is strongly connected.

2. A way-in transition tin of a CP-subnet N̂ ⊂ N is a transition t ∈ N̂T with •t ∩NP 6= /0, a way-out
transition tout is a transition t ∈ N̂T with t•∩NP 6= /0.
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3. A CP-subnet N̂ ⊂ N is adapted to a cluster cl ⊂ N if cl 6⊂ N̂.

We recall some well-known properties of CP-subnets.

Remark 3.2. (Existence, structure and dynamics of CP-subnets)
Consider a well-formed free-choice net N.

1. Existence: If N is not a T -net then N has a CP-subnet N̂ ⊂ N, [5, Prop. 7.11]. One may even
assume that a given transition t ∈ N is not contained in N̂, [7, Lem. 1.2]. The latter result is
crucial to obtain in Theorem 3.5 a CP-exhaustion of N which is adapted to a given regeneration
cluster of N.

2. Structure: A CP-subnet N̂ ⊂ N has the following structural properties:

• The net N̂ has a unique way-in transition tin ∈ N̂T , [5, Prop. 7.10]. The net N̂ has at least
one way-out transition tout because N is strongly connected.

• Each place p ∈ N̂ has a path (tin, ..., p)⊂ N̂ leading from tin to p, cf. [5, Prop. 7.10 proof].

• The complement N := N \ N̂ is a well-formed free-choice net too, [5, Cor. 7.9].

• Each cluster cl ⊂ N satisfies

cl 6⊂ N̂ ⇐⇒ (cl∩N)T 6= /0 ⇐⇒ clP ⊂ NP

The proof uses that N is strongly connected and that N̂ ⊂ N is transition-bordered.

3. Dynamics: Consider a CP-subnet N̂ ⊂ N, and a live and bounded marking µ0 of N and a reach-
able marking µ of (N,µ0).

• There exists a shutdown sequence for N̂, i.e. a finite occurrence sequence of (N,µ)

µ
σsd−−→ µsd

with transitions t ∈ σsd only from N̂T \ {tin}, such that µsd enables no transition of N̂
different from tin, [5, Prop. 7.8].

• The free-choice system
(N,µsd) with µsd := µsd |N

is live and bounded, [5, Prop. 7.8]. If (N,µ0) is safe then (N,µsd) is safe too.

• An occurrence sequence of transitions from N is enabled at a marking µ of N iff it is
enabled as an occurrence sequence of the restriction (N,µ|N).

Proposition 3.3 shows: A CP-subnet in the complement of a CP-subnet is a CP-subnet in the original
net too. The result prepares the induction step in the proof of Theorem 3.5.
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Proposition 3.3. (Iteration of CP-subnets)
Consider a well-formed free-choice net N and a CP-subnet N̂0 ⊂ N with complement

N0 := N \ N̂0.

Each CP-subnet N̂1 ⊂ N0 of the complement N0 is also a CP-subnet N̂1 ⊂ N of N.

Proof:
One has to show that the complement N \ N̂1 contains some transition and is strongly connected.

i) The complement contains some transition: Because N̂1 ⊂ N0 is a CP-subnet, the
complement N0 \ N̂1 contains some transition by definition. The inclusion

(N0 \ N̂1)⊂ (N \ N̂1)

implies that the complement N \ N̂1 contains a transition too.

ii) The complement is strongly connected: The proof relies on Remark 3.2, part 2). Set

N1 := N0 \ N̂1.

By construction N1 is strongly connected and

N \ N̂1 = spanN < N1, N̂0 >

The claim that two nodes
x1, x2 ∈ N \ N̂1

can be joined in both directions by a path in spanN < N1, N̂0 > reduces to the following two cases:

• x1 ∈ N1 and x2 ∈ N̂0: First, there exists a place

pin ∈ •tin ⊂ N1

with tin ∈ N̂0 the way-in transition of N̂0. Because pin ∈ N1 there exists a path

γ1 := (x1, ..., pin)⊂ N1

Secondly, choose
γ2 := (pin, tin)⊂ spanN < N1, N̂0 >

the joining edge. Eventually, there exists a path

γ3 := (tin, ...,x2)⊂ N̂0.

The concatenation satisfies

γ := γ1 ∗ γ2 ∗ γ3 = (x1, ...,x2)⊂ spanN < N1, N̂0 >
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For the opposite direction: First, there exists a path

δ1 := (x2, ..., tout)⊂ N̂0

with tout ∈ N̂0 a suitable way-out transition of N̂0. Secondly, choose a place

pout ∈ (tout)
• ⊂ N1

and set
δ2 := (tout , pout)⊂ spanN < N1, N̂0 >

the joining edge. Eventually, there exists a path

δ3 := (pout , ...,x1)⊂ N1

The concatenation satisfies

δ := δ1 ∗δ2 ∗δ3 = (x2, ...,x1)⊂ spanN < N1, N̂0 >

• Both x1,x2 ∈ N̂0: The case follows from the first case after introducing an intermediate
place x3 ∈ N1.

ut

The main means for our proof of van der Aalst’s theorem is the new concept of a CP-exhaustion.
Theorem 3.5 shows that any well-formed free-choice net has a CP-exhaustion adapted to a given
cluster.

Definition 3.4. (Adapted CP-exhaustion)
A CP-exhaustion of a net N is a family

(N̂i)i∈I, I = {0, ...,n} ⊂ N,

of pairwise disjoint CP-subnets N̂i ⊂ N such that

N := N \
⋃̇

i∈I
N̂i

is a strongly connected T -net. The CP-exhaustion defines the disjoint union

Nexh := N ∪̇
⋃̇

i∈I
N̂i

The CP-exhaustion is adapted to a given cluster cl ⊂ N if N̂i ⊂ N is cl-adapted for all i ∈ I.

The net Nexh has the same nodes as N and

spanN < Nexh >= N

For a non-empty index set I the net Nexh is not connected and Nexh ⊂ N is not a full subnet.
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In general one does not obtain a CP-exhaustion by just taking a maximal family of pairwise disjoint
CP-subnets of N: Their complement N is not necessarily connected. Therefore we construct a CP-
exhaustion of a well-formed free-choice net iteratively: The next CP-subnet is a CP-subnet of the
complement of the previous CP-subnet. This is a stronger property than just being a CP-subnet of N.
Proposition 3.3 ensures that all obtained CP-subnets are also CP-subnets of N.

Theorem 3.5. (Existence of an adapted CP-exhaustion)
Consider a well-formed free-choice net N and a cluster cl ⊂ N. Then N has a cl-adapted CP-
exhaustion.

Proof:
i) Algorithm constructing the exhaustion: The following algorithm constructs the index set I ⊂ N and
the family (N̂i)i∈I of the CP-exhaustion by induction on j ≥ 0:

Initialize the net N−1 := N and the cluster cl−1 := cl ⊂ N−1.

Step A( j) constructs a triple (N̂ j, N j, cl j) with the following properties

• The first component N̂ j is a cl j−1-adapted CP-subnet N̂ j ⊂ N j−1.

• Second component: The complement N j := N j−1 \ N̂ j is well-formed.

• Third component: The cluster cl j := cl j−1∩N j is not empty .

Induction start A(0): If N is a T -net then set

I := /0, N := N

and terminate. Otherwise Remark 3.2 provides a cl-adapted CP-subnet

N̂0 ⊂ N

Define
N0 := N \ N̂0 and cl0 := cl∩N0 6= /0

Remark 3.2, part 2) shows that N0 is well-formed.

Induction step j 7→ j+1: By induction assumption A( j) the free-choice net N j is well-formed. If N j

is a T -net, then set
I := {0, ..., j−1} and N := N j

and terminate. Otherwise Remark 3.2 provides a cl j-adapted CP-subnet

N̂ j+1 ⊂ N j

Define
N j+1 := N j \ N̂ j+1 and cl j+1 := cl j ∩N j+1 6= /0
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ii) Correctness: The algorithm terminates because N is finite. If N is not a T -net then the iterative
application of Proposition 3.3 implies that for each j ∈ I the CP-subnet

N̂ j ⊂ N j−1

is also a CP-subnet N̂ j ⊂ N. Also cl 6⊂ N̂ j because by construction

cl∩N j = cl j−1∩N j 6= /0 ut

Example 3.6. (Adapted CP-exhaustion)
The example applies the CP-algorithm from Theorem 3.5 to the free-choice net N underlying the Petri
net (N,µ0) from Figure 1. The net is taken from [1]. It is well-formed because µ0 is live and safe. We
construct by iteration a CP-exhaustion of N adapted to the cluster

cl := spanN < start, t0 > .

Figure 1. Free-choice system (N,µ0) from [1, Fig. 5] (dashing at t∗ here not significant)

1. Constructing an adapted CP-exhaustion:

• First, choose the CP-subnet of N

N̂0 := spanN < p4, t1, t4 > ⊂ N

The complement
N0 := N \ N̂0

is well-formed.
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• Secondly, choose the CP-subnet of the complement N0

N̂1 := spanN0
< p5, t2, t5 > ⊂ N0

• The final complement is the strongly connected T -net

N := N0 \ N̂1

Figure 2 shows the subnets N̂0, N̂1, N ⊂ N. The family (N̂0, N̂1) is a cl-adapted CP-exhaustion
of N, and

Nexh := N ∪̇ N̂0 ∪̇ N̂1

satisfies
spanN < Nexh >= N.

Note: The CP-exhaustion is also adapted to the cluster

cl1 = spanN < p1, p2, t1, t2, t8 > .

2. Greediness of the clusters: Both clusters cl and cl1 of N are greedy in the Petri net (N,µ0). They
provide examples of regeneration clusters, a fundamental concept which will be introduced in
Definition 4.1.

Figure 2. CP-exhaustion of the net N from Figure 1. Top: N̂0, N̂1; bottom: N
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Definition 3.7. (Way-in places and critical transitions)
Consider a CP-exhaustion (N̂i)i∈I of a net N. Set

N̂ :=
⋃
i∈I

N̂i and N := N \ N̂

The elements from
NP,in := NP∩ (N̂T )

• ⊂ NP

are the way-in places of N ⊂ N. Their post-transitions, the elements from

NT,in := (NP,in)
• ⊂ NT

are the critical transitions of N. Here the post-place operator in (N̂T )
• applies with respect to the edges

of N, while the post-transition operator in (NP,in)
• applies with respect to the edges of N.

For an application of the concepts of Definition 3.7 see Figure 7 with two way-in places p j and two
critical transitions t j, j = 1,2.

4. Enabling equivalence and marking equality in free-choice systems

Van der Aalst introduces the two fundamental concepts from Definition 4.1.

Definition 4.1. (Lucency and perpetual Petri net)
1. A Petri net (N,µ0) is lucent if for any pair (µ1,µ2) of reachable markings

en(N,µ1) = en(N,µ2) =⇒ µ1 = µ2.

2. A Petri net (N,µ0) is perpetual if it is live and bounded and there exists a cluster cl ⊂ N such
that µcl is a home marking of (N,µ0). The cluster cl is named a regeneration cluster of (N,µ0),
and µcl is a regeneration marking of (N,µ0).

In [1] the cluster cl is named a home cluster and paraphrased as a “regeneration point”. Different
than [1] we prefer the name regeneration cluster. The term home cluster could suggest erroneously
that any home marking relates to a home cluster. The property to be a regeneration cluster depends on
the Petri net (N,µ0), not alone on the subnet cl ⊂ N.

We will often rely on the fundamental property of reachable markings µ in a perpetual free-choice
system (N,µ0) with regeneration cluster cl:

• Each P-component C ⊂ N contains exactly one place of cl and has token count ‖µ‖C = 1.

• The Petri net (N,µ0) is safe.

• If N is a T -net then each elementary circuit γ ⊂ N contains the unique transition tcl ∈ clT and
has token count ‖µ‖γ = 1.
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Proof: Each P-component C ⊂ N has a positive token count at µcl . Hence C contains exactly one
place of cl and satisfies ‖µcl‖C = 1. The token count of C is the same for all reachable markings.
Because the well-formed free-choice net N is covered by P-components each perpetual free-choice
system (N,µ0) is safe. In the particular case of a T -net the P-components are exactly the elementary
circuits of N.

We consider the whole subject of lucency as a question about two equivalence relations on the set
of reachable markings of a given Petri net (N,µ0): In addition to the equality of reachable markings
one considers the relation of enabling equivalence.

Definition 4.2. (Enabling equivalence)
A pair of reachable markings (µ1,µ2) of a Petri net (N,µ0) is enabling equivalent if

en(N,µ1) = en(N,µ2)

Then the Petri net problem under consideration reads: When does enabling equivalence imply marking
equality?

Our proof of van der Aalst’s theorem, see Theorem 8.1, starts with a pair (µ1,µ2) of enabling equi-
valent markings of N. The well-formed free-choice net N has a cl-adapted CP-decomposition with
a final strongly connected T -net N. The proof relies on firing a global shutdown sequence σ , the
concatenation of shutdown sequences for all CP-subnets. The firing squeezes out all tokens from
the CP-subnets and creates a pair (µ1,sd ,µ2,sd) of markings of N. These markings are still enabling
equivalent with respect to the resulting marking of N. Hence the original claim reduces to the analo-
gous claim for a perpetual marking of N. Here the marking equality follows by elementary methods
for T -systems. During the proof we have to keep an eye on how the CP-algorithm from Theorem 3.5
propagates in each step the following properties

well-formedness, perpetuality, enabling equivalence, and marking equality.

The logical dependencies between the intermediate results is clarified by the diagram from Figure 3:

Prop. 5.1 Prop. 6.1

Prop. 5.2 Prop. 7.2 Prop. 6.2

T heor. 3.5 T heor. 8.1 Prop. 7.1

Figure 3. Overview of the proof of Theorem 8.1

• Theorem 3.5 splits the net of a perpetual free-choice system into an adapted CP-exhaustion with
a final strongly connected T -net.
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• Propositions 5.1 and 5.2 study for T -systems the interplay of their deterministic occurrence
semantics with a regeneration cluster. Proposition 5.1 collects relevant properties of perpetual
T -systems. Proposition 5.2 concludes that perpetual T -systems are lucent.

• The analogue for adapted CP-nets in perpetual free-choice systems is proved in Proposition 6.1
and 6.2.

• Proposition 7.1 and 7.2 ensure: Each step of the CP-exhaustion algorithm from Theorem 3.5
propagates perpetuality and enabling equivalence to the next level.

• Theorem 8.1 restates and proves van der Aalst’s theorem.

The intermediate results will be proved in Sections 5, 6 and 7. Section 8 brings together all results to
show van der Aalst’s theorem.

5. Enabling equivalence and marking equality in perpetual T -systems

The present section proves van der Aalst’s theorem in the particular case of a perpetual T -system,
see Theorem 5.2. The proof for T -systems is much easier than the proof for free-choice systems in
general. In the presence of a regeneration cluster marking equivalence provides certain distinguished
paths of the underlying T -net. Due to Proposition 5.1, part 2 ii) these paths are safe in the perpetual
T -system.

Proposition 5.1. (Token count of paths in T -systems)
Let (T N,µ) be a T -system. For each transition t ∈ T NT and pre-place q ∈ •t with µ(q) = 0 denote
by

en(T N,µ)q := {(τ,δ ) : τ ∈ en(T N,µ), δ = (τ, ...,q, t)⊂ T N elementary}

the set of all enabled transitions τ together with their elementary paths to t, which pass q.

1. General T -system: Consider an arbitrary transition t ∈ T NT which is enabled at µ . For each
pre-place q ∈ •t with µ(q) = 0 exists a pair

(τ,δ ) ∈ en(T N,µ)q with ‖µ‖δ = 0.

2. Perpetual T -system: Assume that (T N,µ) is even perpetual with regeneration cluster cl and
denote by tcl the unique transition of cl.

i) For each transition t ∈ T NT with a pre-place p ∈ •t with µ(p) = 1 exists for each
pre-place q ∈ •t with µ(q) = 0 a pair

(τ,δ ) ∈ en(T N,µ)q with ‖µ‖δ = 0 and tcl /∈ δseg

for the segment δseg := (τ, ...,q) of δ .

ii) Each elementary path δ ⊂ T N with tcl /∈ δ has token count ‖µ‖δ ≤ 1.
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Proof:

1. Because (T N,µ) is a T -system, Remark 2.2 implies en(T N,µ)q 6= /0. The following algorithm
returns a solution (τ,δ ):

Initialization: Define the pair (q′,δtail) := (q,δt) with δt := (t) the constant path.

Iteration step (q′,δtail): Save δold := δtail . Because ‖µ‖δtail = 0 also the transition

t ′ ∈ T NT with {t ′}= (q′)•

is enabled at a reachable marking of (N,µ). Due to µ(q′) = 0 there exists a pair

(τ ′,δ ′) ∈ en(T N,µ)q′

• If ‖µ‖δ ′ = 0 then return (τ,δ ) := (τ ′,δ ′ ∗δold).

• Otherwise choose the uniquely determined transition tsplit ∈ δ ′ such that the tail of δ ′

δtail := (tsplit , ...,q′, t ′) satisfies ‖µ‖δtail = 0,

and set
δnew = δtail ∗δold .

If tsplit ∈ en(T N,µ) then return (τ,δ ) := (tsplit ,δnew).

Otherwise choose a pre-place qpre ∈ •tsplit with µ(qpre) = 0 and reiterate with

(q′,δtail) := (qpre,δnew)

The iteration terminates after finitely many steps: The length of the token-free tail increases
during each step. But the length is bounded because the iteration does not construct a token-free
circuit. Figure 4 illustrates the first iteration step.

2. i) Assume µ(p) = 1. Part 1) provides a pair

(τ,δ ) ∈ en(T N,µ)q with ‖µ‖δq = 0

The firing of a minimal occurrence sequence µ
σ−→ µpost with t ∈ en(T N,µpost) forwards all

tokens on the pre-places of τ along δ to q. Minimality of σ ensures that the token at p is frozen
during the firing of σ . Then the greediness of cl implies tcl /∈ σ and a posteriori tcl /∈ δseg.

ii) The proof is indirect. W.l.o.g.

δ = (p1, ..., p2)⊂ T N, p1 6= p2,

is elementary with µ(p1) = µ(p2) = 1. For j = 1,2 there exist two elementary circuits

γ j ⊂ T N with p j ∈ γ j.
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Figure 4. First iteration step, case tsplit /∈ en(T N,µ)

Due to the fundamental property of the perpetual T -system (T N,µ) both circuits have token
count

‖µcl‖γ j = 1 with tcl ∈ γ1∩ γ2

Decompose each γ j as the concatenation

γ j = γ j1 ∗ γ j2

with the segments
γ j1 = (tcl, ..., p j) and γ j2 := (p j, ..., tcl)

Claim: The concatenation
γ11 ∗δ ∗ γ22
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induces a circuit γ which is elementary. Otherwise there exist a node

x1 ∈ γ11∩δ or x2 ∈ δ ∩ γ22 or x3 ∈ γ11∩ γ22

In case of a node
x1 ∈ γ11∩δ

the concatenation of the segments

(p1, ...,x1) of δ and (x1, ..., p1) of γ11

induces a circuit which avoids tcl . Analogously, in case of a node

x2 ∈ δ ∩ γ22

the concatenation of the segments

(p2, ...,x2) of γ22 and (x2, ..., p2) of δ

Figure 5. Indirect proof: Common node x2 ∈ δ ∩ γ22

induces a circuit which avoids tcl , see Figure 5. In both cases the resulting circuit avoids tcl and
has positive token count. Eventually for a node

x3 ∈ γ11∩ γ22

the concatenation of the segments

(tcl, ...,x3) of γ11 and (x3, ..., tcl) of γ22

induces a circuit which contains tcl and is token-free, because both segments are token-free. In
each of the three cases the fundamental property of the perpetual T -system (T N,µ) provides a
contradiction, which proves the intermediate claim.
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As a consequence the circuit γ is elementary with token count

‖µ‖γ ≥ ‖µ‖δ = 2,

contradicting the fundamental property of perpetual T -systems

‖µ‖γ = ‖µcl‖γ = 1. ut

The indirect argumentation employed in the proofs of Proposition 5.2, 6.2 and 7.2 relies on the
same type of contradiction: Construct a reachable marking µ ′ and an elementary path δ ′ with to-
ken count ‖µ ′‖δ ′ ≥ 2. Then apply Proposition 5.1, part 2) respectively Proposition 6.1, part 2) to
conclude ‖µ ′‖δ ′ ≤ 1.

Proposition 5.2. (Perpetual T -systems are lucent)
Consider a perpetual T -system (T N,µ0) with regeneration cluster cl. For each pair (µ1,µ2) of reach-
able markings of (T N,µ0) enabling equivalence implies marking equality, i.e.

en(T N,µ1) = en(T N,µ2) =⇒ µ1 = µ2

During the indirect proof of Proposition 5.2 a possible difference between the pair of markings is
pinned down to different values at the pre-places of a distinguished transition t. The transition is not
enabled at neither of the two markings. Due to the liveness of (T N,µ0) the missing tokens can be
forwarded to the pre-places of t along two token-free paths. One concludes that one of the two paths
avoids tcl and can be marked with at least 2 tokens. The result contradicts Proposition 5.1, part 2 ii).

Proof:
The proof is indirect. The assumption µ1 6= µ2 implies the existence of a place p ∈ T NP, marked at µ1
but unmarked at µ2. The transition t ∈ T NT with p• = {t} satisfies

t /∈ en(T N,µ2).

Hence by enabling equivalence

t /∈ en(T N,µ1).

As a consequence t has a second pre-place q∈ •t which is unmarked at µ1, see Figure 6, left and right.
W.l.o.g.

•t = {p,q}

and

(µ1(p),µ1(q)) = (1,0) and (µ2(p),µ2(q)) = (0,∗).
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Figure 6. ad Prop. 5.2: left µ1, middle µ2, right µ1; ad Prop. 6.2: left µ̂1, middle µ̂2, right µ̂1

Here the value µ2(q) ∈ {0,1} is not yet known. With the notations from Proposition 5.1:

• Triple (µ1,τq,δq): Proposition 5.1, part 1) provides a pair

(τq,δq) ∈ en(T N,µ1)q with ‖µ1‖δq = 0

see Figure 6, left-hand side.

• Pair (µ2,τq): By enabling equivalence

τq ∈ en(T N,µ1) =⇒ τq ∈ en(T N,µ2)

• Triple (µ2,τp,δp): Because µ2(p) = 0 Proposition 5.1, part 1) provides a second pair

(τp,δp) ∈ en(T N,µ2)p with ‖µ2‖δp = 0

see Figure 6, middle.

• Triple (µ1,τp,δp): By enabling equivalence

τp ∈ en(T N,µ2) =⇒ τp ∈ en(T N,µ1)

In particular τp 6= t. Firing µ1
τp−→ µ ′ implies for the segment δ ′ := (τp, ..., p) of δp

‖µ ′‖δ ′ ≥ 2

because µ1(p) = 1. Figure 6, right-hand side shows the marking µ1. But the frozen token due
to µ1(p) = 1 and the greediness of cl ensure tcl /∈ δ ′. Hence Proposition 5.1, part 2 ii) implies

‖µ ′‖δ ′ ≤ 1,

a contradiction. ut
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6. Enabling equivalence and marking equality in CP-subnets of
perpetual free-choice systems

In a perpetual free-choice system (N,µ0) the adapted CP-subnets N̂ ⊂ N and their induced markings
have specific properties which are not shared by CP-subnets in general live and safe well-formed
free-choice systems. These properties derive from the interplay of the regeneration marking and the
shutdown sequences of N̂.

Proposition 6.1. (Token count in adapted CP-nets of perpetual free-choice systems)
Consider a perpetual free-choice system (N,µ0) with a regeneration cluster cl ⊂ N. Let N̂ ⊂ N be a
a cl-adapted CP-subnet.

1. The CP-subnet N̂ has no circuits. In particular, each path in N̂ is elementary.

In addition, let µ be an arbitrary reachable marking of (N,µ0) and set µ̂ := µ|N̂.

2. Each path δ ⊂ N̂ has token count ‖µ‖δ ≤ 1.

3. Firing a shutdown sequence of N̂
µ

σsd−−→ µsd

removes all tokens from N̂, i.e.
µsd |N̂ = 0

4. Each transition t ∈ N̂ with a path (p, ..., t)⊂ N̂, p ∈ N̂P and µ̂(p) = 1, can be enabled by firing
an occurrence sequence of (N̂, µ̂)

µ̂
σ−→ µ̂post with tin /∈ σ .

Proof:

1. For an indirect proof assume the existence of a circuit γ ⊂ N̂. Because N̂ ⊂ N is a T -net and
is cl-adapted, for each reachable marking µ of (N,µ0):

‖µ‖γ = ‖µcl‖γ = 0

Hence each transition from γ is dead in (N,µ0), a contradiction to the liveness of (N,µ0). The
second claim follows because a non-elementary path has a node of self-intersection, and the
latter produces a circuit.

2. The path δ ⊂ N̂ extends by concatenation to a path

δ̂ = (tin, ..., tout)

leading in N̂ from the way-in transition tin to a way-out transition tout . Due to part 1) the path δ̂

is elementary. The complement N \ N̂ is strongly connected. By concatenating δ̂ with an ele-
mentary path in the complement leading from tout to tin extends δ̂ - and a posteriori also δ - to
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an elementary circuit δN ⊂ N. The latter is contained in a P-component C ⊂ N, [6, Analogue of
Cor. 5.6]. Due to the fundamental property of perpetual free-choice systems

‖µ‖C = 1,

which implies ‖µ‖δ ≤ 1.

3. Due to Remark 3.2, part 3) the free-choice system

(N,µ) with N := N \ N̂ and µ := µsd |N

is live. There exists a reachable marking µ post of (N,µ) which marks all places of cl := N∩ cl.
Because N ⊂ N is place-bordered the extended marking µpost of N defined as

µpost |N := µ post and µpost |N̂ := µsd |N̂

is reachable in (N,µ0). Because cl ⊂ N and cl ⊂ N have the same places

µ post ≥ µcl =⇒ µpost ≥ µcl =⇒ µpost = µcl

which implies
µsd |N̂ = µpost |N̂ = 0.

4. The claim follows from the previous part because N̂ is a T -net and tin /∈ σsd . ut

Proposition 6.2. (Enabling equivalence and marking equality in adapted CP-subnets)
Let (N,µ0) be a perpetual free-choice system with regeneration cluster cl ⊂ N and let

N̂ ⊂ N

be a cl-adapted CP-subnet. Consider a pair (µ1,µ2) of reachable markings of (N,µ0) and assume that
the restrictions

µ̂ j := µ j|N̂, j = 1,2,

are enabling equivalent, i.e.
en(N̂, µ̂1) = en(N̂, µ̂2).

Then:

1. Marking equality on N̂:
µ̂1 = µ̂2.

2. Common shutdown sequence: Each shutdown sequence of N̂ at µ1

µ1
σ−→ µ1,sd

is also also a shutdown sequence of N̂ at µ2

µ2
σ−→ µ2,sd
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The idea of the proof of the first statement is the same as for the proof of Proposition 5.2. The role
of the distinguished transition tcl is now taken by the way-in transition tin ∈ N̂. The argumentation is
slightly different: The regeneration cluster cl does not belong to N̂, and tin has to be exempted from the
transitions under consideration. For the convenience of the reader we therefore give a complete proof.
The second result is a simple consequence of the first: A shutdown sequence fires only transitions
from N̂T \{tin}.

Proof:
Alike to the notation used in the proof of Proposition 5.1 and 5.2 we introduce for a given pair

(q, t) ∈ N̂P× N̂T with q• = {t}

the notation

ensd(N̂, µ̂)q := {(τ,δ ) : τ 6= tin,τ ∈ en(N̂, µ̂),δ = (τ, ...,q, t)⊂ N̂}.

It denotes the set of pairs (τ,δ ) with τ 6= tin enabled at µ̂ and starting the path δ ⊂ N̂ to t via q.

1. For an indirect proof of the first part of the Proposition assume

µ̂1 6= µ̂2

There exists a place p ∈ N̂P, marked at µ̂1 but unmarked at µ̂2. Consider the well-determined
transition t ∈ N̂T with p• = {t}, in particular t ∈ N̂ \{tin}. The transition t is not enabled at µ̂2.
By enabling equivalence

t /∈ en(N̂, µ̂2) =⇒ t /∈ en(N̂, µ̂1).

As a consequence t has a second pre-place q ∈ •t which is unmarked at µ̂1. W.l.o.g.

•t = {p,q}

and
(µ1(p),µ1(q)) = (1,0) and (µ2(p),µ2(q)) = (0,∗).

Here the value µ2(q)∈ {0,1} is not yet known. The indirect proof continues along the following
steps:

• Triple (µ̂1,τ1,δq): Because
µ̂1(p) = 1 and µ̂1(q) = 0

the transition t can be enabled without firing tin by a reachable marking of (N̂, µ̂1) due to
Proposition 6.1, part 4). Because N̂ is a T -net Proposition 5.1, part 1) provides a pair

(τq,δq) ∈ ensd(N̂, µ̂1)q with ‖µ̂1‖δq = 0

see Figure 6, left-hand side.
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• Pair (µ̂2,τp): By enabling equivalence

τq ∈ en(N̂, µ̂1) =⇒ τq ∈ en(N̂, µ̂2)

• Triple (µ̂2,τp,δp): The transition τq ∈ en(N̂, µ̂2) has a pre-place marked at µ̂2.
Proposition 6.1, part 4), applied to the path δq, shows that t is enabled at a reachable
marking of (N̂, µ̂2). Because µ̂2(p) = 0 Proposition 5.1, part 1) provides a pair

(τp,δp) ∈ ensd(N̂, µ̂2)p with ‖µ̂2‖δp = 0,

see Figure 6, middle.

• Triple (µ̂1,τp,δp): By enabling equivalence

τp ∈ en(N̂, µ̂2) =⇒ τp ∈ en(N̂, µ̂1)

Figure 6, right-hand side shows µ̂1. After firing µ̂1
τp−→ µ ′ the segment

δ
′ := (τp, ..., p) of δp ⊂ N̂

has token count
‖µ ′‖δ ′ ≥ 2,

but due to Proposition 6.1, part 2)
‖µ ′‖δ ′ ≤ 1.

The contradiction refutes the assumption of the indirect proof, hence

µ̂1 = µ̂2

2. Due to part 1)
µ1|N̂ = µ2|N̂.

Remark 3.2 implies: Each marking µ j, j = 1,2, enables a shutdown sequence of N̂. Because a
shutdown sequence has only transitions from N̂T \{tin}, each shutdown sequence enabled at µ1
is also a shutdown sequence enabled at µ2, and vice versa. ut

7. Propagating perpetuality and enabling equivalence along
CP-exhaustions

Proposition 7.1. (Propagating perpetuality to the complement of an adapted CP-subnet)
Consider a perpetual free-choice system (N,µ0) with regeneration cluster cl ⊂ N, and a cl-adapted
CP-subnet

N̂ ⊂ N with complement N := N \ N̂.

Then for each reachable marking µ of (N,µ0) and for each shutdown sequence σ

µ
σ−→ µsd
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for N̂ ⊂ N: The free-choice system
(N,µ), µ := µsd |N,

is perpetual with regeneration cluster cl := N∩ cl.

Idea of the proof: Both clusters cl ⊂N and cl ⊂N have the same places. And each enabled occurrence
sequence of (N,µ) lifts to an enabled occurrence sequence of (N,µsd).

Proof:
Remark 3.2, part 3) implies that (N,µ) is a live and safe free-choice system. We show that µcl|N is a
regeneration marking of (N,µ):

For each reachable marking ν of (N,µ) exists a reachable marking ν post of (N,ν) which enables
at least one transition and a posteriori - due to the free-choice property of N - all transitions of cl.
Hence ν post marks all places of cl. Because N ⊂ N is place-bordered, ν post extends to a reachable
marking νpost of (N,µ0) with

νpost |N = ν post and νpost |N̂ = µsd |N̂

Proposition 6.1 implies
νpost |N̂ = µsd |N̂ = 0

The clusters
cl ⊂ N and cl ⊂ N

have the same places. Hence
νpost ≥ µcl =⇒ νpost = µcl

As a consequence
ν post = µcl|N = µcl

is a regeneration marking of (N,µ). ut

Proposition 7.2. (Propagating enabling equivalence to the T -net of an adapted CP-exhaustion)
Let (N,µ0) be a perpetual free-choice system with regeneration cluster cl ⊂ N. Consider a cl-adapted
CP-exhaustion (N̂i)i∈I of N with the final strongly connected T -net

N := N \
⋃̇

i∈I
N̂i.

Let (µ1,µ2) be a pair of reachable markings of (N,µ0) with

en(N,µ1) = en(N,µ2).

1. For each i ∈ I the CP-subnet N̂i ⊂ N has a common shutdown sequence σi for both markings µ1
and µ2. Both markings enable the concatenation

σ := σ0 ∗ ...∗σn,

named a global shutdown sequence.
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2. For j = 1,2 denote by µ j,sd the marking of N obtained by firing σ at µ j, i.e.

µ j
σ−→ µ j,sd

Then the restrictions to N
µ j,sd := µ j,sd |N

satisfy
µ1,sd−µ2,sd = (µ1−µ2)|N.

3. The pair of markings
(µ1,sd ,µ2,sd)

is reachable in the perpetual T -system

(N,µcl) with cl := N∩ cl

and satisfies
en(N,µ1,sd) = en(N,µ2,sd).

The idea of the proof is to compare the enabledness of each transition t ∈ N before and after firing σ .
The proof shows: A transition t is enabled before firing σ at both markings (µ1,µ2) or at none of them
if and only after firing σ the transition is enabled at both markings (µ1,sd ,µ2,sd) or at none of them.
Besides Proposition 5.1 and 6.2 the main ingredient is the fact that a live and bounded T -system is
cyclic.

Proof:
We set

µ j := µ j|N, j = 1,2.

Because N ⊂ N is place-bordered: For each transition t ∈ N and for j = 1,2 holds

t ∈ en(N,µ j) ⇐⇒ t ∈ en(N,µ j)

1. For each i ∈ I Proposition 6.2 provides a common shutdown sequence σi of N̂i with respect to
the markings µ1 and µ2. For each pair i 6= k ∈ I the pre-sets of the non way-in transitions of N̂i

and N̂k are disjoint, which proves part 1).

2. If p ∈ N ⊂ N is not a way-in place of N then for j = 1,2

µk(p) = µk,sd(p).

And for a way-in place p ∈ NP,in the change µk,sd(p)−µk(p) of both markings depends only on
the transitions of σ . Hence the change is the same whether firing σ at µ1 or at µ2.

3. For j = 1,2 Proposition 7.1 implies that (N,µ j,sd) is perpetual with regeneration marking µcl .
Live T -systems are cyclic, hence µ j,sd is reachable in (N,µcl). Claim:

en(N,µ1,sd) = en(N,µ2,sd)
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The proof distinguishes between non-critical transitions and critical transitions.

i) Non-critical transitions: If t ∈ NT \NT,crit then

•t ∩NP,in = /0.

Hence firing σ does not change the marking on •t. As a consequence

[en(N,µ1) = en(N,µ2)] =⇒
[
t ∈ en(N,µ1,sd) ⇐⇒ t ∈ en(N,µ2,sd)

]
ii) Critical transitions: The proof of the claim is indirect. Assume the existence of a critical
transition t ∈ NT,crit which violates enabling equivalence, w.l.o.g.

t ∈ en(N,µ1,sd)\ en(N,µ2,sd)

Then t is enabled at neither marking µ1 and µ2, and firing σ at µ1 enables t, but firing σ at µ2
does not. Hence t has at least two pre-places, w.l.o.g. t has exactly two pre-places

•t = {p,q} with p ∈ NP,in

satisfying
(µ1(p),µ1(q)) = (0,1) and (µ2(p),µ2(q)) = (0,0)

(µ1,sd(p),µ1,sd(q)) = (1,1) and (µ2,sd(p),µ2,sd(q)) = (1,0).

• Proposition 5.1, part 2 i), applied to the perpetual T -system (N,µcl) and its reachable
marking µ2,sd , provides a pair

(τ,δ ) ∈ en(N,µ2,sd)q, τ 6= t, with ‖µ2,sd‖δ = 0 and tcl /∈ δ
′

for the segment
δ
′ := (τ, ...,q) of δ .

In particular τ ∈ en(N,µ2,sd).

• The transition τ satisfies
τ /∈ en(N,µ1,sd) :

Otherwise, after firing µ1,sd
τ−→ µ ′ the path δ ′ has token count

‖µ ′‖δ ′ ≥ 2

because µ1,sd(q) = 1. Then Proposition 5.1, part 2 ii) implies the contradiction

‖µ ′‖δ ′ ≤ 1
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• By the previous step and by the assumed enabling equivalence

τ /∈ en(N,µ1,sd) =⇒ τ /∈ en(N,µ1) =⇒ τ /∈ en(N,µ2)

As a consequence
τ ∈ en(N,µ2,sd)\ en(N,µ2),

and the transition τ becomes enabled at a reachable marking of (N,µ2) not until firing a
way-out transition tout ∈ N̂. Hence τ ∈ NT,crit is a further critical transition with

τ ∈ en(N,µ2,sd)\ en(N,µ1,sd).

• The previous result implies that at least one pre-place τ is marked at µ1,sd due to the firing
of tout . As a consequence

tcl 6= t :

Otherwise the enabling t ∈ en(N,µ1,sd), the greediness of cl, and the fact, that places of
a T -net do not branch, imply t = τ , which has been excluded above.

We now iterate the whole argument above: It derives from the critical transition

t1 := t ∈ NT,crit ∩
(
en(N,µ1,sd)\ en(N,µ2,sd)

)
a second critical transition

t2 := τ ∈ NT,crit ∩
(
en(N,µ2,sd)\ en(N,µ1,sd)

)
and a path

δ1 := δ = (t2, ...,q1, t1)⊂ N with ‖µ1,sd‖δ1 = 1, ‖µ2,sd‖δ1 = 0 and tcl /∈ δ1

see Figure 7.

After finitely many steps we obtain a family of critical transitions

tk ∈ NT,crit , k = 1, ...,m,

and elementary paths

δk = (tk+1, ...,qk, tk)⊂ N, k = 1, ...,m−1, tcl /∈ δk,

satisfying

‖µ1,sd‖δk =

{
1 if k odd
0 if k even

, ‖µ2,sd‖δk =

{
1 if k even
0 if k odd

Because N has only finitely many critical transitions, a subset of these paths concatenates and
induces a circuit

γ ⊂ N with tcl /∈ γ.

The circuit γ satisfies
‖µcl‖γ = ‖µ1,sd‖γ = ‖µ2,sd‖γ ≥ 1

Hence γ has at least one elementary subcircuit which is marked at µcl . The result contradicts
the fundamental property of perpetual T -systems because the subcircuit does not contain tcl .
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The contradiction refutes the assumption that the critical transition t = t1 violates enabling
equivalence. Hence all critical transitions t ∈ NT,crit satisfy

t ∈ en(N,µ1,sd) ⇐⇒ t ∈ en(N,µ2,sd)

iii) Enabling equivalence: The two previous parts show

en(N,µ1,sd) = en(N,µ2,sd),

which finishes the proof of the Proposition. ut

Figure 7. Way-in places p j, critical transitions t j, paths δ j, particular case t3 = t1

8. Statement and proof of van der Aalst’s theorem
Theorem 8.1. (Van der Aalst’s theorem on lucency from [1])
Each perpetual free-choice system is lucent.

Proof:
Consider a perpetual free-choice system (N,µ0) with a regeneration cluster cl ⊂ N and its regeneration
marking µcl .

1. CP-exhaustion: Theorem 3.5 provides a cl-adapted CP-exhaustion of N

(N̂i)i∈I, I = {0, ...,n} ⊂ N,
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with CP-subnets N̂i ⊂ N, complements

Ni := Ni−1 \ N̂i, N−1 := N,

and the final strongly connected T -net

N := N \
⋃̇

i∈N
N̂i

The disjoint union of full subnets of N

Nexh := N ∪̇ N̂0 ∪̇ ... ∪̇ N̂n

is a subnet of N with the same nodes as N. The regeneration cluster cl intersects each comple-
ment Ni, i ∈ I, and N in a non-empty cluster. Set

cl := N∩ cl ⊂ N.

To continue the proof assume a pair of reachable markings (µ1,µ2) of (N,µ0) with

en(N,µ1) = en(N,µ2).

2. Marking equality in the CP-subnets: Proposition 6.2 implies for each i ∈ I

(µ1−µ2)|N̂i = 0

3. Marking equality in the final T -net: Proposition 7.2 considers simultaneously the collection of
all CP-subnets N̂i, i ∈ I. The proposition provides a global shutdown sequence σ enabled at
both markings µ j, j = 1,2,

µ j
σ−→ µ j,sd

such that the resulting markings of N

µ j,sd := µ j,sd |N

• are reachable in the T -system (N,µcl),
• satisfy

µ1,sd−µ2,sd = (µ1−µ2)|N
• and are enabling equivalent

en(N,µ1,sd) = en(N,µ2,sd).

Proposition 7.1 implies that (N,µcl)) is perpetual. Proposition 5.2 concludes

µ1,sd−µ2,sd = 0.

As a consequence
(µ1−µ2)|N = 0

Combining part 2) and 3) of the proof shows

µ1 = µ2

and finishes the proof. ut
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9. Concluding remarks

CP-subnets of a free-choice net have been introduced by Desel and Esparza. In [7] we used CP-nets
to show the theorem of Gaujal, Haar and Mairesse about the existence of unique blocking markings in
live and bounded free-choice systems.

The present proof of Theorem 8.1 does not presuppose the blocking theorem but it makes a similar
use of CP-nets. As van der Aalst remarks, for a perpetual free-choice system both his theorem and
the uniqueness part of the blocking theorem give the same result when applied to those reachable
markings, which enable the transitions of one single common cluster but no other transitions.

Our proof uses in an essential way the existence of adapted CP-exhaustions for well-formed free-
choice nets. Figure 3 visualizes the logical structure of the proof. The figure indicates the results
referring to the building blocks of the CP-exhaustion and their relations. If the underlying net lacks
well-formedness the proof does not apply. Therefore it would be interesting to isolate those conse-
quences of regeneration clusters in T -systems which underly the constructions from Section 5 and
notably Figure 6:

• Marking an unmarked pre-place of a transition by forwarding tokens along an elementary, ini-
tially token-free path, which starts at an enabled transition.

• Markings which are enabling equivalent but distinct create a distinguished elementary path: The
path has token count at least two and avoids the regeneration cluster.

• The greediness of the regeneration cluster ensures the safeness of each elementary path which
avoids the regeneration cluster.

How do these properties generalize in a direct manner from perpetual T -systems to perpetual free-
choice systems - without using the CP-exhaustion? How far can one relax the assumptions of van der
Aalst’s theorem and still prove lucency?

In [4, Theor. 3, FN 2] van der Aalst mentions that he currently investigates his theorem in this
direction.
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