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Abstract. We study timed Petri nets, with preselection and priority routing. We represent the

behavior of these systems by piecewise affine dynamical systems. We use tools from the theory of

nonexpansive mappings to analyze these systems. We establish an equivalence theorem between

priority-free fluid timed Petri nets and semi-Markov decision processes, from which we derive the

convergence to a periodic regime and the polynomial-time computability of the throughput. More

generally, we develop an approach inspired by tropical geometry, characterizing the congestion

phases as the cells of a polyhedral complex. We illustrate these results by a current application

to the performance evaluation of emergency call centers in the Paris area. We show that priorities

can lead to a paradoxical behavior: in certain regimes, the throughput of the most prioritary task

may not be an increasing function of the resources.

Keywords: Timed Petri net, Performance evaluation, Markov decision process, Tropical geom-

etry, Emergency call center

1. Introduction

Motivation Emergency call centers exhibit complex synchronization and concurrency phenomena.

Various types of calls induce diverse chains of actions, including reception of the call, instruction
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by experts, dispatch of emergency means and monitoring of operations in progress. The processing

of calls is subject to priority rules, making sure that the requests evaluated as the most urgent are

treated first. The present work originates from a specific case study, concerning the performance

evaluation of the medical emergency call centers in Paris and its inner suburbs, operated by four

Services d’aide médicale urgente (SAMU) of Assistance Publique – Hôpitaux de Paris (AP-HP). One

needs to evaluate performance indicators, like the throughput (number of calls of different types that

can be processed without delay). One also needs to optimize the resources (e.g., personnel of different

kinds) to guarantee a prescribed quality of service for a given inflow of calls.

Table 1: Correspondence between Petri nets and semi-Markov decision processes

Timed Petri nets Semi-Markov decision processes

Transitions States

Places Actions

Physical time Time remaining to live

Counter function Finite horizon value function

Synchronization Multiple actions

Preselection routing Probabilistic moves

Priority routing Negative probabilities

Throughput Average cost

Bottleneck places Optimal policies

Congestion phases Cells of the average cost complex

Contribution We develop a general method for the analysis of the timed behavior of Petri nets,

based on a representation by piecewise linear dynamical systems. These systems govern counter func-

tions, which yield the number of firings of transitions as a function of time. We allow routings based

either on preselection or priority rules. Preselection applies to situations in which certain attributes of

a token determine the path it follows, e.g. different types of calls require more or less complex treat-

ments. Moreover, priority rules are used to allocate resources when conflicts arise. We study a fluid

relaxation of the model, in which the numbers of firings can take real values. Supposing the absence

of priority routing, we establish a correspondence between timed Petri nets and semi-Markov decision

processes. Table 1 provides the details of this correspondence that we shall discuss in the paper. Then,

we apply methods from the theory of semi-Markov decision processes to analyze timed Petri nets. We

show that the counter variables converge to a periodic orbit (modulo additive constants). Moreover,

the throughput can be computed in polynomial time, by looking for affine stationary regimes and ex-

ploiting linear programming formulations. We also show that the throughput is given as a function of

the resources (initial marking), by an explicit concave piecewise affine map. The cells on which this

map is affine yield a polyhedral complex, representing the different “congestion phases”. We finally

discuss the extension of these analytic results to the case with priorities. The dynamics still has the

form of a semi-Markov type Bellman equation, but with negative probabilities. Hence, the theoretical
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tools used to show the convergence to a periodic orbit do not apply anymore. However, we can look

for the affine stationary regimes, which turn out to be the points of a tropical variety. From this, we still

obtain a phase diagram, representing all the possible throughputs of stationary regimes. Throughout

the paper, these results are illustrated by the case study of emergency call centers. The final section

focuses on the analysis of a policy proposed by the SAMU, involving a monitored reservoir, designed

to handle without delay the most urgent calls. We show that this particular model has a paradoxical

behavior in an exceptional congestion regime: increasing some resources may result in a decrease of

the throughput of the most prioritary task.

Related work Our approach originates from the max-plus modeling of timed discrete event systems,

introduced by Cohen, Quadrat and Viot and further investigated by Baccelli and Olsder and a number

of authors. We refer the reader to the monographs [1, 2] and to the survey of Komenda, Lahaye,

Boimond and van den Boom [3]. The max-plus approach was originally developed for timed event

graphs. Cohen, Gaubert and Quadrat extended it to fluid Petri nets with preselection routing [4, 5].

Gaujal and Giua established in [6] further results on the model of [4, 5]. Their results include a

characterization of the throughput as the optimal solution of linear program. Recalde and Silva [7]

obtained linear programming formulations for a different fluid model.

By comparison with [4, 5, 6], we use more powerful results on semi-Markov decision processes

and nonexpansive mappings. This allows us, in particular, to deduce more precise asymptotic results,

concerning the deviation z(t)− ρt between the counter function z at time t and its average growth ρt,
instead of the mere existence of the limit limt→+∞ z(t)/t = ρ. We also establish the existence of the

latter limit even in the case of irrational holding times, and provide a polyhedral characterization of this

limit, in terms of the “Throughput complex” (Corollary 6.13). This characterization holds without any

irreducibility assumption (an earlier formula of this nature was stated in [4] in the special irreducible

case). The present work is a follow-up of [8], in which Bœuf and two of the authors established an

equivalence between timed Petri nets with priorities and a class of piecewise-linear models.

The present methods are complementary to probabilistic approaches [9]. Priority rules put our

systems outside the classes of exactly solvable probabilistic models; only scaling limit type results on

suitably purified models are known [10]. In contrast, fluid models allow one to compute phase portraits

analytically. They lead to lower bounds of dimensioning which are accurate when the arrivals do not

fluctuate, and which can subsequently be confronted with results of simulation.

2. Piecewise affine models of timed Petri nets

2.1. Preliminaries on timed Petri nets

A timed Petri net is given by a bipartite graph whose vertices are either places or transitions. We

denote by P (resp. Q) the finite set of places (resp. transitions). For two vertices x and y forming a

place-transition pair, x is said to be an upstream (resp. downstream) vertex of y if there is an arc of the

graph going from x to y (resp. from y to x). The set of upstream (resp. downstream) vertices of x is

denoted by xin (resp. xout).
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Every place p is equipped with an initial marking mp ∈ N, representing the number of tokens

initially present in the place before starting the execution of the Petri net. The place p is also equipped

with a holding time τp ∈ R>0, so that a token entering p must sojourn in this place at least for a

time τp before becoming available for firing a downstream transition. In contrast, firing a transition

is instantaneous. Every arc from a place p to a transition q (resp. from a transition q to a place p) is

equipped with a positive and integer weight denoted by αqp (resp. αpq). Transition q can be fired only

if each upstream place p contains αqp tokens. In this case, one firing of the transition q consumes αqp

tokens in each upstream place p, and creates αp′q in each downstream place p′. Unless specified, the

weights are set to 1. The same transition can be fired as many times as necessary, as long as tokens in

the upstream places are available. We shall assume that transitions are fired as soon as possible. By

convention, the tokens of the initial marking are all available when the execution starts.

When a place has several downstream transitions, we must provide a routing rule specifying which

transition is to be fired once a token is available. We distinguish two sets of rules: priority and

preselection.

q3

q2

q1

p

Figure 1: Priority routing

A priority routing on a place p is specified by a total order ≺p

over the downstream transitions of p. The principle of this routing

rule is that a transition q ∈ pout is fired only if there is no other fireable

transition q′ ∈ pout with a higher priority, i.e. q′ ≺p q (or equivalently

q ≻p q′). We represent the ordering of downstream transitions by a

variable number of arrow tips, like in Figure 1, with the convention

that the highest priority transition (the minimal element of pout with

respect to ≺p) is the one pointed by the highest number of tips.

Priority routing will be used in our model of monitored reservoir studied in Section 7.2. We denote

by Qprio the subset of Q consisting of the downstream transitions of places subject to priority routing.

We allow transitions in Qprio to admit multiple upstream places ruled by priority routings as long as

the following compatibility condition is met.

Definition 2.1. Let Pprio denote the set of places subject to priority routing. We say that the rules

(≺p)p∈Pprio
are compatible if their union (as binary relations) is acyclic.

Acyclicity means that the transitive closure of the union of the local total orders (≺p)p∈Pprio
forms

a global partial order on the set Q of all transitions.

The preselection routing on a place p is described by a collection of nondecreasing maps (Πp
q)q∈pout

from mp + N to N satisfying the property:

∀n ∈ N s.t. n > mp ,
∑

q∈pout

Πp
q(n) = n .

For q ∈ pout, Πp
q(n) represents the number of tokens which are reserved to fire transition q, amongst

the n first tokens to enter place p (including the initial marking mp). In other words, they cannot be

used to fire any other transition of pout. A natural example of preselection routing is the proportional

periodic routing: if pout = {q1, q2, . . . , qk}, consider a positive integer L, a partition (J1, J2, . . . , Jk)
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of {1, 2, . . . , L} and define Πp
qk(n) = card({1, 2, . . . , n} ∩ (Jk + LN)). For large values of n, we

have Πp
qk(n) ∼ n · card(Jk)/L.

In order to simplify the presentation of our following dynamical model, we assume that prese-

lection routing is only allowed for places whose downstream transitions do not admit other upstream

places. The firing rule of the general case may be defined by reduction to this one by introducing extra

places with holding time 0, as illustrated on Figure 2.

q1

q2

p :=

p∗1

p∗2

q∗1

q∗2

q1

q2

p

Figure 2: Compact notation for preselection

routing in case of multiple upstream places

q

p1

p2

Figure 3: A synchronization pattern

We denote by Qpsel the subset of Q consisting of the downstream transitions of places ruled by

preselection routing. By construction, we have Qpsel ∩ Qprio = ∅. We define Qsync := Q \ (Qpsel ∪
Qprio), i.e. the set of transitions with no upstream place ruled by preselection or priority routing. As

a result, we have a partition of Q into Qprio, Qpsel, and Qsync. Transitions of Qsync correspond to

a synchronization pattern between several upstream places, as illustrated in Figure 3. We point out

that transitions with one upstream place can be of any of the three kinds Qprio, Qpsel, and Qsync. The

choice of their classification does not affect the analysis developed below.

Remark 2.2. Contrary to the preselection routing, the priority routing is essentially non-monotone

(and therefore shall be left aside in Section 6). Indeed, a “fresh” token might activate some prioritized

transition before some other “older” token activates a non-prioritized transition.

2.2. Dynamic equations governing counter functions

We associate with every transition q ∈ Q a counter function zq from R to R>0 such that zq(t) rep-

resents the number of firings of transition q that occurred up to time t included. Similarly, given a

place p ∈ P, we denote by xp(t) the number of tokens that have entered place p up to time t included,

taking into account the tokens initially present in p. By construction, xp and zq are non-decreasing

càdlàg (right continuous with left limits) functions. Given a càdlàg function f , we denote by f(t−)
the left limit at the point t. It may be smaller than f(t).

For each place p ∈ P, xp(t) is given by the sum of the initial marking mp and the number of

firings of transitions q ∈ pin weighted by αpq (recall that one firing of transition q outputs αpq tokens

in p):

∀p ∈ P, xp(t) = mp +
∑

q∈pin

αpq zq(t) . (P1)
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For each transition q ∈ Q, the equation satisfied by zq depends on the routing policy of its upstream

places. Suppose q ∈ Qsync, so that its upstream places only admit q for downstream transition. Since

transitions are fired as early as possible and must wait for all upstream tokens to be available, we have:

zq(t) = min
p∈qin

⌊
α−1
qp xp(t− τp)

⌋
. (P2)

where ⌊·⌋ denotes the floor function (recall that zq must be integer). Suppose now that q ∈ Qpsel.

Because q admits only one upstream place p, we also have:

zq(t) =

⌊
α−1
qp Π

p
q(xp(t− τp))

⌋
. (P3)

Finally, suppose that q ∈ Qprio. We have

zq(t) = min
p∈qin

⌊
α−1
qp

(
xp(t− τp)−

∑

q′≺p q

αq′pzq′(t)−
∑

q′≻p q

αq′pzq′(t
−)

)⌋
. (P4)

This equation can be interpreted by examining zq(t) − zq(t
−), which represents the number of

firings of q at time t. The amount of tokens available in place p ∈ qin at time t− is xp(t − τp) −∑
q′∈pout αq′pzq′(t

−). However, transitions with higher priority than q relatively to p fire∑
q′≺p q αq′p(zq′(t) − zq′(t

−)) of these tokens, leaving xp(t − τp) −
∑

q′≺p q αq′pzq′(t)−∑
q′<p q αq′pzq′(t

−) available to fire q. Equation (P4) is obtained by packing these tokens in an integer

number of groups of αqp and taking the minimum of such terms over qin.

The correspondence between the semantics of timed Petri net (expressed in terms of a transition

system acting over states corresponding to timed markings) and the equations above has been proved

in [8] in a more restricted model. It carries over to the current setting, allowing multiple levels of

priority, preselection routings, and arcs with valuations.

It will be convenient to consider the continuous relaxation of the previous dynamics. This boils

down to considering infinitely divisible tokens and real-valued counters functions. The weights αpq or

αqp can now be allowed to take positive real values. The priority and preselection routing rules are not

affected by the fluid approximation, though in what follows we choose to focus only on proportional

Table 2: Dynamic equations followed by transitions counter functions

Type Counter equation in the continuous model

q ∈ Qsync zq(t) = min
p∈qin

α−1
qp

(
mp +

∑

q′∈pin

αpq′ zq′(t− τp)

)

q ∈ Qpsel zq(t) = πqp · α
−1
qp

(
mp +

∑

q′∈pin

αpq′ zq′(t− τp)

)

q ∈ Qprio zq(t) = min
p∈qin

α−1
qp

(
mp +

∑

q′∈pin

αpq′ zq′(t− τp)−
∑

q′≺pq

αq′pzq′(t)−
∑

q′≻pq

αq′pzq′(t
−)

)
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preselection routing: if a place p is ruled by preselection, we fix a stochastic vector (πqp)q∈pout such

that Πp
q(x) = πqpx for x > mp. Equivalently, this corresponds to the continuous relaxation of a

stochastic routing at place p, in which πqp is the probability for a token to be routed to transition

q. Finally, the continuous relaxation drops the floor functions. This leads to the dynamical system

presented in Table 2, governing the counter functions zq of the transitions.

3. Models of medical Emergency Call Centers

We next present two models based on an ongoing collaboration with the Emergency Medical Services

(EMS) of Paris and its inner suburbs (SAMU 75, 92, 93, and 94 of AP-HP). In France, the nation-wide

phone number 15 is dedicated to medical distress calls, dispatched to regional call centers. The calls

are first answered by an operator referred to as a medical regulation assistant (MRA), who categorizes

the request, takes note of essential personal information and transfers the call to one of the following

two types of physicians, depending on the estimated severity of the case:

(i) an emergency doctor, able to dispatch Mobile Intensive Care Units or first-responding ambu-

lances and to swiftly send the patient to the most appropriate hospital unit;

(ii) a general practitioner, who can dispatch ambulances and provide medical advice.

An MRA may also handle the call without transferring it if a conversation with a physician is not

needed (report from a medical partner, dial error, etc.).

In case (i), the MRA must wait for an emergency physician to be available before transferring the

call, in order to report the details of the request. In this way, the patient is constantly kept on line

with an interlocutor. In case (ii), patients are left on hold, and dealt with by general practitioners who

answer the calls in the order of arrival. As a first step, our main focus is the coupling between the

answering operator and the emergency physician (which is a critical link of the system). Thus, for

the sake of simplicity, we do not take into account what happens to calls in case (ii) after the MRA

is released. In other words, we consider a simplified model in which only two types of inbound calls

can occur: the ones which require the MRA to wait for an emergency physician and the ones which

do not. We shall also consider that the patients do not leave the system before their call is picked up

(infinite patience assumption).

We represent this emergency call center by the (EMS-A) Petri net. Inbound calls arrive via the

uppermost transition z0. We may assume in what follows that z0(t) = λt (arrivals at constant rate λ).

The pool of MRAs is represented by the place with initial marking NA. Transition z1 is fired as soon

as an MRA is available and a call is waiting for pick-up. Preliminary examination and information

filling occur in place with holding time τ1, ruled by preselection routing: a known fraction π of the

patients are deemed to need the help of the emergency physician; for the complementary fraction

1 − π of the patients, the MRA is released at the firing of z2. Transition z3 is fired once a doctor

is available from the pool of emergency physicians with initial marking NP and an MRA waits for

transfer. Summarizing the case takes a time τ2 for both agents, then the firing of z4 releases the MRA

and the physician proceeds to the medical consultation with the patient for a time τ3 before getting

released by the firing of z5. We use the color blue (resp. red) to highlight the circuits involving the
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NA

τ2

τ1

τ3

1−π π

NP

z0 = λt

z1

z2 z3

z4

z5

Figure 4: A basic model of emergency call center (EMS-A)

MRA (resp. the emergency doctor). For the sake of readability, patient exits at transitions z2 and z5
are not depicted.

Applying the equations of the continuous relaxation of a timed Petri net recorded in Table 2, we

obtain the following system of equations for the counter functions associated with transitions, where

x ∧ y stands for min(x, y).





z1(t) = z0(t) ∧
(
NA + z2(t) + z4(t)

)

z2(t) = (1− π)z1(t− τ1)

z3(t) = πz1(t− τ1) ∧
(
NP + z5(t)

)

z4(t) = z3(t− τ2)

z5(t) = z4(t− τ3)

(EMS-A)

As we shall see in Section 6, a slowdown arising either in the MRAs circuit or in the physicians

circuit causes a slowdown of the whole system, owing to the synchronization step at transition z3.

To address this issue and still maintain the presence of an interlocutor with the patient and the brief

oral summary told to physician, emergency doctors from the SAMU proposed to consider another

model. One may create a new type of MRA, the reservoir assistant, who after a brief discussion with

the MRA having answered the call, places the patient in a monitored reservoir. The answering MRA

is released to pick-up other inbound calls. When an emergency physician becomes available, the

reservoir assistant passes on the short briefing to the doctor and transfers the patient. While the queue

of patients in the reservoir is non-empty, the reservoir assistant checks on the patients in the reservoir,

and can call patients back in case they hung up. This replaces the synchronizations between physicians

and answering MRAs, enabling the latter to pick-up new calls more quickly. Another advantage of the

reservoir mechanism is that if a single reservoir assistant is sufficient to handle all the calls, this agent

can have a consolidated vision of all the patients waiting for emergency physicians and revise in real

time their priority level if more severe cases arrive, whereas the emergency physician may previously

have had to ask each of the waiting MRAs.
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NA
NR

NP

τ2

τ2 τ2τ1

τ3 τ3

1−π π

α 1−α

z0 = λt

z1

z2 z3

z4

z5

z6

z7

z′5

z′6

z′7

Figure 5: Medical emergency call center with a monitored reservoir (EMS-B)

The model (EMS-B), whose dynamics shall be introduced and studied in Section 7.2, implements

these modifications; see Figure 5. The reservoir assistant pool is a new place with initial marking

NR (not necessarily equal to 1). Reservoir assistants receive patients from the answering MRAs at

transition z3 and pass them to physicians at transitions z5 and z′5, depending on the severity of the

case. We denote by α the proportion of very urgent calls among patients who need to talk to an

emergency physician. In case of conflict, reservoir assistants must first pass the calls already in the

reservoir before placing other calls in, and should first handle very urgent calls. Release of the reservoir

assistants happen at transitions z4, z6 and z′6. Consultations with a physician take a time τ3 after which

transitions z7 and z′7 can be fired. The circuits involving the reservoir assistant are depicted with color

orange. It can be verified that the places standing for the pool of reservoir assistants and physicians

have compatible priority rules.

4. Basic definitions and tools for SMDPs

Although Markov Decision Processes are classical in control theory and stochastic processes, the semi-

Markov case is more delicate: we recall in this section several results concerning Markov chains and

semi-Markov decision processes needed in Section 6. The reader already familiar with this framework

may skip this part.

Recall that Markov Decision Processes (MDPs) form a class of one-player games, in which one

evolves through states by choosing actions at discrete time instants, which determine some costs.

Semi-Markov Decision Processes (SMDPs, or Markov renewal programs) allow the time to take real

values, while the state space remains discrete: between two successive moves, a holding time attached

to states and actions must elapse. We refer for instance to [11, 12] for in-depth background.

The finite set of states is denoted by S, and for all i ∈ S the finite set of playable actions from

state i is denoted by Ai. We denote A :=
⋃

i∈S Ai. As a result of playing action a from state i, the

player incurs a cost rai , is held in the state i for a non-negative time tai , and finally goes to state j ∈ S
with probability P a

ij (it is assumed that
∑

j∈S P a
ij = 1 for all i ∈ S and a ∈ Ai). Moreover, future

costs are multiplied by a discount factor γai > 0. A common choice is γai = e−αtai (with α > 0) to

reflect time preference, though we shall also allow to take γai > 1.
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4.1. Definition of the value function

A history of length n of the process is a sequence hn = i0, a0, i1, a1, . . . in, where for all 0 6 k 6 n,

ak ∈ Aik . We denote by H the set of all histories of finite lengths. A strategy f is a map from

H to
⋃

i∈S ∆(Ai) (where ∆(X) denotes the set of probability measures over the set X) such that

f(hn) ∈ ∆(Ain). A strategy f is called Markovian if f(hn) depends only on the current state in,

deterministic if f(hn) is a Dirac measure on Ain , and stationary if it does not depend on the epoch n.

A strategy f and an initial state i ∈ S define a probability measure P
f
i on H . If h ∈ H is a history of

length n and k 6 n (k ∈ N), we denote by r̂k (resp. t̂k and γ̂k) the random variable from H to R such

that r̂k(h) = rakik (resp. t̂k(h) = takik and γ̂k(h) = γakik ).

A policy σ is a map from S to A such that σ(i) ∈ Ai for every state i ∈ S (some authors refer

to this object as a decision rule). A deterministic Markovian strategy can be identified to a sequence

of policies, and to a single policy if it is also stationary. If σ is a policy, P σ denotes the |S| × |S|

matrix with entries (P
σ(i)
ij )i,j∈S , while rσ (resp. tσ and γσ) is the vector with entries (r

σ(i)
i )i∈S (resp.

(t
σ(i)
i )i∈S and (γ

σ(i)
i )i∈S ).

The value function v : S × R → R of the game in finite horizon is defined as follows, so that for

i ∈ S and t > 0, v(i, t) denotes the minimum (over all strategies) expected cost incurred by the player

up to time t by starting in state i (by convention, v(·, t) = 0 for t < 0):

v(i, t) := inf
f

E
f
i

N̂t∑

k=0

( k−1∏

ℓ=0

γ̂ℓ

)
r̂k (1)

where E
f
i denotes the expectation operator relatively to P

f
i , and N̂t is the random variable from H to

N such that N̂t(h) = sup {n ∈ N |
∑n

k=0 t̂k(h) 6 t}.

Allowing moves with zero duration generally makes the expectation in (1) ill-defined. Hence, a

restriction is in order. We associate with the SMDP a directed graph keeping track of these moves: this

graph has node set S, with an arc from i to j whenever there is an action a ∈ Ai such that P a
ij > 0 and

tai = 0. We shall say that the SMDP is non-Zeno if this graph is acyclic. Then, the random variable

N̂t in (1) is bounded by the ratio |S|t/t∗ where t∗ = min{tai | i ∈ S, a ∈ Ai, t
a
i > 0}, which entails

that the expectation in (1) is well defined for any choice of discount factors γai .

The following theorem expresses that the value function follows a Bellman-type optimality equa-

tion, see for instance [12, §2, p. 800] where the undiscounted case is addressed:

Theorem 4.1. The value function satisfies the following dynamic programming equation :

v(i, t) = inf
a∈Ai

{
rai + γai

∑

j∈S

P a
ij v(j, t − tai )

}
. (2)

In the case where the game is played over an infinite horizon and the discount factors are strictly

less than 1 (yielding a short-sighted cost criterion), the limit limt→∞ v(i, t) exists and occurs to be the

natural criterion to minimize. However, in an undiscounted framework (γai ≡ 1) where the previous
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limit does not exist, the player will rather seek to minimize its average cost, i.e. its ultimate mean loss

per unit of time.

The average cost criterion g∗ is then defined as:

g∗(i) := inf
f

gf (i) where gf (i) := lim inf
t→∞

1

t
E
f
i

N̂t∑

k=0

r̂k (3)

Note that other types of average costs criteria that differ from g∗ in the semi-Markov case may

also be defined, see for instance [13].

4.2. Subchains analysis and results on the ergodic problem

The average cost also satisfies recursive optimality equations that we recall in this subsection, and

in addition is closely related to the subchain structure of the process. To that purpose, we recall the

following definitions and results.

Definition 4.2. (Spectral projector)

Let σ be a deterministic policy and P σ its associated probability matrix. The spectral projector P σ,⋆

is defined by:

P σ,⋆ := lim
n→∞

1

n+ 1

n∑

j=0

(P σ)j

This Cesàro limit does exist because 1 is the dominant eigenvalue of P σ and it is semisimple. Recall

that a class is a strongly connected component in the digraph of P σ, and that this class is final if its

elements do not have access to any element of another class. Denoting by F1, . . . , Fm(σ) the final

classes, whose collection is denoted F(σ), and by Q the transient states under the policy σ, the state

space admits a partition S = F1 ∪ F2 ∪ · · · ∪ Fm(σ) ∪Q, and up to relabeling the states, we can write

P σ =




Q0 Q1 Q2 · · · Qm

0 P1 0 · · · 0

0 0 P2 · · · 0...
...

...
. . . 0

0 0 0 · · · Pm




, and therefore P σ,⋆ =




0 Q⋆
1 Q⋆

2 · · · Q⋆
m

0 P ⋆
1 0 · · · 0

0 0 P ⋆
2 · · · 0...

...
...

. . . 0

0 0 0 · · · P ⋆
m




,

where (Pk)16k6m(σ), dependent on σ, is the collection of stochastic matrices obtained by considering

irreducible subchains of P σ. We will consider invariant measures of P σ. The latter are represented

by nonnegative (row) vectors µ, of sum one, such that µP σ = µ. The set of invariant measures is

a convex polytope whose extreme points are the invariant measures supported by final classes [14,

Chap. 8, Th. 3.23]. We denote by µσ
F the unique invariant measure supported by class F ∈ F(σ).

Observe that for all k ∈ {1, . . . ,m(σ)}, P ⋆
k has identical rows, that coincide with the restriction of

µσ
Fk

to Fk. The entries of µσ
F represent the long-run fraction of time passed in the different states,

assuming the initial state is in F . It is also known that φσ
F,i :=

∑
j∈F P σ,⋆

ij gives the probability that

the Markov chain obtained by applying policy σ starting from state i ultimately reaches class F .
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Theorem 4.3. (Average cost optimality equations [15])

Suppose that for all deterministic policies σ and for any final class F in F(σ), we have
∑

i∈F t
σ(i)
i > 0

(i.e. no subchain can be travelled through in zero time). Then:

(i) the minimal average cost g∗ is achieved by stationary policies and satisfies

g∗(i) = min
σ

∑

F∈F(σ)

φσ
F,i

〈µσ
F , r

σ〉

〈µσ
F , t

σ〉
,

where the minimum is taken over all the policies,

(ii) the minimal average cost g∗ is the unique vector g ∈ R
S such that there exists a vector h ∈ R

S

verifying for all i ∈ S:

g(i) = min
a∈Ai

{∑

j∈S

P a
ij g(j)

}
(OE1)

h(i) = min
a∈A∗

i

{
rai − tai g(i) +

∑

j∈S

P a
ij h(j)

}
(OE2)

where A∗
i is the subset of Ai where the minimum is achieved in (OE1).

Remark 4.4. We may also write (OE1) and (OE2) in a more compact way using the lexicographic-

order on real tuples (we say that (g, h) 6 (g′, h′) iff g 6 g′ or g = g′ and h 6 h′). Denoting by

diag(v) the n× n diagonal matrix with coefficients v1, . . . , vn for v ∈ R
n, we have entrywise:

(g, h) = min
σ

LEX
{(

P σ g, rσ + P σh− diag(tσ)P σg
)}

. (OE)

Remark 4.5. A common special case of the SMDP problem assumes that γai 6 1 for all i ∈ S and

a ∈ Ai. Then, the non-Zeno assumption that we made is too strong: for the value in (1) to be well-

defined, it suffices to assume that for all policies σ, there is at least one state with positive holding time

in every final class of F(σ) just like in Theorem 4.3 (see also [16]).

5. Tools from nonexpansive mappings

The dynamics of timed Petri nets without priority rules have good features, which are best understood

as special cases of abstract properties of nonexpansive or order-preserving mappings, which we recall,

or establish in this section.

We say that a self-map F of a normed space (X, ‖ · ‖) is nonexpansive if

∀x, y ∈ X, ‖F (x)− F (y)‖ 6 ‖x− y‖ .

If F is a self-map of an ordered space (X,6), we say that F is order-preserving if

∀x, y ∈ X, x 6 y =⇒ F (x) 6 F (y) .
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Suppose now that K is a compact set and denote X = C (K) the set of continuous and real-

valued functions on K . Given a positive function e ∈ C (K), we denote by ‖ · ‖e the weighted

sup-norm ‖x‖e := maxv∈K |x(v)/e(v)|. We also define the weighted Hilbert’s seminorm ‖x‖e,H =
maxv∈K x(v)/e(v)−minv∈K x(v)/e(v). We say that F : C (K) → C (K) is additively homogeneous

with respect to the function e if

∀x ∈ C (K), ∀α ∈ R, F (x+ αe) = F (x) + αe ,

i.e. if it commutes with the addition of scalar multiples of e. We equip C (K) with the standard partial

order. We shall consider in particular the situation in which K is the finite set {1, . . . , n} equipped

with the discrete topology. Then, the elements of C (K) will be identified to vectors of Rn.

The following observation, made by Crandall and Tartar, will play a key role in what follows.

Proposition 5.1. (Crandall and Tartar, [17])

Suppose F : C (K) → C (K) is additively homogeneous with respect to a positive function e of

C (K). Then, the following assertions are equivalent:

(i) F is order-preserving;

(ii) F is nonexpansive in the weighted sup-norm ‖ · ‖e.

It is also known that when these assertions hold, F is nonexpansive in the weighted Hilbert’s semi-

norm, see e.g. [18].

When F : (X, ‖ · ‖) → (X, ‖ · ‖) is nonexpansive, we define the escape rate vector

χ(F ) := lim
k→∞

F k(x)/k

where x ∈ X is chosen in an arbitrary way. Indeed, by nonexpansiveness, the existence and the value

of χ(F ) are independent on the choice of x.

The following theorem of Kohlberg identifies a situation in which the escape rate does exist:

Theorem 5.2. (Kohlberg, [19])

Suppose F : R
n → R

n is piecewise affine and nonnexpansive (in any norm). Then, there exists

vectors u, ρ ∈ R
n such that

F (u+ sρ) = u+ (s+ 1)ρ ∀s > 0 .

When F satisfies the assumptions of this theorem, it follows readily that

χ(F ) = lim
k→∞

F k(u)/k = lim
k→∞

(u+ kρ)/k = ρ .

We shall refer to the map s 7→ u+ sρ (or to the pair (u, ρ)) as an invariant half-line.

We shall see in Proposition 6.6 that for a prototypical class of timed Petri net without priorities,

the counter function z(t) is governed by a dynamics of the form z(t) = F (z(t − 1)), where F is

order-preserving and non-expansive in a weighted sup-norm. Then, the escape rate vector coincides
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with the throughput vector limt→∞ z(t)/t, which yields the average number of firings, per time unit,

of the different transitions. Hence, Theorem 5.2 will entail that the throughput vector does exist.

We are now interested in finer results, concerning the deviation F k(x) − kχ(F ) as k → ∞, and

in particular, its convergence to a periodic regime. First, the next theorem addresses the case in which

χ(F ) = 0. We denote by Sym(n) the symmetric group (set of permutations) on n letters.

Theorem 5.3. (see [20, 21], [22] and [23])

Suppose that F : Rn → R
n is nonexpansive in a polyhedral norm and that the orbits {F k(x) , k ∈ Z}

of F are bounded for all x ∈ R
n. Then, for every x ∈ R

n, there exists an integer c bounded only as a

function of the norm such that F kc(x) converges as k → ∞. Moreover, if F is order-preserving and

weighted-sup-norm nonexpansive, then c 6
(

n
⌊n/2⌋

)
. If in addition F is concave, then c is the order of

an element of Sym(n).

The first part of the theorem was proved in [20] and in several other works, see the discussion

in [21]. The bound of c in the order-preserving and sup-norm nonexpansive case is established in [22].

The bound in the concave case is established in [23].

The following result deals with a special case of dynamics with orbits that are bounded in Hilbert’s

seminorm. This entails in particular that χ(F ) is a scalar multiple of e. This typically occurs in the

theory of unichain Markov decision processes (i.e. every policy admits a single recurrent class).

Theorem 5.4. Suppose that F : Rn → R
n is order-preserving and additively homogeneous. Suppose

in addition that the sequence of Hilbert’s seminorms (‖F k(x)‖e,H)k∈N is bounded. Then, for all

x ∈ R
n, there exists an integer c such that for all 0 6 r 6 c− 1, F kc+r(x)−χ(F )(kc+ r) converges

as k → ∞. Moreover, c can be bounded as in Theorem 5.3.

Proof:

It follows from [24] that F has an additive eigenvector, meaning that there exists u ∈ R
n and λ ∈ R

such that F (u) = u + λe. Then, the map G := F − λe has a fixed point, and it is still order-

preserving and sup-norm nonexpansive. It follows from Theorem 5.3 that for every x ∈ R
n, there

exists an integer c such that Gkc(x) converges as k → ∞. Since G is continuous, Gkc+r(x) =
F kc+r(x)− (kc+ r)λe = F kc+r(x)− (kc+ r)ρ also converges as k → ∞. The bounds on c follow

from the one of Theorem 5.3. ⊓⊔

The next theorem is stated in [25] for operators of multichain Markov decision processes. We

provide a more abstract (equivalent) statement.

Theorem 5.5. (Schweitzer and Federgruen, [25])

Suppose that F is concave, order-preserving, additively homogeneous, and piecewise linear. Then,

for all x ∈ R
n, there exists an integer c that is the order of an element of Sym(n), such that for all

0 6 r 6 c− 1, the sequence F kc+r(x)− (kc + r)χ(F ) converges as k → ∞.

By comparison with Theorem 5.4, the map F is required in addition to be concave and polyhedral.

The concavity assumption leads to a refined explicit formula on the period c (given by a combinato-

rial invariant of a certain critical graph depending only on optimal stationary randomized policies,

see [23]). The polyhedrality assumption allows one to avoid the restriction to maps whose orbits are

bounded in Hilbert’s seminorm.
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6. Correspondence between fluid Petri nets and Semi-Markov Decision

Processes

In this section, we establish formal correspondences between Petri net dynamics and Bellman equa-

tions’ of SMDPs, and derive or refine several results on the asymptotic throughputs of Petri nets

transitions.

6.1. The correspondence theorems

Correspondence Theorem 6.1. Consider a timed Petri net with no priority rules. Then, its dynamics

is equivalent to the dynamic programming equation of a semi-Markov decision process with controlled

discount factors.

Proof:

We extend the definition of proportions πqp by letting πqp = 1 if q ∈ Qsync and p ∈ qin. Similarly, we

set the weights αqp (resp. αpq) to 0 if p /∈ qin (resp. q /∈ pin). For all q, q′ ∈ Q and p ∈ P, we set

cpq :=

{
πqpα

−1
qp mp if p ∈ qin

0 otherwise,
and β̃p

qq′ :=

{
πqpα

−1
qp αpq′ if p ∈ qin

0 otherwise.

By definition, for q ∈ Q and p ∈ qin, the nonnegative numbers (β̃p
qq′)q′∈Q are not all zero. We

let κpq :=
∑

q′∈Q β̃p
qq′ and βp

qq′ = β̃p
qq′/κ

p
q so that (βp

qq′)q′∈Q is a probability vector. The dynamics

summarized in Table 2 can then be written as

∀q ∈ Q zq(t) = min
p∈qin

{
cpq + κpq

∑

q′∈Q

βp
qq′zq′(t− τp)

}
(4)

where we recognize the finite-horizon Bellman’s equation of a discounted semi-Markovian decision

process expressed in equation (2). ⊓⊔

As we announced in Table 1, the states of the SMDP built in the proof correspond to the transitions

of the Petri net, and in each state q ∈ Q of the SMDP, the admissible actions are the upstream places

p ∈ qin. After playing action p from state q, the player incurs a cost cpq = πqpα
−1
qp mp and a discount

factor κpq =
∑

q′∈pin πqpα
−1
qp αpq′ . Then, the player is held for time τp, before moving to one of the

states q′ ∈ pin with probability βp
qq′ = πqpα

−1
qp αpq′/κ

p
q . In other words, the physical time of timed

Petri nets is the backward time (time remaining to live) in semi-Markov decision processes. The other

correspondences between these two families of model stated in Table 1 shall be interpreted after our

second Correspondence Theorem 6.3.

Our analysis of the long-run behavior of the transitions of Petri nets relies on the existence of a

stoichiometric invariant:
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Definition 6.2. We say a vector (eq)q∈Q is a stoichiometric invariant of the Petri net whose dynamics

is given by (4) if

∀q ∈ Q, ∀p ∈ qin, eq = κpq
∑

q′∈Q

βp
qq′ eq′

(
= πqpα

−1
qp

∑

q′∈pin

αpq′eq′

)
. (5)

Notice that this definition refines the notion of T-invariants: recall that a T-invariant is a vector

y ∈ R
Q such that for all p ∈ P we have

∑
q∈pout αqpyq =

∑
q′∈pin αpq′yq′ . Stoichiometric invariants

are T-invariants and the two definitions coincide if for all p ∈ qin, pout = {q} (q is the only downstream

transition of its upstream places), however if q is placed downstream to a place p ruled by preselection

routing, stoichiometric invariants express that not only the fluid flows of this place are balanced but

also that the desired quantities of fluid (a proportion πqp of the total) goes through q. As an illustration,

it can be checked that (1, 1, 1 − π, π, π, π) is a stoichiometric invariant of our model (EMS-A), with

transitions indices in {0, . . . , 5}.

Correspondence Theorem 6.3. Suppose there are no priority rules and that the Petri net admits a

positive stoichiometric invariant e. Then, the dynamics of the timed Petri net is equivalent to the

dynamic programming equation of an undiscounted semi-Markov decision process.

Proof:

It suffices to observe that the transformed counters z̃q = zq/eq follow an equation of type (2), with

P p
qq′ := e−1

q κpqβ
p
qq′eq′ and γpq = 1, thanks to (5). ⊓⊔

NA

τ2

τ1 τ1

τ3

1−π π

NP

z0 = λt

z1

z2 z3

z4

z5

0

1

2 3

4

5

(λ, 1)

(0, 0)

(NA, 0)

(0, τ1) (0, τ1)

(NP /π, 0)

(0, τ2)

(0, τ3)

π

1−π

Figure 6: The (conflict-free) Petri net (EMS-A) (left) and the corresponding undiscounted SMDP (right).

We illustrate on Figure 6 the construction of the undiscounted SMDP corresponding to the Petri

net (EMS-A). Actions (depicted by squares) are labeled by pairs consisting of the associated cost

and holding time, and probabilities are given along the arcs from actions to states (when non equal

to 1). As we discussed after the proof of Correspondence Theorem 6.1, places and transitions of the

Petri net are respectively mapped to the actions and states of the SMDP. The orientation of the arcs
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are therefore flipped (observe indeed how the expression p ∈ qin corresponds to a ∈ Ai), and the

time goes backward. For every state q ∈ Q, the holding time of the action p ∈ qin is τp. Moreover,

since all the arc weights in (EMS-A) are 0 or 1, the cost cqp reduces to mp/eq, which corresponds to a

renormalization of the initial marking of the place p by the stoichiometric coefficient of the transition q.

Notice that the obtained SMDP also corresponds to the conflict-free version of the initial Petri

net, which means that places ruled by preselection p ∈ Ppsel have been duplicated into |pout| new

places (pq)q∈pout having only one downstream transition with weight αqpq = αqp, and the probabil-

ities (πqp)q∈pout are shifted upwards, i.e. the previous upstream arcs of p with weights (αpq)q∈pin are

replaced by |pout| more arcs with weights (αpqπq′p)q∈pin,q′∈pout . This transformation has been used by

Gaujal and Giua in their work [6], where they point out that it does not alter the stationary behavior

since it leaves the dynamics equations unchanged.

6.2. The evolution semigroup of the time-delay system

In order to prevent an infinite number of firings from occurring in a finite amount of time, we shall

work with Petri nets whose underlying directed graph does not contain any circuit in which places

have zero holding times. Such Petri nets are said to be non-Zeno.

We first show that when the Petri net is priority-free and non-Zeno, the counter variables are

determined uniquely by the dynamics of Table 2, given an initial condition.

Lemma 6.4. Suppose that a Petri net is priority-free and non-Zeno, and let T denote the maximum

of the holding times of its different places. Then, the transition counter function z : [−T,∞) → R
Q,

which follows the dynamics of Table 2, is uniquely determined by its restriction to the interval [−T, 0].

Proof:

The counter functions satisfy a system of equations which is of the general form

zq(t) = Fq((zq′(t− s))(q′,s)∈Uq
) (6)

where Uq is a finite subset of Q× [0, T ]. Moreover, the pairs (q′, s) ∈ Uq are such that there is directed

path from q′ to q (here of length 2, since q′ ∈ pin for some p ∈ qin).

We first show that we can reduce to a dynamics of the form (6) in which all the delays s arising in

the right-hand side are positive, by considering the following substitution procedure. If one variable

zq′(t− s) with s = 0 arises at the right-hand side of (6), we may replace this ocurrence of zq′(t) using

the relation zq′(t) = Fq′((zq′′(t − s))(q′′,s)∈Uq′
. We arrive at another expression of zq(t), still of the

form (6) with a modified set Uq, where this time, for all (q′, s) ∈ Uq, q′ is connected to q by a directed

path of increased length and s is the sum of the holding times of the places in this path. For Q is finite,

only a finite sequence of such substitutions can be performed, otherwise we would have some q ∈ Q
such that zq(t) is substituted twice, providing a circuit of the net with only places with zero holding

time, contradicting the non-Zeno assumption. Finally, defining τ∗ := inf{τp : τp > 0 , p ∈ P},

Lemma 6.4 is proved for all t ∈ [−T, nτ∗) by induction on n > 0. ⊓⊔

In the rest of the section, the following assumption is made:
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Assumption 6.5. The Petri net is non-Zeno, has no priority rules and admits a positive stoichiometric

invariant e.

The following immediate proposition derived from Lemma 6.4 shows the nature of Petri net dy-

namics in a remarkable special case.

Proposition 6.6. Suppose Assumption 6.5 is satisfied and that the holding times are all equal to 1.

Then, the dynamics of the Petri net, (4), can be rewritten as

z(t) = F (z(t− 1)) ,

where F : RQ → R
Q is monotone, concave, and piecewise affine. Moreover, F is additively homo-

geneous with respect to e.

Under the conditions of Proposition 6.6, it follows from Proposition 5.1 that F is nonexpansive

with respect to the weighted sup-norm ‖x‖e := maxq∈Q |xq/eq|.
The next result deals with the extension to the case where holding times are integer.

Corollary 6.7. Suppose Assumption 6.5 is satisfied and that the holding times are integer. Let T be

the maximal holding time. Then, there exists a concave and order-preserving piecewise affine self-map

F of RQ×{1,...,T} , such that the vector z̃(t) = (z(t), . . . , z(t− T + 1)) satisfies z̃(t) = F (z̃(t− 1)).
In addition, F is additively homogeneous with respect to the vector (eq)q∈Q,t∈{1,...,T}.

Proof:

We apply the substitution procedure already used in the proof of Lemma 6.4. This procedure al-

lows us to replace the dynamics (4) by a dynamics of the same form in which only the entries of

z(t− 1), . . . , z(t− T ) occur at the right-hand side. Moreover, the class of concave, order-preserving

piecewise-affine maps is preserved under substitutions of this nature. The additive homogeneity prop-

erty is immediate. ⊓⊔

In contrast, when the holding times take irrational values, the Petri net equations (4) yield a time

delay system with a state space of infinite dimension. To extend the previous approach, we need to

represent the evolution of this time-delay system by a semi-group. We denote by Z = C ([−T, 0]) the

space of continuous functions over [−T, 0]. The next proposition, which follows from Lemma 6.4,

ensures that it is well-posed to represent the evolution of counter functions by a one-parameter semi-

group (St)t>0 acting on ZQ, i.e., by a family of self-maps of ZQ satisfying St1+t2 = St1 ◦ St2 .

Proposition 6.8. Suppose that a Petri net is priority-free and non-Zeno. The family of operators St,

acting on ZQ, which associate with the function z0 : s 7→ (z0q (s))q∈Q defined for s ∈ [−T, 0],
the function s 7→ (zq(s + t))q∈Q where z is the solution of the dynamics determined by the initial

condition z0, constitutes a one-parameter semigroup.

When in addition the Petri net admits a stoichiometric invariant e, we equip the infinite dimen-

sional space ZQ with the weighted sup-norm:

‖ϕ‖e = max
q∈Q

sup
s∈[−T,0]

∣∣∣∣
ϕq(s)

eq

∣∣∣∣ .
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This is consistent with the definition of the weighted sup-norm introduced in Section 5, identifying

ZQ with C ([−T, 0] × Q), and denoting by the same symbol e a vector in R
|Q| and the function

(s, q) 7→ eq in C ([−T, 0] × Q). The next result shows that our evolution semigroup, which is time-

invariant, satifies additional good properties introduced in Section 5.

Proposition 6.9. Under Assumption 6.5, for all t > 0, the operator St : ZQ → ZQ is order-

preserving, additively homogeneous with respect to the function e, and nonexpansive with respect to

the weighted sup-norm ‖ · ‖e on ZQ ≃ C ([−T, 0]×Q).

Proof:

The order-preserving and additive homogeneity of St follow from the fact that a trajectory z is

uniquely determined by its values on [−T, 0] (see Lemma 6.4), and from the order-preserving and

homogeneity properties of the equation defining the dynamics. The nonexpansive property follows

from Proposition 5.1. ⊓⊔

6.3. Existence and universality of the throughput

We are interested in the long-run time behavior of Petri nets. For this purpose, we introduce a notion

of affine stationary regime.

Definition 6.10. We say that a trajectory z (counter functions of the transitions) of the Petri net is an

affine stationary regime if there exists two vectors ρ ∈ (R>0)
Q and u ∈ R

Q such that for all t > −T ,

z(t) = ρt+ u.

The next proposition shows that, up to a shift in time, affine stationary regimes are characterized

by a lexicographic system.

Proposition 6.11. Suppose the Petri net has no priority rule. Given ρ ∈ (R>0)
Q and u ∈ R

Q, there

exists a nonnegative number t0 such that z(t) := ρ(t+ t0) + u is a stationary regime if and only if

ρq = min
p∈qin

{
κpq

∑

q′∈Q

βp
qq′ ρq′

}
(L1)

uq = min
p∈qin

∗

{
cpq − ρqτp + κpq

∑

q′∈Q

βp
qq′uq′

}
(L2)

where qin
∗ is the subset of qin where the minimum is achieved in (L1).

Proof:

Equations (L1)-(L2) are obtained by substituting z(t) = ρ(t+ t0) + u in (4), letting t tend to infinity

and identifying slope and intercept for both sides, since z is ultimately affine.

Conversely, suppose that (L1)-(L2) hold, and consider z(t) := ρ(t + t0) + u. We need to show

that for t > 0, z satisfies the equation (4), that we may also rewrite under the form:

0 = min
p∈qin

{(
cpq + κpq

∑

q′∈Q

βp
qq′(uq′ − ρq′τp)− uq

)
+ (t+ t0)

(
κpq

∑

q′∈Q

βp
qq′ρq′ − ρq

)}
(7)
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If p ∈ qin
∗ achieves the minimum in (L2), so that it also achieves the minimum in (L1), then, the two

terms in (7) vanish. Suppose now that p achieves the minimum in (L1) but that it does not achieve the

minimum in (L2). Then, the coefficient of (t+ t0) in (7) still vanishes, and, by (L2),

cpq + κpq
∑

q′∈Q

βp
qq′(uq′ − ρq′τp)− uq > 0 .

Suppose finally that p ∈ qin does not achieve the minimum in (L1), which entails that the gap ε :=
κpq

∑
q′∈Q βp

qq′ ρq′ − ρq takes a strictly positive value. Then, since t > 0, the expression in (7) can be

bounded below by C+ t0ε for some real constant C , and so, for t0 large enough, this expression takes

a nonnegative value, which entails that (7) holds. ⊓⊔

Observe how the equations (L1)-(L2) derived for Petri nets asymptotic regimes are syntaxically the

same than equations (OE1)-(OE2) of Theorem 4.3. When a stoichiometric invariant e exists, this can

be seen as an immediate consequence of Correspondence Theorem 6.3. Indeed, the throughput ρq of

transition q ∈ Q is given by limt→∞ zq(t)/t. Since, zq(t)/eq corresponds to the value function of an

undiscounted SMDP, the term ρq/eq is naturally interpreted as the optimal average cost of this SMDP

starting from the state associated with q (actually up to an inversion of limits in (3) that Theorem 6.12

thereafter proves licit).

Exploiting Correspondence Theorem 6.3 further, we arrive at our first main result, that provides

existence of stationary regimes and uniqueness of the throughput.

Theorem 6.12. Under Assumption 6.5,

(i) there exists an affine stationary regime, i.e. (ρ, u) ∈ (R>0)
Q × R

Q such that, initializing the

dynamics with z(t) = ρt+ u for t ∈ [−T, 0], we end up with z(t) = ρt+ u for all t > 0.

(ii) the vector ρ in (i) is universal, i.e., for any initial condition, the solution z(t) of the dynamics

satisfies

z(t) =
t→∞

ρt+O(1) .

Proof:

We begin by proving part (i). When the holding times of all places are unitary, the dynamics write

z(t) = F (z(t − 1)) where F is piecewise affine and non-expansive in weighted sup-norm associated

with e from Propositions 5.1 and 6.6. Then, an affine stationary regime can be identified to an invariant

half-line of F , whose existence follows from Kohlberg’s Theorem 5.2. When the holding times are

integer, and more generally, rational, we easily reduce to the unit delay case, exploiting Corollary 6.7.

However, when the holding times take irrational values, we cannot reduce to such a finite dimensional

setting. From Proposition 6.11, the existence of an affine stationary regime amounts to the existence of

a solution to the lexicographic system (L1)-(L2), which from Correspondence Theorem 6.3 is equiv-

alent to the system (OE1)-(OE2) of Theorem 4.3 on the average-cost of an undiscounted SMDP, as

we explained above, and whose hypothesis is satisfied from our non-Zeno assumption. Denardo and

Fox provided in [16] a constructive proof of the existence of the solution to this problem: a solu-

tion is obtained by applying a version of Howard’s policy iteration algorithm adapted to multichain

semi-Markov problems. The termination and correctness proofs in [16] entail the existence result.
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We now prove Assertion (ii): let (ρ, u) be the stationary regime of assertion (i) and z̄ ∈ ZQ the

function such that for all t ∈ [−T, 0], z̄(t) = ρt+ u. Consider another initial condition z̄′ ∈ ZQ, and

let z′ denote the trajectory defined by this initial condition, so that z′(t) = [Stz̄
′](0). We know by

Proposition 6.9 that ‖Stz̄
′ − Stz̄‖e 6 ‖z̄′ − z̄‖e. In particular, |z′q(t) − ρqt − uq|/eq 6 ‖z̄′ − z̄‖e,

which proves the theorem. ⊓⊔

Now that we proved the existence of the throughput, we exploit the correspondences further to

state three corollaries. First, Correspondence Theorem 6.3 prompts us to introduce policies on Petri

nets: a map σ : Q → P is a policy if for all q ∈ Q, σ(q) ∈ qin. Given a policy σ and a stoichiometric

invariant e, the |Q| × |Q| matrix P σ with entries (e−1
q κ

σ(q)
q β

σ(q)
qq′ eq′)q,q′∈Q is a probability matrix

whose final classes are denoted by F(σ). We denote by µσ
F the unique invariant measure supported

by the class F ∈ F , and by φσ
F,q the probability of reaching F by applying policy σ starting from state

q. The vectors mσ (resp. τσ) stand for (mσ(q))q∈Q and (τσ(q))q∈Q and we finally define the diagonal

matrix Dσ := diag((e−1
q α−1

qσ(q)πqσ(q))q∈Q). We then have the following result:

Corollary 6.13. (Throughput complex)

Under Assumption 6.5, the throughput vector ρ is given by

∀q ∈ Q, ρq = eq min
σ

∑

F∈F(σ)

φσ
F,q

〈µσ
F ,D

σmσ〉

〈µσ
F , τ

σ〉
, (8)

where the minimum is taken over all the policies.

Proof:

This is a consequence of Theorem 4.3 on undiscounted SMDPs. ⊓⊔

This formula shows that the throughput ρq of the transition q is a concave piecewise affine function

of the initial marking vector m ∈ (R>0)
P . As is customary in tropical geometry, we associate with

this map a polyhedral complex (recall that a collection L of polyhedra is a polyhedral complex if for

all L ∈ L, any face F of L is also in L and for L1, L2 ∈ L, the polyhedron L1 ∩ L2 is a face of

both L1 and L2, see [26]). If Σ is a set of policies, we define the polyhedral cell CΣ to be the set of

initial markings m such that the argument of the minimum in (8) is Σ (note that the cell CΣ may be

empty for some choices of Σ). The space (R>0)
P is covered by the cells CΣ of maximal dimension,

the latter can be interpreted as congestion phases, or equivalently to a choice of bottleneck places for

each q ∈ Q such that |qin| > 1.

We now consider the computational complexity problem of computing the throughput vector ρ.

Corollary 6.14. (LP characterization of the throughput)

Under Assumption 6.5, the throughput vector ρ can be computed in polynomial time by solving the

following linear program:

max
∑

q∈Q

ρq s.t.





ρq 6 κpq
∑

q′∈Q

βp
qq′ρq′ , ∀q ∈ Q,∀p ∈ qin

uq 6 cpq − ρqτp + κpq
∑

q′∈Q

βp
qq′uq′ , ∀q ∈ Q,∀p ∈ qin
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in which ρ, u ∈ R
Q are the variables. More precisely, if (ρ, u) is any optimal solution of this program,

then ρ coincides with the throughput vector.

Proof:

This is an application of a theorem of Denardo and Fox [16, Th. 2] on the undiscounted SMDP with

value function z̃ = (zq/eq)q∈Q. They indeed prove that for any positive vector ν ∈ R
Q, the throughput

vector ρ̃ is solution of the LP whose criterion is
∑

q∈Q νkρ̃q and whose feasibility set is defined by

inequalities ρ̃q 6
∑

q′∈Q e−1
q κpqβ

p
qq′eq′ ρ̃q′ and ũq 6 e−1

q cpq − ρ̃qτp +
∑

q′∈Q e−1
q κpqβ

p
qq′eq′ ũq′ for all

q ∈ Q and p ∈ qin. Choosing ν = e and switching back to variables (ρ, u) gives the announced result.

Eventually, recall that linear programs can be solved in (weak) polynomial time by the ellipsoid or by

interior point methods. ⊓⊔

In their work [6], Gaujal and Giua developed a closely related linear programming approach, de-

rived directly from Little’s law, rather than from the theory of semi-Markov processes. Their formu-

lation has same objective function and a feasibility set that only differs from the one of Corollary 6.14

for transitions in Qpsel. However, by applying the conflict-free transformation that they suggest and

that we have introduced in our last remark after Correspondence Theorem 6.3, we can recover the

formulation of [6] from Corollary 6.14.

The asymptotic behavior of the value function in large horizon has been extensively studied [25,

23]. As a corollary of these results, we arrive at:

Corollary 6.15. (Asymptotic Periodicity)

Suppose that Assumption 6.5 holds, and that the holding times are integer (so that T ∈ N). Then, there

exists an integer c, which is the order of an element of Sym(nT ), such that, for all 0 6 r 6 c − 1,

z(tc+ r)− ρ(tc+ r) converges as t → ∞, for integer values of t.

Whereas the earlier results of this section hold for irrational holding times, the integrality restriction

in Corollary 6.15 is essential.

Proof:

We use Corollary 6.7 to reduce to a system of the form z̃(t) = F (z̃(t−1)), where z̃(t) is the augmented

vector (z(t), . . . , z(t−T+1)) ∈ R
Q×{1,...,T}, and F is order-preserving, additively homogenous with

respect to e, piecewise affine and concave. Then, the result follows from Theorem 5.5. ⊓⊔

6.4. Application to model (EMS-A)

We illustrate the above results on our running example (EMS-A). Since z1 and z3 have two upstream

places each, there are a total of four policies. Though it is possible to use (8) to determine ρ, solving

the lexicographic equations (L1)-(L2) turns out to be easier in practice. We also remark (for instance

on Figure 6) that z2 (resp. z4 and z5) are always in the same recurrence class as z1 (resp. z3), in

the sense of SMDP’s chains. As a result, we shall just focus on the lexicographic optimality equation
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on ρ1 and ρ3:




(ρ1, u1) = (λ, 0) ∧ ((1− π)ρ1 + ρ3, NA + (1− π)(u1 − ρ1τ1) + u3 − ρ3τ2)

(ρ3, u3) = π(ρ1, u1 − ρ1τ1) ∧ (ρ3, NP + u3 − ρ3(τ2 + τ3)
)

where ∧ now stands for the minLEX operation. Each policy (i.e. each choice of minimizing term in both

equations) leads to a value of ρ1 and ρ3 and provides linear inequalities characterizing the associated

validity domain. Eventually, we obtain ρ1 = ρ∗ and ρ3 = πρ∗ with

ρ∗ = min

(
λ ,

NA

τ1 + πτ2
,

NP

π(τ2 + τ3)

)

in which we retrieve the piecewise-affine form of ρ showed in Corollary 6.13.

NA

NP

ρ∗

NA

NP

ρ∗ =
NA

τ1 + πτ2

ρ∗ = λ

ρ∗ =
NP

π(τ2 + τ3)

λ(τ1 + πτ2)

λ
π
(τ

2
+

τ 3
)

Figure 7: The phase diagram of the (EMS-A) system

We interpret this result as follows: the “handling speed” ρ1 of the MRAs and ρ3 of the emergency

physicians are always entangled and depend on three key dimensioning parameters: the arrival rate

of inbound calls λ, the maximum MRA throughput NA/(τ1 + πτ2) and the maximum physician

throughput NP/π(τ2 + τ3). We recognize in these last two terms a number of agents divided by a

characteristic cycle time. Hence, if NA > N∗
A := λ(τ1 + πτ2) and NP > N∗

P := λπ(τ2 + τ3)
(this delineates the green phase on Figure 7), we have ρ∗ = λ which means that all inbound calls are

handled. If NA 6 N∗
A and NA/(τ1 + πτ2) 6 NP /π(τ2 + τ3), there are too few MRAs, therefore

they impose their maximum handling speed to the whole system (indeed emergency physicians wait

for MRAs to pass them calls). Conversely, if NP 6 N∗
P and NP /π(τ2 + τ3) 6 NA/(τ1 + πτ2), there

are too few emergency physicians and they impose their handling speed to the whole system again

(MRAs are waiting for doctors to take their calls and be released). This is illustrated by the phase

diagram depicted on Figure 7: a staffing choice (NA, NP ) made in real-life call-enter will indicate the

long-run throughput ρ∗ of the system. We verify that the cells of the phase diagram are the regions

over which ρ∗ is affine (as a function of NA and NP ).

To sum it up, there are three different possible regimes, among which only one is fluid and guar-

antees that all calls are answered. This analysis can lead to minimal dimensioning recommendations:

for such an emergency call center and considering that calls arrive with rate λ, at least ⌈λ(τ1 + πτ2)⌉
MRAs and ⌈λπ(τ2 + τ3)⌉ emergency physicians are needed.
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7. Stationary regimes in presence of priorities

7.1. From stationary regimes to systems on germs

There is a convenient and more abstract way to write the lexicographic system (L1)-(L2) of Propo-

sition 6.11, that we somehow already used in Section 6.4, using germs of affine functions. A germ

at infinity of a function f is an equivalence class for the relation which identifies two functions that

coincide for sufficiently large values of their argument. The tuple (ρ, u) ∈ R
2 will represent the germ

of the affine function t 7→ ρt + u. The pointwise order on functions induces a total order on germs

of affine functions, which coincides with the lexicographic order on the coordinates (ρ, u), the ρ co-

ordinate being considered first. We complete R
2 by introducing a greatest element ⊤ with respect to

the lexicographic minimum. Then, G := R
2 ∪ {⊤} equipped with the operations minLEX and + is a

semifield (by convention, for all g ∈ G, g + ⊤ = ⊤+ g = ⊤). The multiplicative group R>0 acts on

G by setting a(ρ, u) := (aρ, au), for a > 0 and (ρ, u) ∈ R
2, and a⊤ = ⊤. If (ρ, u) is the germ of f ,

it is immediate to see that (ρ, u− ρτ) is the germ of t 7→ f(t− τ).

In this framework, the system (L1)-(L2) derived from (4) becomes:

∀q ∈ Q (ρq, uq) = min LEX

p∈qin

(
(0, cpq) + κpq

∑

q′∈Q

βp
qq′(ρq′ , uq′ − ρq′τp)

)
(L)

If there are some priority routings, Correspondence Theorems 6.1 and 6.3 do not hold anymore:

the dynamics has still the form of a Bellman equation, but the factors βp
qq′ in (4) take negative values,

implying that some “probabilities” are negative. However, it is still relevant to look for affine stationary

regimes, and we next show that these regimes are the solutions of a lexicographic system over germs

similar to (L). To do so, we derive other germ equations for transitions ruled by priority routing, whose

dynamics is recalled in Table 2. In particular, one needs to address how the expressions of the form

z(t−) behave when passing to germs. The problem may seem ill-posed since this value coincides with

z(t) for ultimately affine functions. Nonetheless, in [8], it has been shown that the problem of looking

for ultimately affine stationary regimes on the δ-discretization of the fluid dynamics is well-posed. In

this discretized model, the term z(t−) is replaced by z(t−δ). The detour via this discretized dynamics

enables one to prove that, regardless of the choice of δ, small enough, some terms cannot achieve the

minimum in the priority dynamic equations, and thus can be removed. This leads to the last equation

of Table 3 and the following result.

Theorem 7.1. The ultimately affine stationary regimes z(t) = ρt+ u of the dynamics of Table 2 are

solutions of the germ equations of Table 3.

Proof:

We prove the result for transitions ruled by priority, since the result is direct for other patterns. Recall

from Table 2 the counter equation followed by transition q ∈ Qprio:

zq(t) = min
p∈qin

α−1
qp

(
mp +

∑

q′∈pin

αpq′ zq′(t− τp)−
∑

q′≺pq

αq′pzq′(t)−
∑

q′≻pq

αq′pzq′(t
−)

)
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Table 3: Dynamic equations followed by germs of transitions counter functions

Type Germs equation in stationary regime

q ∈ Qsync (ρq, uq) = min LEX

p∈qin
α−1
qp

(
(0,mp) +

∑

q′∈pin

αpq′ (ρq′ , uq′ − ρq′τp)

)

q ∈ Qpsel (ρq, uq) = πqp · α−1
qp

(
(0,mp) +

∑

q′∈pin

αpq′ (ρq′ , uq′ − ρq′τp)

)

q ∈ Qprio
(ρq, uq)= min LEX

p∈qin

∑

q′≻pq

ρq′=0

α−1
qp

(
(0,mp) +

∑

q′∈pin

αpq′ (ρq′ , uq′ − ρq′τp)−
∑

q′∈pout\{q}

αq′p(ρq′ , uq′)

)

Our claim is that due to the priority mechanism, some terms in the above minimum cannot realize

minimality and thus can be removed.

Let q1 ∈ Qprio, p ∈ qin and q2 ∈ pout, with q2 6= q1. Let us suppose that q1 ≺p q2. Substituting

counters by their corresponding germs and replacing t− by t− δ with δ > 0, we have

(ρq1 , uq1) 6 α−1
q1p

(
(ρpΣ, u

p
Σ)−

∑

q′≺p q1

αq′p(ρq′ , uq′)−
∑

q′≻p q1

αq′p(ρq′ , uq′ − ρq′δ)

)

6 α−1
q1p

(
(ρpΣ, u

p
Σ)−

∑

q′ 6= q1

αq′p(ρq′ , uq′) +
∑

q′≻p q1

αq′p(0, ρq′δ)

)
(U1)

where (ρpΣ, u
p
Σ) stands for the germ (0,mp) +

∑

q′∈pin

αpq′ (ρq′ , uq′ − ρq′τp). Similarly, we have

(ρq2 , uq2) 6 α−1
q2p

(
(ρpΣ, u

p
Σ)−

∑

q′ 6= q2

αq′p(ρq′ , uq′) +
∑

q′≻p q2

αq′p(0, ρq′δ)

)
(U2)

In both sides of the latter equation, let us apply the nondecreasing mapping of G → G : g 7→
αq2pα

−1
q1p

(
g − (ρq2 , uq2)

)
+ (ρq1 , uq1). We obtain:

(ρq1 , uq1) 6 α−1
q1p

(
(ρpΣ, u

p
Σ)−

∑

q′ 6= q1

αq′p(ρq′ , uq′) +
∑

q′≻p q2

αq′p(0, ρq′δ)

)
(U2’)

Comparing (U2’) to (U1), one can observe that if ρq′ > 0 for some q1 ≺p q′ 4p q2, then the

right-hand side of (U2’) strictly bounds by below the one of (U1), thus the equality in (U1) cannot be

achieved, and the corresponding germ can be removed from the original minimum. This reasoning can

be applied when q2 is the transition of pout with the least priority, so that the inequality (U1) is strict

whenever the sum
∑

q′≻pq1
ρq′ is positive (the (ρq)q∈Q variables are nonnegative). Conversely, only

the contributions of upstream places p ∈ qin
1 such that

∑
q′≻pq1

ρq′ = 0 remain in the minimum. ⊓⊔
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7.2. Case Study: application to the model (EMS-B)

In this section, we follow up on the analysis of the model (EMS-B) involving priority rules. Using

Table 2, we can write the dynamics of the counter variables of the net. We present below a reduced

system of equations where z2, z4, z6, z′6, z7 and z′7 have been substituted by expressions depending on

z1, z3, z5 and z′5 only. For the sake of readability, we denote z|t2t1 := z(t2)− z(t1), and z|t := z(t).

z1(t) = z0
∣∣t ∧

(
NA + (1− π) z1

∣∣t−τ1 + z3
∣∣t−τ2

)

z3(t) = π z1
∣∣t−τ1 ∧

(
NR + z3

∣∣t−τ2 + z5
∣∣t−τ2
t

+ z′5
∣∣t−τ2
t

)

z5(t) = αz3
∣∣t−τ2 ∧

(
NP + z5

∣∣t−τ2−τ3 + z′5
∣∣t−τ2−τ3
t−

)
∧

(
NR + z3

∣∣t−τ2
t−

+ z5
∣∣t−τ2 + z′5

∣∣t−τ2
t−

)

z′5(t) = (1− α)z3
∣∣t−τ2 ∧

(
NP + z5

∣∣t−τ2−τ3
t

+ z′5
∣∣t−τ2−τ3

)
∧

(
NR + z3

∣∣t−τ2
t−

+ z5
∣∣t−τ2
t

+ z′5
∣∣t−τ2

)

(EMS-B)

Applying Theorem 7.1 and the equations of Table 3 to the model (EMS-B) provide the follow-

ing system on the affine germs of counter variables (again after substitutions of some germs easily

expressed in terms of those assiociated with counters z1, z3, z5 and z′5):

(ρ1, u1) = (λ, 0) ∧ ((1 − π)ρ1 + ρ3, NA + (1− π)(u1 − ρ1τ1) + u3 − ρ3τ2)

(ρ3, u3) = (πρ1, π(u1 − ρ1τ1)) ∧ (ρ3, u3 +NR − ρ3τ2 − (ρ5 + ρ′5)τ2)

(ρ5, u5) =





α(ρ3, u3 − ρ3τ2) ∧ (ρ5, u5 +NP − ρ5(τ2 + τ3)) ∧ (ρ3, u3 +NR − (ρ3 + ρ5)τ2) if ρ′5 = 0 and ρ3 = 0

α(ρ3, u3 − ρ3τ2) ∧ (ρ5, u5 +NP − ρ5(τ2 + τ3)) if ρ′5 = 0 and ρ3 > 0

α(ρ3, u3 − ρ3τ2) if ρ′5 > 0

(ρ′5, u
′
5) =

{
(1− α)(ρ3, u3 − ρ3τ2) ∧ (ρ′5, u

′
5 +NP − (ρ5 + ρ′5)(τ2 + τ3)) ∧ (ρ′5, NR + u′5 − (ρ5 + ρ′5)τ2) if ρ3 = 0

(1− α)(ρ3, u3 − ρ3τ2) ∧ (ρ′5, u
′
5 +NP − (ρ5 + ρ′5)(τ2 + τ3)) if ρ3 > 0

The major difference of this system on germs compared with the one obtained for the model

(EMS-A) in Section 6.4 is the necessity, brought by priorities, to distinguish cases on the possible

bottleneck upstream places depending on their respective throughputs. We point out that the cases

where ρ3 = 0 in germs equations on (ρ5, u5) and (ρ′5, u
′
5) could acceptably be neglected for further

analysis. Indeed, the first two equations above always ensure ρ3 = πρ1, and supposing ρ3 = 0 and

λ > 0 leads to min(NA, NR) = 0 by combination of the attained germs. Therefore, the throughput

ρ3 is positive as soon as we suppose λ > 0, NA > 0 and NR > 0, i.e., positive inflow of calls and

positive number of agents to pick them up. As a result, when this condition is met, the priority ruling

the routing of tokens from the pool of reservoir assistants does not appear on the affine germs of z5
and z′5 anylonger. This is an expected outcome since transitions z5 and z′5 (high level of priority for

the reservoir pool) can only receive tokens that have passed through transition z3 (low level of priority

for the reservoir pool) before, as a result z5 and z′5 cannot ultimately inhibit themselves. Such a layout

of priorities does remain appropriate to perform arbitration of tokens orientation in case of conflicts

and we show below that it still produces effects in the scope of long-run time analysis of the system.

As in Section 6.4, a choice of policy (i.e. a choice of minimizing terms in the lexicographic sys-

tem) provides affine equalities determining the throughput as an affine function of the resources of
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the model, the validity region of this expression being obtained by inequalities derived from the re-

maining (non-minimizing) terms of the system. This leads to nine full-dimensional congestion phases

(maximal cells of the throughput complex) covering (R>0)
3, that we depict and number on Figure 10

and whose polyhedral form is given in Appendix A along with the expressions of throughputs.

As expected, the introduction of a new type of resource agent (the reservoir assistant) introduces

more slowdown phases if its initial marking NR is too small. Therefore, to ensure the good behavior

of the (EMS-B) model whose design relies substantially on the reservoir, one needs to take NR >

N∗
R := 2πλτ2. Note that the minimal number of MRAs (resp. emergency physicians) to answer all

the calls is not affected by the presence of the reservoir by comparison with (EMS-A) model, and is

still equal to N∗
A := λ(τ1 + πτ2) (resp. N∗

P := πλ(τ2 + τ3)). These three lower bounds on NA, NR

and NP define the phase 1 , that we may refer to as the “fluid phase”.

NA

NP

ρ′5

NP

ρ5, ρ
′
5

NP (ρ1)NP (ρ1)

α
π
ρ
1
(1
−
α
)π
ρ
1

Figure 8: The throughput ρ′5 is not concave, although ρ5 and ρ5 + ρ′5 still are

The second new feature of this model compared with (EMS-A) lies in the duplication of the physi-

cian’s lane and the fact that very urgent calls (in proportion α among all calls transfered to doctors)

are handled in priority. This has the effect of splitting each congestion phase associated with a lack

of emergency physicians in two parts. Indeed, given an MRA throughput ρ1, define the two functions

NP and NP by

NP (ρ1) := πα(τ2 + τ3)ρ1 and NP (ρ1) := π(τ2 + τ3)ρ1 .

A minimum number of NP physicians is needed to handle all the calls passed by the MRAs via the

reservoir assistant. However, in case of a lack of physicians, the priority mechanism ensures that

the very urgent calls remain handled as long as NP > NP (phases 4α , 5α and 6α ). Below the

latter threshold, there are too few physicians to handle these very urgent calls (phases 4 , 5 and

6 ). Remark that in presence of priorities, the throughput function of transitions may not be concave

anymore, see for instance ρ′5 as a function of NA and NP in Figure 8 (supposing reservoir assistants

are not limiting, thus NR > NR). In this cross-section though, note that in addition to ρ1 and ρ3, both

ρ5 and ρ5 + ρ′5 are still concave.

A second qualitative advantage of the system (EMS-B) is that contrary to the model (EMS-A),

we observe that a slowdown in the emergency physician circuit does not affect the throughput of the
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MRAs, as an effect of their desynchronization by the reservoir buffer. It may still happen that we

encounter both a lack of MRAs and physicians (phases 5α and 5 ), but the latter do not prevent the

former to pick up inbound calls at their maximal possible throughput.

It is instructive to study the situations in which the reservoir assistants are understaffed (phases

3 , 6α and 6 ), although such situations are not desirable in practice.

In particular, we observe that throughputs ρ3 and ρ5 are proportional to NR/τs − NP /(τs + τ3)
in phase 6α (it remains true for ρ3 in phase 6 as well), which means that increasing the number of

emergency physicians slows down the handling of top priority calls! This establishes the following

seemingly paradoxical property:

Paradox 7.2. In the presence of priority rulings, the asymptotic throughputs of some transitions (even

one with highest level of priority) of the net may be decreased by an increase of the resources.

NP

NR

ρ5

Figure 9: The throughput ρ5 does not decrease with respect to NP

We depict this phenomenon on Figure 9 (supposing that first-answering MRAs are non-limiting so

NA > N∗
A), the red curve showing that ρ5 is nonmonotic as NP grows and as we go through phases 6 ,

then 6α and finally 3 . This counter-intuitive situation can be explained as follows: suppose for sake

of simplicity that NR < πλτs, so that there are not enough reservoir assistants to even fill the reservoir

room (while twice this amount of agents would be needed to fill it and empty it). At NP = 0, both

very urgent and urgent calls queues build up in the reservoir at throughput NR/πτs (maximum filling

speed of reservoir agents). As NP increases (phase 6 ), some very urgent cases can now be handled by

emergency physicians at rate NP/(τs + τ3), however this task requires a second accompaniment step

with reservoir assistants and is prioritized to them. Hence, they spend less time filling the reservoir and

ρ3 decreases. As NP increases again (phase 6α ), there are enough emergency physicians to also pick-

up calls from the second-priority room, requiring again the intervention of reservoir assistants (before

admitting new patients), as a result ρ3 decreases again and so does ρ5 = αρ3: the reservoir assistants

have “less time” to admit and detect very urgent calls as they must escort already admitted very urgent

and urgent calls to doctors before, and eventually less very urgent calls are handled. We insist again

that this unusual phenomenon arises because top-priority transitions are served downstream of some

inferior-priority ones. This echoes a similar pathological behavior observed in [27].
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Figure 10: Congestion phases of the model (EMS-B)

8. Concluding remarks

We developed a model of fluid timed Petri net including both preselection and priority routings. In

the absence of priority, we showed that the dynamics of the net is equivalent to the Bellman equation

of a semi-Markov decision problem, from which a number of properties follows: existence and uni-

versality of the throughput vector (independence from the initial condition), existence of stationary

regimes by reduction to a lexicographic system, polynomial-time computability of the throughput by

reduction to a linear program, and explicit representation of the throughput, as a function of resources,

by a polyhedral complex. This approach provides tools to address further issues: e.g., an important

practical problem is to bound the time needed to absorb a peak of congestion. We believe it can still

be addressed using techniques of nonexpansive dynamical systems, along lines of [28, 23], we leave

this for a subsequent work.
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In the presence of priority, only part of these results remain: finding stationary regimes is equiv-

alent to solving a lexicographic system, which is a system of polynomial equations over a tropical

semifield of germs. In other words, stationary regimes are the points of a tropical variety, and we still

get a polyhedral complex, describing all the congestion phases. This complex can be computed in

exponential time, by enumerating strategies, as we did on our case study. Whereas we do not expect

worst-case polynomial-time computability results in such a generality (solving tropical polynomial

systems is generally NP-hard), we leave it for further work to get finer complexity bounds. It is also

an open problem to compare the asymptotic behavior of counters, for an arbitrary initial condition,

with stationary solutions.
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A. Phases Equations for Model (EMS-B)

Phase Bounding inequalities ρ1 ρ5 ρ′5
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