
Appeared in Fundamenta Informaticae 183(3-4) : 203–242 (2021). 203
Available at IOS Press through:
https://doi.org/10.3233/FI-2021-2087

Inferring Unobserved Events in Systems with
Shared Resources and Queues

Dirk Fahland*, Vadim Denisov
Eindhoven University of Technology

Eindhoven, the Netherlands

{d.fahland, v.denisov}@tue.nl

Wil. M.P. van der Aalst
Process and Data Science (Informatik 9)

RWTH Aachen University, Aachen, Germany

wvdaalst@pads.rwth-aachen.de

Abstract. To identify the causes of performance problems or to predict process behavior, it is
essential to have correct and complete event data. This is particularly important for distributed
systems with shared resources, e.g., one case can block another case competing for the same
machine, leading to inter-case dependencies in performance. However, due to a variety of reasons,
real-life systems often record only a subset of all events taking place. To understand and analyze
the behavior and performance of processes with shared resources, we aim to reconstruct bounds
for timestamps of events in a case that must have happened but were not recorded by inference
over events in other cases in the system. We formulate and solve the problem by systematically
introducing multi-entity concepts in event logs and process models. We introduce a partial-order
based model of a multi-entity event log and a corresponding compositional model for multi-
entity processes. We define PQR-systems as a special class of multi-entity processes with shared
resources and queues. We then study the problem of inferring from an incomplete event log
unobserved events and their timestamps that are globally consistent with a PQR-system. We
solve the problem by reconstructing unobserved traces of resources and queues according to the
PQR-model and derive bounds for their timestamps using a linear program. While the problem is
illustrated for material handling systems like baggage handling systems in airports, the approach

*Address for correspondence: TU Eindhoven, PO Box 513, 5600MB Eindhoven, NL

ar
X

iv
:2

10
3.

00
16

7v
3

 [
cs

.D
C

]
 9

 D
ec

 2
02

1

https://doi.org/10.3233/FI-2021-2087

204 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

can be applied to other settings where recording is incomplete. The ideas have been implemented
in ProM and were evaluated using both synthetic and real-life event logs.

Keywords: Log repair, Process mining, Performance analysis, Multi-entity modeling, Multi-
entity event logs, Conformance checking, Material handling systems

1. Introduction

Precise knowledge about actual process behavior and performance is required for identifying causes of
performance issues [1], as well as for predictive process monitoring of important process performance
indicators [2]. For Material Handling Systems (MHS), such as Baggage Handling Systems (BHS) of
airports, performance incidents are usually investigated offline, using recorded event data for finding
root causes of problems [3], while online event streams are used as input for predictive performance
models [4]. Both analysis and monitoring heavily rely on the completeness and accuracy of input data.
For example, events may not be recorded and, as a result, we do not know when they happened even
though we can derive that they must have happened. Yet, when different cases are competing for shared
resources, it is important to reconstruct the ordering of events and provide bounds for non-observed
timestamps.

However, in most real-life systems, items are not continuously tracked and not all events are
stored for cost-efficiency, leading to incomplete performance information which impedes precise
analysis. For example, an MHS tracks the location of an item, e.g., a bag or box, via hardware sensors
placed throughout the system, generating tracking events for system control, monitoring, analysis, and
prediction. Historically, to reduce costs, a tracking sensor is only installed when it is strictly necessary
for the correct execution of a particular operation, e.g., only for the precise positioning immediately
before shifting a bag from one conveyor onto another. Moreover, even when a sensor is installed, an
event still can be discarded to save storage space. As a result, the recorded event data of an MHS are
typically incomplete, hampering analysis based on such incomplete data. Therefore, it is essential to
repair the event data before analysis. Fig. 1 shows a simple MHS where events are not always recorded.
The process model is given and for two cases the recorded incomplete sets of events are depicted using
the so-called Performance Spectrum [3].

Fig. 1(b) shows item pid=50 entering the system via m3 at time t0 (event e1) and leaving the system
via d1 at time t2 (e7), and item pid=51 entering the system viam4 at time t1 (e5) and leaving the system
via d2 at time t3 (e11). As only these four events are recorded, the event data do not provide information
in which order both cases traversed the segment m4→ d1. Naively interpolating the movement of both
items, as shown in Fig. 1(b), suggests that item pid=51 overtakes item pid=50. This contradicts that all
items are moved from m4 to d1 via a conveyor belt, i.e., a FIFO queue: item 51 cannot have overtaken
item 50. In contrast, Fig. 1(c) and Fig. 1(d) show two possible behaviors that are consistent with our
knowledge of the system. We know that a conveyor belt (FIFO queue) is a shared resource between m4
and d1. Both variants differ in the order in which items 50 and 51 enter and leave the shared resource,
the speed with which the resource operated, and the load and free capacity the resource had during
this time. In general, the longer the duration of naively interpolated segment occurrences, the larger

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 205

m3s

d1s

d2s

m4s

m3s

m3c

m4s

m4c

d1s

m
3
’s

pid=51

pid=50

d1c

d2s

d
1
’c

m
4
’s

(b)
observed

(c)
variant 1

(d)
variant 2

d
2
’c

(a)

t1

Lo
ad

Lo
ad

observed event unobserved event

e3

e1

e7

e5

e11

Time

e3e5 e5

e9

e9e7
e7

e1 e1

e11 e11
t0 t2

t3
t1 t1 TimeTime

PARTIAL LOG

Id,Activity,Time

50,m3,t0
51,m4,t1
50,d1,t2
51,d2,t3

Figure 1. An MHS model example (a), observed imprecise behavior for two cases 50 and 51 (b), possible actual
behaviors (c,d).

the potential error. Errors in load, for example, make performance outlier analysis [3] or short-term
performance prediction [5] rather difficult. Errors in order impede root-cause analysis of performance
outliers, e.g., finding the cases that caused or were affected by outlier behavior.

Problem. In this paper, we address a novel type of problem as illustrated in Fig. 1 and explained
above. The behavior and performance of the system cannot be determined by the properties of each
case in isolation, but depends on the behavior of other cases and the behavior of the shared resources
involved in the cases. Crucially, each case is handled by multiple resources and each resource handles
multiple cases, resulting in many-to-many relations between them. The concrete problem we address
is to reconstruct unobserved behavior and performance information of each case and each shared
resource in the system that is consistent with both observed and reconstructed unobserved behavior
and performance of all other cases and shared resources. More specifically, we consider the following
information as given: (1) an event log L1 containing the case identifier, activity and time for recorded
events where intermediate steps are not recorded (i.e., the event log may be incomplete), (2) a model
of the process (i.e., possible paths for handling each individual case), and (3) a description (model)
of the resources involved in each step (e.g., queues, single server resources and their performance
parameters such as processing and waiting time). Based on the above input, we want to provide a
complete event log L2 that describes (1) for each case the exact sequence of process steps, (2) and for
each unobserved event a time-window of earliest and latest occurrence of the event so that (3) either all
earliest or all latest timestamps altogether describe a consistent execution of the entire process over all
shared resources.

206 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

We elaborate the problem further in Sect. 2 where we discuss related work. Specifically, prior work
either only considers the case or the resource perspective explicitly, making implicit assumptions about
their complex interplay. The goal of this paper is to explicitly account for the interplay of control-flow,
resources, and queues in the entire system. This requires us to first identify and develop suitable formal
concepts that allow us to precisely state and automatically solve the above problem of inferring missing
events and their time-stamps in a way that considers all perspectives jointly.

Contribution. We approach the problem under the conceptual lens of treating each process case,
resource, or queue as a separate entity exhibiting its own behavior. System behavior then is the result of
multiple entities synchronizing in joint steps, e.g., when a resource starts working on a case. Section 3
further develops the problem of inferring missing events under this conceptual lens. To solve the
problem, the paper systematically introduces multi-entity concepts in formal models for event logs and
in process models with the following four contributions.

(1) To ground the problem in existing types of event data, we propose in Sect. 4 an alternative
definition of event logs that can handle multiple entity identifiers. The information is carried in an event
table with multiple entity identifier columns. We then show that the information in this table can be
viewed from two different but equivalent perspectives: (i) as a family of sequential event logs, one per
entity type; and (ii) as a global strict partial order over all events that is typed with entity types and can
be understood as a system-level run. This model allows us to conceptually decompose behavior (run of
a system or event data) into individual entity traces of process cases, resources, and queues. Different
entity traces synchronize when a resource or queue is involved in a case, allowing to explicitly describe
their many-to-many relations in the run.

(2) To provide a well-defined problem of repairing incomplete event logs, we develop a novel
conceptual model for processes with shared resources in Sect. 5. We extend the recently proposed
synchronous proclet model [6] with concepts of coloured Petri nets [7] to precisely describe queueing
and timed behavior in systems with multiple synchronizing entities, resulting in the model of CPN
proclet systems. We provide a replay semantics for CPN proclet systems that defines when a model
accepts a given event log. Our semantics is compositional: the system can replay the log iff each
component can replay the part of the log it relates to. A side product of this work is that we also provide
a semantics for replaying event logs on regular coloured Petri nets.

(3) We then formalize a special class of CPN proclet systems called PQR systems which are
composed of one component for the process, and multiple components for shared resources and queues.
PQR systems allow to model processes where each step is served by one single-server resource and
resources are connected by strict FIFO queues only. These assumptions are reasonable for a large class
of MHSs.

(4) We then provide an automated technique to solve the problem for PQR systems where the
process is acyclic which suffices for many real-life problem instances. The central solution idea given
in Sect. 6 is to decompose the behavioral information in the incomplete event log into entity traces.
We gradually infer unobserved events and unobserved entity traces and their synchronization with
other entities from the component-based structure of the PQR system. We then formulate a Linear
Programming (LP) problem [8] to infer upper and lower bounds of timestamps of unobserved events
based on bounds of timestamps along the different entity traces.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 207

We evaluated the approach by comparing the restored event logs with the ground truth for synthetic
logs and estimate errors for real-life event logs for which the ground truth is unavailable (Sect. 7). We
discuss our findings and alleys for future work in Sect. 8.

2. Related work

In all operational processes (logistics, manufacturing, healthcare, education and so on) complete and
precise event data, including information about workload and resource utilization, is highly valuable
since it allows for process mining techniques uncovering compliance and performance problems. Event
data can be used to replay processes on top of process models [9], to predict process behavior [10, 5],
or to visualize detailed process behavior using performance spectra [3]. All of these techniques rely on
complete and correct event data. Since this is often not the case, we aim to transform incomplete event
data into complete event data.

Various approaches exist for dealing with incomplete data of processes with non-isolated cases
that compete for scarce resources. In call-center processes, thoroughly studied in [11], queueing
theory models can be used for load predictions under assumptions about distributions of unobserved
parameters, such as customer patience duration [12], while assuming high load snapshot principle
predictors show better accuracy [13]. For time predictions in congested systems, the required features
are extracted using congestion graphs [14] mined using queuing theory.

Techniques to repair, clean, and restore event data before analysis have been suggested in other
works. An extensive taxonomy of quality issue patterns in event logs is presented in [15]. The taxonomy
specifically discusses how to detect and correct inadvertent time intervals (i.e., time stamps recorded
later than the occurrence of the event) through domain knowledge; no automatic technique is provided.
The timestamp repair technique in [16] automatically reconstructs the most likely order of wrongly
recorded events and most likely intervals for timestamps based on other traces; the technique assumes
all events were recorded and does not consider ordering constraints due to resources involved across
traces. In [17] resource availability calendars are retrieved from event logs without the use of a
process model, but assuming start and complete life-cycle transitions as well as a case arrival time
present in a log. Using a process model, classical trace alignment algorithms [18] restore missing
events but do not restore their timestamps. The authors conclude (see [18], p. 262) that incorporating
other dimensions, e.g., resources, for multi-perspective trace alignment and conformance checking
is an important challenge for the near future. Recently, also techniques for process discovery and
conformance checking over uncertain event data were presented [19, 20]. The output of our approach
can provide the input needed for these techniques.

Multiple recent works address behavioral models for behavior over multiple different entities in
one-to-many and many-to-many relations. The model of proclets thereby defines one behavioral model
(a Petri net) per entity. Entities interact asynchronously via message exchange [21] or synchronously
via dynamic transition synchronization [6]. Object-centric Petri nets [22] are a special class of coloured
Petri nets [7] that are structured to model the flow and synchronization of different objects (or entities);
they correspond to synchronous proclets [6] where the synchronization has been materialized in the
model structure. Catalog nets [23] approach the problem from the side databases and model entity

208 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

behavior by describing database updates through transitions; entity synchronization is similar to
synchronous proclets. Process structures [24] integrate relational modeling and behavioral modeling
but are using dedicated behavioral model without existing analysis techniques. None of these works so
far considered system-level entities such as queues and resources as part of the model to study how
system-level entities impact process behavior. Further, none of these works has provided any techniques
for reasoning about missing temporal and behavioral information across different entities.

Also data models for event data over multiple entities have been studied extensively in three forms.
One type of event logs describe entities just as a sequence (or collection) of events [25, 26] where
each event carries multiple entity identifier attributes, possibly even having multiple entity identifier
values. Behavioral analysis requires to extract a trace per entity, thereby constructing a set of related
sequential event logs [25, 27]. Other works construct a partial order over all events using graphs: nodes
are events, edges describe when two events directly precede/follow each other and are typed with
the entity for which this relation was observed [28, 29, 30, 31]. In this paper, we show that the three
representations are essentially equivalent and just materialize the data in different forms; reasoning
about incomplete behavior across multiple entities benefits from being able to switch between these
perspectives arbitrarily. We thereby adopt a more classical partial-order model instead of a graph as it
simplifies reasoning.

Our work contributes to the problem of reconstructing behavior of cases and limited shared resources
for which the cases compete. We use the notion of proclets first introduced in [21] and adapted for
process mining in [6] to approach the problem from control-flow and resource perspectives at once. We
assume a system model given as a composition of a control-flow proclet (process) and resource/queue
proclets. The given event log is a set of events with multiple entity identifiers. We restore missing
events through classical trace alignments over control-flow proclets. The dynamic synchronization of
proclets [6] allows us to infer how and when sequential traces of resource entities must have traversed
over the control-flow steps, which we express as a linear programming problem to compute time stamp
intervals for the restored events. For the construction of the linear program we make extensive use of
the partial ordering of events. Event logs repaired in this way enable the use of analysis which assume
event logs to be complete.

Compared to a prior version of this article [32], we here provide a complete formalization of the
problem and all underlying concepts, including the definitions of multi-entity event logs, CPN proclet
systems and their replay semantics, and a formal definition of PQR systems.

3. Modeling inter-case behavior via shared resources

Prior work (cf. Sect. 2) approaches the problem of analyzing the performance of systems with shared
resources primarily either from the control-flow perspective [17, 19, 20, 10, 5] or the resource/queuing
perspective [11, 12, 13, 14], leading to information loss about the other perspective. In the following, we
show how to conceptualize the problem from both perspectives at once using synchronous proclets [6]
extended with a few concepts of coloured Petri Nets [7]. This way we are able to capture both control-
flow and resource dynamics and their interaction as synchronizing entity traces. We introduce the model
in Sect 3.1 and use it to illustrate how incomplete logging incurs information loss for performance
analysis in Sect. 3.2.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 209

3.1. Processes-aware systems with shared resources

We explain the dynamics of process-aware systems over shared resources using a BHS handling luggage.
The process control-flow takes a bag from a source (e.g., check-in or transfer from another flight), to
a destination (e.g., the airplane, transfer) along intermediate process steps (e.g., baggage scanning,
storage). BHS resources are primarily single-server machines (e.g., baggage scanners) connected
via conveyor belts, i.e., FIFO queues. Fig. 2(a) shows a typical system design pattern involving the
control-flow and resource perspective: four parallel check-in desks (c1-c4) merge into one linear
conveyor through merge points (m2-m4). Divert points (d1 and d2) can route bags from the linear
conveyor to scanners (s1 and s2). Each merge point and scanner is preceded by a FIFO queue for
buffering incoming cases (bags) in case the corresponding resource is busy. Fig. 2(b) shows the plain
control-flow of this BHS (also called Material Flow Diagram (MFD)). A real-life BHS may contain
hundreds of process steps and resources, and conveyors may also form loops. Each processing step in a
BHS is served by a limited number of resources (in case of machines exactly one) with a minimum
processing time and often a minimum waiting time to ensure sufficient “operating space” p between
two subsequent bags as shown in Fig. 2(a). Similarly, the conveyor belts realizing FIFO queues have
certain operating speeds which determine a minimum waiting time to reach the end of queue.

id=51

c2 m2

s1

c1

d1

c2

c1

m2’

s1

d1

m2

p

(a) (b)

id=50

m3’ m3

m4’ m4

c3

c4

c3 m3

c4 m4

d2

s2 s2 d2

(c)

Event,Id,Activity,Time

e0, 50,c3,01.01.20 9:00:15

e1, 50,m3,01.01.20 9:00:30

e17,51,c4,01.01.20 9:00:35

e3, 50,m4,01.01.20 9:00:45

e5, 51,m4,01.01.20 9:00:55

e7, 50,d1,01.01.20 9:01:00

e9, 51,d1,01.01.20 9:01:05

e18,50,s1,01.01.20 9:01:15

e11,51,d2,01.01.20 9:01:20

e19,51,s2,01.01.20 9:01:35

Figure 2. A baggage handling system fragment (a) and its material flow diagram (b). Conveyor belts of check-in
counters c1− c4 merge at points m2−m4, further downstream bags can divert at d1 and d2 to X-Ray security
scanners s1 and s2. Red arrows show sensor (logging) locations. An example of an incomplete event log of the
system in (a) is shown in (c), where missing events are shown in the grey color.

Modeling with Coloured Petri Nets. Fig. 3 shows a coloured Petri Net (CPN) model for the segment
from check-in c1 to merge step m2. In the model, transitions c1s and c1c describe start and completion
of the check-in step c1. When c1s occurs, arc inscription ν pid produces a new identifier value for a
bag (also called coloured token) on place busy and the single token on place capacityc1 is removed, i.e.,
no more resource is available to start c1 for another pid. By annotation @tsrc1, the new pid on busy
can only be consumed by transition c1c (to complete step c1) after service-time tsrc1 has passed. When
c1c occurs, a token is produced on capacityc1 and waiting time twrc1 has to pass before c1s can occur

210 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

Figure 3. Coloured Petri net model of conveyor c1 : m2 of Fig 2.

again. Also, the bag identified by pid is removed from busy and inserted into a FIFO queue (modeling
a conveyor belt) between the end of c1 and the start of m2. Arc annotation q̂ [̂pid] specifies that bag
pid is appended to the end of queue q. Producing pid with time annotation @twqc1m2 on place waiting
models the minimum time it takes for a bag to travel from c1 to m2. Only then a bag may leave the
queue at transition m2s where arc annotation id::q specifies that bag pid at the head is removed from
the tail of the queue q.

The CPN model in Fig. 3 describes the impact of limited resource capacity and queues on the
progress of a case, but does not model the resource and the queue as entities themselves. This makes it
impossible to reason about resource and queue behavior explicitly. To alleviate this, we use proclets.

Modeling with Synchronous Proclets. A proclet is a Petri net that describes the behavior of a specific
entity that can be distinguished through a unique identifier. Interactions between entities are described
through synchronization channels between transitions of different proclets [6]. The synchronous proclet
system in Fig. 4 describes the entire BHS of Fig. 2(a) by using three types of proclets.

1. The process proclet (red dotted border) is a Petri net describing the control-flow perspective of
how bags, identified by variable pid may move through the system. It directly corresponds to the
MFD of Fig. 2(b). It is transition-bordered and each occurrence of one of its initial transitions
creates a new case identifier (a new value bound to variable pid) that was never seen before in
the sense of ν-Petri nets [33], see [6] for details.

2. Each resource proclet (green dashed border) models a resource with cyclic behavior as its own
entity identified by variable rid. For example, the PassengerToSystemHandover proclet (top left)
identifies a concrete resource by token rid = c1; its life-cycle models that starting a task (c1s)
makes the resource busy and takes service time tsrc1, after completing the task (c1c) the resource
has waiting time twrc1 before being idle again in the same way as Fig. 3. Which item the resource
is busy with is recorded through variable pid in the pair (rid, pid). In the classical CPN in Fig. 3,
the pid is determined by the input and output transition of place busy. For the resource proclets
in Fig. 4, pid is a free variable at c1s and c1c whose value is determined when synchronizing
with the corresponding transition in the Process proclet (which we describe below). All other
resource proclets follow the same pattern, though some resources such as MergingUnit-m2 and
DivertingUnit-d1 may have two transitions to become busy or idle, respectively.

3. Each queue proclet (blue dash-dotted border) describes a FIFO queue as in Fig. 3 from the end
transition of one task to the start transition of the subsequent task, e.g., from c1c (end of c1)

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 211

to m2s (start of m2). However, where Fig. 3 uses a distinct place queuec1m2 for the queue, a
queue proclet maintains the queue state (the list) together with the queue identifier qid in place
queue. Items entering the queue are remember by their pid. In the classical CPN in Fig. 3, the
pid is determined by consuming from the input place of transition c1c. For the queue proclets
in Fig. 4, pid is a free variable at c1c whose value is determined when synchronizing with the
corresponding transition in the Process proclet.

Where the model of Fig. 3 only uses identifiers for pid and distinguishes resource and queue through
model structure, the resource and queue proclets explicitly model resource and queue identifiers through
markings and variables. This will later allow us to relate event data over multiple identifiers to a proclet
model and to decompose analysis problems along identifiers.

Transition Synchronization in Proclets. The proclet system synchronizes process, resources, and
queues via synchronous channels between transitions. A transition linked to a synchronous channel may
only occur when all linked transitions are enabled; when they occur, they occur in a single synchronized
event. For example, transition c1s is always enabled in Process, generating a new bag id, e.g., pid = 49,
but it may only occur together with c1s in PassengerToSystemHandover, i.e., when resource c1 is idle,
thereby synchronizing the process case for bag pid = 49 with the resource with identifier rid = c1.
By storing the pair (rid, pid) = (c1, 49) on place busy, resource c1 is now correlated to case 49.
Transition c1c of the process proclet can now only occur when synchronizing with c1c of the resource
proclet, and thus only for pid = 49 and rid = c1. Moreover, both c1c transitions can only occur when
synchronizing with the c1c transition of the queue proclet for qid = c1 : m2, thereby completing the
work of c1 on pid = 49 and putting pid = 49 into the queue. Note that using CPN expressions (as
used in queue and resource proclets) eliminates the need for dedicated correlation expressions used for
the basic proclet model introduced in [6].

In the example, each resource is statically linked to one process step, but the model also allows for
one resource to participate in multiple different process steps, and multiple resources to be required for
one process step. In the following, we call a proclet system that defines proclets for processes, queues,
and resource that are linked via synchronous channels as described above, a PQR system.

Proclets Describe Synchronizing Entity Traces. We now highlight how the partial-order semantics
of synchronous proclets [6] preserves the identities of process, resources, and queues as “entity traces”.
Figure 5(b) shows a partially-ordered run of the PQR system of Fig. 4 for two bags id = 50 and
id = 51. The run in Fig. 5(b) can be understood as a synchronization of multiple runs or traces of
the process, resource, and queue proclets, one for each case, resource, or queue involved as shown in
Fig. 5(a).

Bag 50 gets inserted via input transition c3c (event e∗0 in Fig. 5(b)). This event is a synchronization
of events e0 (c3c occurs for bag 50 in the Process proclet) and e0′ (c3c occurs for the c3:m3 queue) in
Fig. 5(a). The minimal waiting time twqc3m3 must pass before bag 50 reaches the end of the queue and
process step m3 can start. The process step m3 merges bag 50 from the check-in conveyor c3 onto
the main linear conveyor and may only start via transition m3s when MergingUnit-m3 is idle. As this
is the case, bag 50 leaves the queue (e1′′ in c3:m3), m3 starts merging (e1′ in m3), the bag starts the
merging step (event e1 in Process), resulting in the synchronized event e1∗ in Fig. 5(b).

212 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

Figure 4. The synchronous proclet model of the system shown in Fig. 2(a) consists of three types of proclets:
Process for modeling a system layout and process control flow (red, dotted), Resource for modeling equipment
performing tasks (green, dashed), and Queue for modeling conveyors transporting bags in the FIFO order (blue
dash-dotted). Only filled transitions can be observed in an event log.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 213

Figure 5. Synchronization of multiple sub-runs of the synchronous proclet system in Fig. 4 over shared
resources and queues (a), and a global partial order obtained by the union of partial orders of each sub-run (b) for
synchronized events, shown by red arrows, green arrows (with marker r) and blue arrows (with marker q) for
partial orders <pid, <rid and <qid respectively.

214 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

By e′1, resource m3 switches from idle to busy and takes time tsrm3 before it can complete the
merge step with m3c (event e2′) on bag 50 (event e2); this merge step also inserts bag 50 into queue
m3:m4 (e2′′) resulting in synchronized event e2∗. Subsequently, bag 50 leaves queue m3:m4 (e3∗) is
pushed by merge unit m4 into queue m4:d1 (e4∗).

Concurrently, bag 51 is inserted via input transition c4c (event e17∗), moves via queue c4:m4 also
to merge unit m4 to enter queue m4:d1, i.e., both bags 50 and 51 now compete for merge unit m4 and
the order of entering m4:d1. In the run in Fig. 5, m4 executes m4s and m4c for bag 51 (e5∗ and e6∗)
after completing this step for bag 50 (e3∗ and e4∗). Thus, 51 enters the queue (e6∗) after 50 entered the
queue (e5∗) but before 50 leaves the queue e7∗. Consequently, divert unit d1 first serves 50 (e7∗ and
e8∗) to reach scanner s1 (e18∗) before serving 51 (e9∗ and e10∗) to reach scanner s2 (e19∗).

Fig. 5(b) shows how the process tokens of bag 50 and 51 synchronized with the resources and
queue tokens along the run, forming sequences or traces of events where each of these tokens was
involved. For example, bag 50 followed the trace e0∗, e1∗, . . . , e8∗, e18∗ and queue m4:d1 followed
trace e4∗, e6∗, e7∗, e9∗ thereby synchronizing with both bag 50 and bag 51.

3.2. Information loss because of incomplete logging

Although event data on objects that are tracked can be used for various kinds of data analysis [4, 5], in
practice sensors are placed only where it is absolutely necessary for correct operation of the system, e.g.,
for merge and divert operations, without considering data analysis needs. Applied to our example, only
the transitions that are shaded in Fig. 4 would be logged, i.e., c1s,m2′s,m3′s,m4′s, d1s, d2s, s1s, s22
would be logged from the control-flow perspective only. The run of Fig. 5 would result in a “typical”
but highly incomplete event log as shown in Fig. 2(c).

According to this incomplete log, bag 50 silently passes m4 and is tracked again only at d1 (e7)
and finally at s1 (e18) whereas 51 silently passes d1 (as it moves further on the main conveyor) and is
tracked again only at d2 (e11). Based on this incomplete information the bags 50 and 51 may have
traversed m4:d1 in different orders and at different speeds resulting also in different loads as illustrated
in Fig. 1. As a result, in case of congestion, we cannot determine the ordering of cases [3], cannot
compute the exact load on each conveyor part for (predictive) process monitoring [5, 10]. The longer
an unobserved path (e.g., c1→ d2), the higher the uncertainty about the actual behavior and the less
accurate performance analysis outcome.

Although minimal (or even average) service and waiting times on conveyor belts and resource
are known, we need to determine the order of all missing events and the possible intervals of their
timestamps to reconstruct for how long resources were occupied by particular cases and in which order
cases were handled, e.g., did 50 precede 51 on m4:d1 or vice versa?

The objective of this paper is to reconstruct from a subset of events logged from the control-flow
perspective only the remaining events (including time information), so that the time order is consistent
with a partially ordered run of the entire system, including resource and queue proclets. For example,
from the recorded events of the event log in Fig. 2(c) we reconstruct the remaining events (Fig. 5(a))
with time information so that the resulting order (by time) is consistent with the partially ordered run in
Fig. 5(b).

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 215

4. Modeling system-level runs from event data

Having introduced the problem in an informal way in Sect. 3, we now turn to formalizing it. We first
discuss a behavioral model that describes, both, the behavior of all process executions in the system,
and how these process executions interact via shared resource. To this end, we develop the notion
system-level runs and how they canonically emerge from classical event logs that also log the shared
resources involved in the process execution.

We first recall classical event logs in Sect. 4.1 and their traces. We then formalize multi-entity
event logs in Sect. 4.2 where an event can be related to multiple different entities. This allows us to
observe behavior along a specific shared resources in the same way as we observe behavior along a
case identifiers.

To later be able to reason about behavior along multiple entities we then introduce two different but
equivalent views on a multi-entity event log that differ in how they explicate behavior over multiple
entities.

• Each multi-entity event log induces a family of classical event logs (one per entity type) that
synchronize on shared events; we introduce this view in Sect. 4.3.

• Each multi-entity event log also induces a strict partial order over the events, where events are
ordered over time along the same entity. We call this view a system-level run and introduce it in
Sect. 4.4.

We show in Sect. 4.5 that all views contain the same information allowing us to switch perspectives on
the behavior. We will use the different perspectives when formally stating the problem in Sect. 5 and
solving the problem in Sect. 6.

4.1. Classical event logs

We first provide a definition of a classical event log, which we call single entity event log. We later
generalize this definition to a multi-entity event log. With this aim of generalization in mind, we define
a single entity event log just as a set of events with attributes. The cases and traces of an event log will
then be derived from event attributes through canonical functions we provide afterwards.

From the usual event attributes of activity, time, and case identifier, only the activity name attribute
act is mandatory. The time attribute is optional as we later want to study situations of incomplete
logging. Also the case identifier attribute is optional for the same reason. When we later move to a
multi-entity setting the term “case” is no longer adequate. We therefore call the case identifer attribute
an entity type attribute et, referring to the type of entity on which the events are recorded (e.g., bags in
baggage handling system)

Definition 4.1. (Single entity event log)
A single entity event log L = (E,AN , et ,#) is a set E of events, a non-empty set AN of attribute
names with time, act ∈ AN and a designated entity type attribute et ∈ AN . The partial function
: E ×AN 9 Val assigns events e ∈ E and attribute names a ∈ AN a value #a(e) = v, so that the
activity name #act(e) is defined for each event e ∈ E.

216 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

We write #a(e) =⊥ if event e has no value defined for attribute a. We call the value #et(e) = id the
entity identifier of e (for entity type et). Note that we do not require all events to be correlated to the
designated entity type, i.e., #et(e) can be undefined. Such events will later simply not be part of a case
and trace. Events without time stamp #time(e) =⊥ are unordered to all other events. To distinguish
event logs where all events are correlated to an entity and are ordered by time stamps, we introduce the
following definitions.

Definition 4.2. (time-incomplete, time-monotone event log)
We call a single entity-event log L = (E,AN , et ,#) time-complete iff for each e ∈ E holds
#time(e) 6=⊥ and #et(e) 6=⊥, i.e., each event has activity, time, and entity type. Otherwise L
is called time-incomplete. We call a complete log L time-monotone iff for any two e, e′ ∈ E holds if
#et(e) = #et(e

′) then #time(e) 6= #et(e
′).

Table 1. Event log with multiple entity types pid, rid, qid

event id pid activity time rid qid
e0 50 c3c 01.01.20 9:00:15 ⊥ c3:m3
e1 50 m3s 01.01.20 9:00:30 m3 c3:m3
e2 50 m3c 01.01.20 9:00:40 m3 m3:m4
e3 50 m4s 01.01.20 9:00:45 m4 m3:m4
e4 50 m4c 01.01.20 9:00:50 m4 m4:d1
e7 50 d1s 01.01.20 9:01:05 d1 m4:d1
e8 50 d1c 01.01.20 9:01:10 d1 d1:s1
e18 50 s1s 01.01.20 9:01:15 ⊥ d1:s1
e17 51 c4c 01.01.20 9:00:35 ⊥ c4:m4
e5 51 m4s 01.01.20 9:00:55 m4 c4:m4
e6 51 m4c 01.01.20 9:01:00 m4 m4:d1
e9 51 d1s 01.01.20 9:01:15 d1 m4:d1
e10 51 d1c 01.01.20 9:01:20 d1 d1:d2
e11 51 d2s 01.01.20 9:01:25 d2 d1:d2
e12 51 d2c 01.01.20 9:01:30 d2 d2:s2
e19 51 s2s 01.01.20 9:01:35 ⊥ d2:s2

Table 1 shows a single entity event log for entity type pid. The log is time-complete and monotone:
no two events for the same entity type carry the same time-stamp.

All events with the same value for et are correlated to the same entity or case. A trace is the
sequence of all events in a case ordered by time (and events without time-stamp can be placed anywhere
in the sequence).

Definition 4.3. (Case, trace, sequential event log)
Let L = (E,AN , et ,#) be an event log with entity type attribute et .

The set of cases in L wrt. et is et(L) = {#et(e) | e ∈ E}, i.e., all entity (or case) identifier values
in L.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 217

All events carrying the same case identifier value id ∈ et(L) are correlated to id , i.e., corr(L,
et = id) = {e ∈ E | #et(e) = id}.

A trace of case id is a sequence 〈e1, . . . , en〉 of all events correlated to id that preserves time, i.e.,
corr(L, et = id) = {e1, . . . , en} and for all 1 ≤ i < j ≤ n hold if #time(ei) 6=⊥ and #time(ej) 6=⊥
then #time(ei) ≤ #time(ej). If two events have the same timestamp, a case id has more than one
trace; we write σ(L, et = id) for the set of traces of case id.

A sequential event log of L is a set σ(L, et) which contains for each id ∈ et(L) exactly one trace
σ ∈ σ(L, et = id).

For a time-incomplete event log L, the notion of trace and sequential event log are non-deterministic,
i.e., an event without time stamp can be placed at an arbitrary position in the trace, allowing for multiple
different traces for the same case. Only in a monotone event log L, each case id has a unique trace
{σidet} = σ(L, et = id) and the log σ(L) is uniquely defined. We then write σidet = σ(L, et = id).

Table 1 shows a time-complete, monotone single entity event log for entity type pid defining cases
{50, 51} and traces σ(L, pid, 50) = σ50pid = 〈e0, e1, . . . , e8, e18〉 and σ51pid = 〈e17, e5, e6, e9, . . . , e12,
e19〉. This classical interpretation of the events in Table 1 describes how bags 50 and 51 travel through
the baggage handling system of Fig. 2(a) from check-in c3c and c4c to scanners s1s and s2s.

4.2. Event logs over multiple entities

In the classical single-entity event logs of Sect. 4.1, attributes rid and qid of Table 1 are considered so-
called event attributes [9] which describe the event further, i.e., event e6 of bag 51 atm4c was performed
by resource #rid(e6) = m4 (merge-unit 4) as the bag entered the conveyor belt #qid(e6) = m4 : d1
from merge-unit 4 to divert-unit 1.

However, attributes rid and qid do refer to system entities in their own right: the machines that
perform the various activities on the bags, and the conveyor belts that move bags between activities and
machines. These machines and conveyor belts exist beyond individual cases and occur also in other
cases, e.g., #rid(e3) = m4,#rid(e4) = m4 : d1 for bag 50. To study how these shared resources (e.g.,
machines, conveyor belts) relate and order bags over time, we introduce the notion of a multi-entity
event log which designates multiple entity type attributes.

Definition 4.4. (Multi-entity event log)
An event log with multiple entity types L = (E,AN ,ET ,#) is a set E of events, a non-empty set
AN of attribute names with act ∈ AN and a subset ∅ 6= ET ⊂ AN is designated as entity types.
Partial function # : E × AN 9 Val assignings events e ∈ E and attribute names a ∈ AN a value
#a(e) = v, so that the activity name #act(e) is defined for each event e ∈ E.

Table 1 shows a monotone event log with multiple entity types ET = {pid, rid, qid}. In contrast to a
single-entity log (Def. 4.1), an event in a multi-entity log (Def. 4.4) may carry more than one entity
type #et(e) 6=⊥, et ∈ ET , e.g., #pid(e0) = 50,#qid(e0) = c3 : m3. As for Def. 4.1, an entity type
may be undefined or one or multiple events, e.g., #rid(e0) =⊥.

Note that a multi-entity event log L = (E,AN ,ET ,#) with a singleton set of identifiers ET =
{et} coincides with a classical event log (Def. 4.1). The notions of time-incomplete, complete, and
monotone event log lift to multi-entity event logs by applying them on all entity types in ET .

218 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

We next introduce two views that materialize the behavioral information in a multi-entity event log:
as sets of sequential event logs and as a partial order.

4.3. Sequential view on event logs over multiple entities

We use sequential traces (Def. 4.3) to describe the behavior stored in a single-entity event log L in an
explicit form. Each trace in σ(L, id) describes a possible sequences of activity executions over time for
entity id ∈ et(L); no two traces σ(L, endid , id1) and σ(L, endid , id2) share an event.

We now discuss how to materialize such sequential information from a multi-entity event log L for
all entity types ET . First, we canonically derive a set of sequential event logs of L, one per entity type
et ∈ ET . In Sect. 4.4 we discuss an alternative view based on partial orders.

Note that the functions et(L), corr(L, et , id), σ(L, et , id) of Def. 4.3 are well-defined over multi-
entity event logs.

Definition 4.5. (Sequential views on multi-entity event log)
Let L = (E,AN ,ET ,#) be a multi-entity event log.

A sequential event log of L for entity type et ∈ ET is a set σ(L, et) containing exactly one trace
σ ∈ σ(L, et , id) for each case id ∈ et(L) of et (see Def. 4.3).

A sequential view on L is a family 〈σ(L, et)〉et∈ET of sequential event logs – one per entity type
in L.

As for sequential event logs, if L is monotone, then the sequential event log σ(L, et) of an entity is
unique, and the sequential view on L is unique.

The sequential view on the monotone multi-entity event log in Tab. 1 has three sequential event
logs σ(L, pid), σ(L, qid), σ(L, rid). Thereby the pid-log σ(L, pid) is the same as for the single-entity
event log. It describes the behavior along the classical case identifier, i.e., one trace per bag in the
system.

Log σ(L, rid) has cases m3,m4, d1, d2 and, among others, traces σ(L, rid,m4) = σm4
rid = 〈e3,

e4, e5, e6〉 and σd1rid = 〈e7, e8, e9, e10〉. These traces describe the order in which each machines was
used. Note that e3, e4, e7, e8 ∈ corr(L, pid, 50) while e5, e6, e9, e10 ∈ corr(L, pid, 51). That is,
traces σm4

rid and σd1rid for rid contain events from different bags, i.e., the rid-traces go “across” multiple
different pid-traces.

Log σ(L, qid) has cases c3 : m3,m3 : m4, c4 : m4,m4 : d1, d1 : s1, d1 : d2, d2 : s2 and, among
others, trace σm4:d1

qid = 〈e4, e6, e7, e9〉 while e4, e7 ∈ corr(L, pid, 50) and e6, e9 ∈ corr(L, pid, 51).
These traces describe the order in which different pid-cases entered and left the queues.

Note that per sequential event log, each event occurs in only one trace, but the same event can
be part of multiple different event logs (for different entity types), e.g., e4 occurs in σ50pid, σ

m4
rid , and

σm4:d1
qid . In this way, the rid- and qid-traces describe how different pid-traces are synchronized via

shared machines (rid) and conveyor belts (qid). However, that synchronization of multiple traces is
implicit in the sequential view. We therefore propose a partially-ordered view on a multi-entity event
log next.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 219

4.4. Partially ordered view on event logs over multiple entities

In Sect. 4.3, we used #et(.) to derive sequences of events related to the same entity ordered by #time(.).
We next encode the same information in an ordering relation over events, which is a strict partial order
due to the monotonicity of the #time(.) values. We thereby start by first ordering events e1 < e2 only
if they are related to the same entity. The transitive closure then naturally extends this ordering across
multiple different entities.

Definition 4.6. (Partial-order view, system-level run)
Let L = (E,AN ,ET ,#) be a monotone multi-entity event log.

Let et ∈ ET and id ∈ et(L). Event e1 ∈ E precedes event e2 ∈ E in entity id of type et, written
e1 <

id
et e2 iff

1. ⊥6= #time(e1) < #time(e2) 6=⊥ (the time stamp of e1 is before the time stamp of e2), and

2. #et(e1) = #et(e2) = id (both events are related to the same entity id).

e1 directly precedes e2 in entity id of type et, written e1 lidet e2, iff there exists no e′ ∈ E with
e1 <

id
et e
′ <idet< e2.

This ordering lifts to entity types and entire L:

• e1 directly precedes e2 in entity type et, written e1let e2, iff e1lidet e2 for some id ∈ et(L); and

• e1 directly precedes e2, written e1 l e2, iff e1 let e2 for some et ∈ ET .

• The transitive closures (let)+ =<et and (l)+ =< define (indirectly) precedes per entity type
and for all events in L, respectively.

The partial-order view on L or system-level run of L (induced by τ) is π = (E,<,AN ,ET ,#).

Figure 5(b) visualizes the directly precedes relations lpid,lrid,lqid induced by #time for the multi-
entity event log in Tab. 1. This behavioral model shows that events of different process cases (pid = 50
and pid = 51) are independent under the classical control-flow perspective <pid, e.g., e4 6<pid e5 6<pid
e7 (see Def. 4.6), but mutually depend on each other under <rid and <qid, e.g., e4 <rid e5 <rid e6
and e6 <qid e7.

Note that events without defined time stamp are unordered to all other events, i.e., they can occur at
any time. We will exploit this when inferring missing time stamps.

The order < is indeed a strict partial order.

Lemma 4.7. Let L = (E,AN ,ET ,#) be a monotone multi-entity event log. Let π = (E,<,AN ,
ET ,#) be the system-level run of L. Then (E,<) is a strict partial order.

Proof:
We have to show that < is transitive and irreflexive. <= (l)+ is transitive by construction in
Def. 4.6. Regarding irreflexivity: e1 l e2 holds only if #τ (e1) < #τ (e2). As L is monotone, either
#τ (e1) < #τ (e2) or #τ (e2) < #τ (e1) holds (Def. 4.2) but not both, hence < is irreflexive. ut

220 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

4.5. Relation between sequential and partially-ordered view

To better define and solve the problem, we now establish a more explicit relation between the system-
level run π of L and the traces in the sequential view of L.

Given a system-level run π = (E,<,AN ,ET ,#) we write πet for the projection of π onto entity
type et ∈ ET where πet = (Eet, <et,AN , {et},#) contains only the events E|et = {e ∈ E |
#et(e) 6=⊥} related to et . Relation <et is already well-defined wrt. E|et. We call πet the entity-type
level run of L for entity type et.

Correspondingly, given an identifier id ∈ et(L), the projection πidet = (Eidet , <
id
et,AN , {et},#)

contains only the events E|idet = corr(L, et = id) of id. We call πidet the entity-level run of L of entity
id of type et.

From the system-level run in Figure 5(b) we can obtain the entity-level runs π50pid and π51pid from
the perspective of the process, πm3

rid , π
m4
rid , π

d1
rid, π

d2
rid from the perspective of the resources, and πc3:m3

qid ,

πm3:m4
qid , πc4:m4

qid , πm4:d1
qid , πd1:d2qid , πd1:s1qid , πd2:s2qid from the perspective of the conveyor belts (or queues).

Each entity-level run πidet corresponds to a sequential trace σidet in the sequential view of L because
either view derives the direct precedence/succession of events from the same principles.

Lemma 4.8. Let L = (E,AN ,ET ,#) be a monotone multi-entity event log. Let π = (E,<,AN ,
ET ,#) be the system-level run of L.

For all e1, e2 ∈ E holds: e1 l e2 iff there exists et ∈ ET and id ∈ et(L) so that 〈. . . , e1, e2,
. . .〉 = σ(L, et = id) is a trace in the sequential view 〈σ(L, et)〉et∈ET of L.

Proof:
If e1l e2 then by Def. 4.6, e1lidet e2 for some et ∈ ET and id ∈ et(L). Thus, #et(e1) = #et(e2) and
#time(e1) < #time(e2) (by Def. 4.6 and L being monotone). By Def. 4.3, e1, e2 ∈ corr(L, et = id)
(correlated into the same case id for et). Further, because there is no e′ ∈ corr(L, et = id) with
#time(e1) < #time(e

′) < #time(e2) (definition of l in Def. 4.6), e1 and e2 are ordered next to
each other in the sequential trace 〈. . . , e1, e2, . . .〉 = σ(L, et = id). The converse holds by the same
arguments. ut

Corollary 4.9. Let L = (E,AN ,ET ,#) be a monotone multi-entity event log. Let π = (E,<,
AN ,ET ,#) be the system-level run of L. For any πidet for et ∈ ET , id ∈ et(L) holds e1 lidet e2 iff
〈. . . , e1, e2, . . .〉 = σ(L, et = id) and ei <idet ej iff 〈. . . , ei, . . . , ej , . . .〉 = σ(L, et = id).

The above relation may not seem profound and be more a technical exercise. However, we benefit in
the next sections from being able to change perspectives at will and study (and operate on) behavior as
a classical sequence (and use sequence reasoning for a single entity) as well as a partial order (and use
partial order reasoning across different entities).

For instance, the directly precedes relations lpid,lrid,lqid visualized in Figure 5(b) directly
define the sequences of events we find in σ(L, pid), σ(L, rid), and σ(L, qid).

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 221

5. Modeling multi-entity behavior with queueing and time

We introduced system-level runs and multi-entity event logs in Sect. 4. We now want to formally
state the problem of inferring missing time-stamps from events logs which only recorded partial
information about the system. Thereby the gap between “partial” and “complete” information depends
on domain knowledge. We therefore first introduce a model for describing such domain knowledge
about system-level behavior and state the formal problem afterwards.

Our model uses synchronous proclets [6] to describe a system as a composition of multiple smaller
components (each called a proclet) that synchronize dynamically on transition occurrences. Which
transitions synchronize is specified in channels. The original definition [6] is based on Petri nets with
identifiers. To model queueing and time, we extend the synchronous proclet model with concepts of
coloured Petri nets (CPN).

We first recall some basic syntax of colored Petri nets in Sect. 5.1 and then formulate a replay
semantics to replay an event log over a CPN in Sect. 5.2. This replay semantics allows us to define
conformance checking problems between a CPN and a multi-entity event log.

We then lift this definition of CPN replay semantics to CPN proclet systems where multiple proclets
(each defined by a CPN) synchronize on joint transition firings in Sect. 5.3; the syntax defined there
extend the basic synchronous proclet model [6] with concepts for data and time.

We then consider a specific class of CPN proclet systems which describe a single process with
shared resources and queues. We call such a proclet system a PQR system. We introduce PQR systems
in Sect. 5.4 and then formally state our research problem of repairing incomplete event logs in Sect. 5.5.

5.1. Background on coloured Petri nets

We here only recall the CPN notation and semantic concepts also needed in the remainder of this paper
and do not introduce the entire formal model CPN; refer to [7] for an introduction and further details.

A labeled coloured Petri net (CPN)N = (P, T, F,Σ, `,Var ,Types, colSet ,m0, arcExp, arcTime)
defines

• a skeleton Petri net (P, T, F) of places P , transitions T , and arcs F as usual; we write •t and t•

for the pre- and post-places of transition t and •p and p• for the pre- and post-transitions of place
p;

• a labelling function ` : T → Σ assigning each transition a name a ∈ Σ from an alphabet Σ;

• a set of variable names Var and a set of data Types;

• color sets (i.e., data types) colSet : P ∪ Var → Types specifying for each place and variable
which values it can hold;

• an initial marking m0 : P → 2Values×R assigning to each place a multiset of value-time pairs
(v, time) so that v ∈ colSet(p), p ∈ P ;

• arc expressions arcExp : F → Exp defining for each arc an expression over Var and various
operators, specifying which values to consume/produce; and

222 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

• a time annotation arcTime : F → R defining for an output arc (t, p) how much time arcTime(t,
p) has to pass until a produced token becomes available.

Figure 4 shows multiple labeled coloured CPNs:
In Process (shown in red) each arc is annotated with the variable pid and each place p has the

colorset colSet(p) = Pid describing identifiers for different bags (cases) of the process. Thus, bags are
described by their identifiers and transitions consume and produce these identifiers, thereby moving
the bag forward through the process. Note that some transitions have no pre-places, e.g., c1s. The
pid value that these transitions produce can be chosen freely; our replay semantics in Sect. 5.2 will
determine the pid value based on an event log.

In CheckIn-c1, places idle and busy have colorset Rid . Place idle carries a token (c1, 0) meaning
value c1 is available from time 0 onwards, i.e., resource c1 is idle at this time. All arcs carry variable
rid as arc expression. Arc (c1s, busy) carries time annotation arcTime(c1s, busy) = tsrc1 > 0 which
specifies a delay of tsrc1 time units. When check-in starts (c1s fires) the resource c1 moves from idle
to busy and only becomes available after tsrc1 time units. Then check-in can complete and c1 moves
from busy to idle and only becomes available after twrc1 time units.

In Queue-c1:m2, place queue has a colorset of a pair (qid, q) where qid ∈ Qid is a queue identifier
and q ∈ Pid∗ is a list of bag identifiers. The initial token on queue is (c1 : m2, 〈〉) (i.e., the empty
queue). Transition c1c places a new bag (pid) on the start of conveyor belt by adding it to the end of the
current queue, transition m1s removes a bag from the end of conveyor belt by removing its head from
the queue. When c1c fires, the current queue (qid, q), q = 〈pid1, . . . , pidn〉 is consumed from place
queue and a bag identifier pid is appended to q, producing (qid, q̂ 〈̂pid〉) = 〈pid1, . . . , pidn, pid〉 onto
place queue. At the same time, token pid is produced on p3 with a delay of twqc1:m2, i.e., pid only
becomes available after twqc1:m2 time units. This allows to model that conveyor belt movement takes
time. When this delay for pid has passed and pid is at the head of the queue, i.e., token (qid, q′) with
q′ = pid :: 〈pid1, . . . , pidn〉 = 〈pid, pid1, . . . , pidn〉 is on place queue, then m1s can fire. If m1s fires
it consumes (qid, q′) from queue and pid from p3, and produces (qid, q) with q = 〈pid1, . . . , pidn〉 on
queue, thereby removing pid from the queue.

5.2. An event log replay semantics for colored Petri nets

We briefly recall the semantic concepts of CPNs. Let N = (P, T, F,Σ, `,Var ,Types, colSet ,m0,
arcExp, arcTime) be a CPN in the following.

A timed marking m assigns each place p a multiset m(p) of timed tokens (val, time′) where val is
the value on p and time′ is the time after which v can be consumed. A state s = (m, time) of a N has
a timed marking m and a time-stamp time. The time-stamp time is the global system time reached.
The initial state of N is (m0, 0).

A binding β : Var → Values binds each variable v to some value β(var). An arc expression exp
can be evaluated under a binding β by replacing each variable var in exp with β(var) and computing
the result, we denote the result by exp[β].

A transition t is enabled in a state s = (m, time) for binding β iff for each input arc (p, t) ∈ F holds
there exists (val, time′) ∈ m(p) so that arcExp(p, t)[β] = val and time′ ≤ time, i.e., evaluating the
arc expression arcExp(p, t) yields a value val which is already available at the current time.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 223

If t is enabled in s for binding β, then t can fire resulting in the transition-step s = (m, time)
t,β−−→

(m′, time) = s′ where

1. for each pre-place p of t, remove fromm(p) a timed token (arcExp(p, t)[β], time′) with time′ ≤
time, resulting in an intermediate marking m′′, and

2. for each post-place p of t, add to m′′(p) the token (arcExp(t, p), time+ arcTime(t, p)).

Further N can make a time-step s = (m, time)
delay−−−→ (m, time + delay) = s′, delay ≥ 0. In the

original CPN semantics [7] time has to advance at most until the next transition becomes enabled. We
drop this requirement and allow arbitrary time-progress to facilitate replaying event logs with their own
time-stamps.

We can now define the semantics of replaying a multi-entity event log L = (E,AN ,ET ,#)
over a CPN. The idea is that the activity name #act(e) of an event e specifies the label `(t) of the
transition t that shall be fired, #time(e) specifies the global time when t fires. We treat the attributes
AN \{time, act} as variables and the attribute-value function #a(e) = v defines the binding β(a) = v
for which t shall fire. For this definition we will ignore the entity types ET as the definition is general
to any CPN.

Definition 5.1. (CPN Replay Semantics)
Let N = (P, T, F,Σ, `,Var ,Types, colSet ,m0, arcExp, arcTime) be a CPN with initial state s0 =
(m0, 0). Let L = (E,AN ,ET ,#) be a time-complete multi-entity event log, i.e., each event has a
time-stamp.

Let σ = 〈e1, . . . , en〉 be a sequence of all events in E such that #time(ei) ≤ #time(ei+1) for
1 ≤ i < n. Each event ei defines the binding βi with βi(a) = #a(ei) for all a ∈ AN \ {time, act}.

An event sequence σ of L can be replayed on N iff for 1 ≤ i ≤ n exist delay 0 ≤ di ∈ R and

transition ti ∈ T with `(t) = #act(ei) so that si−1 = (mi−1, timei−1)
di−→ (mi−1,#time(ei))

ti,βi−−−→
(mi,#time(ei)) = si are time- and transition-steps in N that advance to #time(ei) and fire #act(ei).

By t(ei, σ) we denote for each event ei the transition ti ∈ T which performed the transition-step
described by ei when replaying σ.

Note that this definition requires that the transition t = t(ei, σ) is enabled at time #time(ei) (or was
already enabled earlier).

For example, the sequential trace σc3:m3
qid = 〈e0, e1〉 of the event log in Table 1 is replayed on the

CPN Queue-c3:m3 (identical to CPN Queue-c3:m3 in Fig. 4) as follows:

• the initial marking is m0(queue) = [((c3 : m3, 〈〉), 0)],m0(p3) = [];

• e0 yields steps (m0, 0)
9:00:15−−−−→ (m0, 9:00:15)

c3c,β1−−−−→ (m1, 9:00:15) with binding β1(qid) =
c3 : m3, β2(pid) = 50 and resulting marking m1(queue) = [((c3 : m3, 〈50〉), 9:00:15)],
m1(p3) = [(50, 9:00:15 + twqc3:m3)];

• e1 yields steps (m1, 9:00:15)
0:00:15−−−−→ (m2, 9:00:30)

m3s,β2−−−−→ (m2, 9 : 00 : 30) with binding
β2(qid) = c3 : m3, β2(pid) = 50 and resulting marking m2(queue) = [((c3 : m3, 〈〉),
9:00:30)] and m2(p3) = [].

224 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

5.3. Synchronous proclet systems with data and time

We can now define our model of a synchronous proclet system with data and time.

Definition 5.2. (CPN Proclet)
A CPN proclet Proc = (N, et) is a CPN N = (P, T, F,Σ, `,Var ,Types, colSet ,m0, arcExp,
arcTime) so that

• et ∈ V ar is a designated entity type variable that can be bound to entity identifier values
colSet(et) = IDval ,

• for each transition t with a pre-place, there exists an arc (p, t) with arcExp(p, t) has the form et
or (et, exp) where exp is some expression, and

• for each transition t with a post-place, there exists an arc (t, p) with arcExp(t, p) has the form
et or (et, exp) where exp is some expression.

All CPNs in Fig. 4 are CPN-proclets, e.g., Queue-c1:m2 has et = qid and c1c and m1s both have
incoming and outgoing arcs of the form (qid, exp); the arcs to/from p3 have a different form.

This structure ensures that each transition in a CPN-proclet Proc = (N, et) occurs in relation to
a specific entity instance identified by variable et, e.g., a specific bag, resource, or queue. A proclet
system synchronizes multiple proclets via channels.

Definition 5.3. (CPN Proclet System)
A CPN proclet system S = ({Proc1, . . . ,Prock}, C) is a set {Proc1, . . . ,Prock} of proclets with
disjoint sets of transitions and places, and a set of synchronization channels C ⊆ 2T being sets of
transitions so for each channel {t1, . . . , tr} holds `(ti) = `(tj).

In Fig. 4 shows a CPN proclet system where the channels are indicated by dashed edges, e.g., all
transitions labeled c1c in CheckIn-c1, Process, and Queue-c1:m2 form a channel.

The intuition is that transitions connected via a channel (ti, tj) can only fire together, i.e., proclets
Proci and Procj must each be in a marking where ti and tj are enabled for the same binding (i.e.,
variables occurring in both ti and tj must be bound to the same values). While the original proclet
semantics [6] is an operational semantics, we now provide a replay semantics over a CPN proclet
system.

We replay a multi-entity event log L = (E,AN ,ET ,#) over a CPN proclet system S = ({Proc1,
. . . ,Prock}, C) by decomposing L into its sequential event logs Let, et ∈ ET and replaying each
sequential event log over the corresponding proclet in S. As multiple proclets may use the same entity
type et (e.g., CheckIn-c1 and MergeUnit-m2 both use rid), we need to specify which case in Let
belongs to which proclet Proci in S.

Definition 5.4. (Replaying a Log over a CPN Proclet System)
Let L = (E,AN ,ET ,#) be a multi-entity event log (Def. 4.4) that is time-complete (Def. 4.2). Let
S = ({Proc1, . . . ,Prock}, C) be a proclet system.

Let f : Val → {1, . . . , k} be a mapping so that for each et ∈ ET and each id ∈ et(L), f(id) = i
maps to a proclet Proci with eti = et.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 225

The entire log L can be replayed over S (for a given mapping f) iff the following conditions hold:

1. For each et ∈ ET and sequential event log σ(L, et) ofL (Def. 4.5) holds: each trace σietd ∈ σ(L,
et) can be replayed on the CPN Ni of proclet Proci with i = f(id).

2. for each event e ∈ E and all traces σid1et1 , . . . , σ
idk
etk

that contain e, the set c = {t(e, σid1et1), . . . ,

t(e, σidketk)} of transitions replayed in the different traces is either singleton c = {t} or a channel
c ∈ C of S.

Figure 5 shows how the multi-entity event log L of Tab. 1 can be replayed over the proclet system
of Fig. 4. Each dashed rectangle in Figure 5(a) abstractly illustrates how one sequential trace in L
is replayed over one of the proclets in Fig. 4, the circles indicate parts of the markings reached after
replaying each event, e.g., replaying e0 in proclet Queue-c3:m3 yields a token (c3 : m3, [50]) on place
queue, etc. The dashed lines indicate how the channel constraints are satisfied by this replay. For
instance, event e4 is replayed by transition m4c in proclet Queue − c4 : m4 (trace σc4:m4

qid), by m4c in
Process (trace σ50pid), and by m4c in MergeUnit −m4 (trace σm4

rid); all three m4c transitions form a
channel in the proclet system in Fig. 4.

5.4. PQR systems

In the following, we only study a specific sub-class of CPN proclet systems which describes processes
with shared resources and queues, which we call PQR-systems. Each PQR system is composed of one
process proclet and multiple resource and multiple queue proclets in a specific way. Figure 4 shows an
example of a PQR system. We define each proclet type first and then the entire composition.

Intuitively, a process proclet describes a sequential process where each process step has designated
start and complete transitions, i.e., each step is non-atomic and start and complete are separately
observable. Moreover, the process proclet allows creating arbitrarily many fresh process instances
through source transitions without pre-places; cases that complete are consumed by sink transitions
without post-places. This is different from the concept of workflow nets [34] which model only the
evolution of a single case and abstract from case creation and deletion.

Definition 5.5. (Process proclet)
A Process-proclet (or P-proclet) is a CPN proclet (N, pid), N = (P, T, F,Σ, `,Var ,Types, colSet ,
m0, arcExp, arcTime) where the following properties hold:

1. P = Pactivity] Phandover (places either describe that an activity is being executed or that a case
being handed over to the next activity);

2. T = Tstart] Tcomplete (transitions either describe that an activity is being started or being
completed)

3. N is a state-machine, i.e., |•t| ≤ 1 and |t•| ≤ 1 and all nodes are connected,

4. N is transition-bordered, i.e,. |•p| ≥ 1 and |p•| ≥ 1 and the sets Tsource = {t ∈ T | •t = ∅} 6= ∅
and Tsink = {t ∈ T | t• = ∅} 6= ∅ of source and sink transitions are non-empty.

226 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

5. Each activity place p ∈ Pactivity is only entered via start transitions and only left with complete
transitions, i.e., •p ⊆ Tstart and p• ⊆ Tcomplete.

6. Each handover place p ∈ Phandover is only entered via exactly one complete transitions (of the
preceding activity) and left only via exactly one start transition (of the succeeding activity), i.e.,
•p = {t} ⊆ Tcomplete and p• = {t} ⊆ Tstart.

7. All arcs carry the entity identifier pid: arcExp(x, y) = pid ∈ Var for all (x, y) ∈ F .

8. No place carries an initial token: m0(p) = [] for all p ∈ P .

The proclet Process in Figure 4 is a P-proclet.

In this paper, a resource proclet defines the most basic life-cycle of a shared resource: the resource
is initially idle (available to do work), then starts an activity making the resource busy. There is a
minimum service time tsr the resource is busy before the task completes. After completing the task,
the resource is idle again but requires a minimum waiting time twr before being able to work again.
Figure 4 shows several resource proclets which we formally capture in the following definition.

Definition 5.6. (Resource proclet)
A Resource-proclet (or R-proclet) is a CPN proclet (N, rid), N = (P, T, F,Σ, `,Var ,Types, colSet ,
m0, arcExp, arcTime) for a resource with minimum service time tsr and minimum waiting time twr
when the following properties hold:

1. P = {pidle, pbusy};

2. T = Tstart] Tcomplete (transitions either describe that an activity is being started or being
completed);

3. p•idle = Tstart = •pbusy (resources go from idle to busy via start transitions);

4. p•busy = Tcomplete = •pidle (resources go from busy to idle via start transitions);

5. arcExp(x, y) = rid for all (x, y) ∈ F

6. arcTime(tstart, pbusy) = tsr for all tstart ∈ Tstart and arcTime(tcomplete, pidle) = twr for all
tcomplete ∈ Tcomplete

7. m0(pidle) = [rid] and m0(pbusy) = [] (the resource is idle initially)

An R-proclet has multiple start and complete transitions to mirror that an activity in a P-proclet has
multiple start and complete transitions. This will simplify the composition of proclets later on. For
example Merging-Unit-m2 in Fig. 4 has two start and one complete transitions while Diverting-Unit-d1
has one start and two complete transitions.

In this paper, a queue proclet defines the most basic operation of a queue: it ensures that items leave
the queue in the order in which they entered the queue; moreover, we specify that traversing the queue
requires a minimal waiting time twq.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 227

Definition 5.7. (Queue proclet)
A Queue-proclet (or Q-proclet) is a CPN proclet (N, qid), N = (P, T, F,Σ, `,Var ,Types, colSet ,
m0, arcExp, arcTime) for a queue identified by entity identifier value Q with minimum waiting time
twq when N is an instance of the CPN template shown in Fig. 6.

Figure 6. CPN template for Queue proclet

For example proclet Queue-c1:m2 in Fig. 4 is identified by entity identifier value c1:m2 and has
minimum waiting time twqc1:m2.

We can now formally define a PQR system as a CPN proclet system of one process proclet and
multiple resource and queue proclets. A PQR system has specific synchronization constraints. Each
activity in a process proclet (a place p ∈ Pactivity with corresponding start and complete transitions)
synchronizes with one resource proclet which is responsible for executing this activity for any incoming
case. Each handover between two activities in a process proclet (a place p ∈ Phandover) synchronizes
with one queue moving cases from one activity to the next.

Definition 5.8. (PQR system)
A PQR system is a CPN proclet system S = ({Process0, R1, . . . , Rk, Qk+1, . . . , Qn}, C) where the
following properties hold:

1. Process0 is a process proclet, R1, . . . ,Rk are resource proclets, Qk+1, . . . ,Qn are queue pro-
clets.

2. Each transition t ∈ T0 ∪ . . . ∪ Tn is in exactly one channel c ∈ C, denoted by c(t).

3. For each activity place p ∈ Pactivity in Process0 exists a resource proclet Ri so that (1) for
each tstart,0 ∈ •p (in Process0) exists tstart,i ∈ Tstart,i (in Ri) with c(tstart,0) = c(tstart,i)
and (2) for each tcomplete,0 ∈ p• (in Process0) exists tcomplete,i ∈ Tcomplete,i (in Ri) with
c(tcomplete,0) = c(tcomplete,i).

4. For each handover place p ∈ Phandover in Process0 exists a queue procletQi so that (1) transition
{tcomplete,0} = •p (in Process0) synchronizes with tenqueue,i ∈ Ti (in Qi) via c(tcomplete,0) =
c(tenqueue,i) and (2) transition {tstart,0} = p• (in Process0) synchronizes with tdequeue,i ∈ Ti
(in Qi) via c(tstart,0) = c(tdequeue,i).

The proclet system in Fig. 4 is a PQR system.

228 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

The above definition is rather declarative. To satisfy the above constraints there have to be enough
R-proclets (one per activity place) of the correct shape (to match the start and complete transitions in
the P-proclet), and enough Q-proclets (one per handover place). Moreover, the transition labels in all
proclets have to match to form valid channels.

The definition enforces that in a PQR system each activity in a process is carried out by a shared
resource of limited capacity (condition 3 in Def. 5.8). Thus when multiple case arrive at the same
activity, only for one of them the activity can be started while the others have to wait. Further, when an
activity for a case is completed, the case enters a queue and can only reach the next activity when all
other cases before it have reached that activity (condition 4 in Def. 5.8).

Many real-life processes show more general use of shared resources and handover of cases than
these very strict constraints. However, they are satisfied by material handling systems such as baggage
handling systems. Generalizing the definition to other types of processes with shared resources is
beyond the scope of this paper.

5.5. Restoring partial event logs of a PQR system

We can now formally state our research problem.

Let L be a multi-entity event log. And let S be a PQR system defining proclets for a process (with
case identifier pid), multiple resources (with entity identifier rid) and queues (with entity identifier
qid); see Def. 4.4 and Def. 5.8.

L is correct and complete log of S iff L can be replayed over the entire system S; see Def. 5.4. The
event log of Tab. 1 is a complete log of the PQR system in Fig. 4.

A correct and complete log L has at least entity identifiers pid, rid, and qid (as these are required
by a PQR system). Further, each trace σidet can be replayed on the corresponding proclet, i.e., each trace
describes a complete execution of the proclet for instance id. Further, all traces σidpid ∈ σ(L, pid) of
process entities (pid) are ordered relative to each other via the shared resources and queues as described
in S.

In reality often only a subset of activities B ⊆ A = {#act(e) | e ∈ L} and the control-flow
identifier pid have been recorded in a log, making it partial.

Definition 5.9. (Partial Log, Observed Event, Corresponds)
A log L′ = (E′,AN ′, {pid},#′) is a partial (and correct) log of PQR system S if there exists a correct
and complete log L = (E,AN ,ET ,#) of S such that

1. E′ ⊆ E, AN ′ ⊆ AN , and #′ = #|E′×AN ′ is the restriction of # to E′ and AN ′,

2. each e ∈ E′ has only case notion pid, i.e., #pid(e) 6=⊥ (and #rid(e) = #qid(e) =⊥),

3. #time(e) is defined, and

4. for each complete process trace σ(L, pid = id) = 〈e1, . . . , en〉 the partial trace σ(L′, pid =
id) = 〈f1, . . . , fk〉 records at least the first and last event e1 = f1 and en = fk.

We call each event e ∈ E′ an observed event. We say that the complete log L corresponds to the partial
log L′.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 229

Table 2. Partial event log of the complete event log in Tab. 1, missing events and attributes shown in grey

event id pid activity time rid qid
e0 50 c3c 01.01.20 9:00:15 ⊥ c3:m3
e1 50 m3s 01.01.20 9:00:30 m3 c3:m3
e2 50 m3c 01.01.20 9:00:40 m3 m3:m4
e3 50 m4s 01.01.20 9:00:45 m4 m3:m4
e4 50 m4c 01.01.20 9:00:50 m4 m4:d1
e7 50 d1s 01.01.20 9:01:05 d1 m4:d1
e8 50 d1c 01.01.20 9:01:10 d1 d1:s1
e18 50 s1s 01.01.20 9:01:15 ⊥ d1:s1
e17 51 c4c 01.01.20 9:00:35 ⊥ c4:m4
e5 51 m4s 01.01.20 9:00:55 m4 c4:m4
e6 51 m4c 01.01.20 9:01:00 m4 m4:d1
e9 51 d1s 01.01.20 9:01:15 d1 m4:d1
e10 51 d1c 01.01.20 9:01:20 d1 d1:d2
e11 51 d2s 01.01.20 9:01:25 d2 d1:d2
e12 51 d2c 01.01.20 9:01:30 d2 d2:s2
e19 51 s2s 01.01.20 9:01:35 ⊥ d2:s2

Thus, a partial log L′ contains for each case pid at least one partial trace σidpid recording the entry
and exit of the case and preserving the order of observed events, i.e., it can be completed to fit the
model. An MHS typically records a partial log as defined above. Tab. 2 shows a partial event log of the
complete log of Tab. 1. Fig. 5(b) highlights the events that are recorded in the partial event log .

Note that a partial event log coincides with the definition of a classical single-entity event log
(Def. 4.1). In a partial event log, events of different process cases are less ordered, e.g., observed
events e1 and e5 in Fig. 5 are unordered wrt. any resource or queue whereas they are ordered in the
corresponding complete event log.

Lemma 5.10. Let L′ be a partial event log of a PQR system S. Let L be a complete event log of S
that corresponds to L′. Let π(L′) and π(L) be the system-level runs of L′ and L, respectively. Then
for each e1, e2 ∈ E′: e1 < e2 in L′ implies e1 < e2 in L.

Proof:
For any e1 < e2 in L′ holds #pid(e1) = #pid(e2) and #time(e1) < #time(e2). These properties also
hold in L, thus e1 < e2 in L. ut

The converse does not hold. In the complete system-level run π(L) in Fig. 5(b), e5 < e7 (due to
qid = m4 : d1), whereas e5 ≮ e7 in the system-level run of the partial log L′ (where e5 and e7 are
unrelated). In the following, we investigate how to infer missing events and infer missing time-stamps,
and thereby reconstruct the missing ordering relations.

230 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

Formal problem statement Let S be a model of a PQR system defining life-cycles of process,
resource, and queue proclets, which resources and queues synchronize on which process step, and for
each resource the minimum service time tsr and waiting time twr and for each queue the minimum
waiting time twq. Given S and a partial event log L1 of S, we want to construct a complete log L2 of
S that corresponds to L1 (and can be replayed on S) according to Def. 5.9.

Restoring the exact timestamp is generally infeasible and for most use cases also not required.
Thus, our problem formulation does not require to reconstruct the exact time-stamps. Our CPN replay
semantics allows to fire transitions after their first moment of enabling, however they have to fire “early
enough” so that time constraints do not conflict with later observed events. Thus, we have to reconstruct
time-windows providing minimal and maximal timestamps for each unobserved event, resulting in the
following sub-problems:

• Infer unobserved events Eu for all process cases in L1 and their relations to queues and resources
(infer missing identifiers)

• Infer for each unobserved event e ∈ Eu a time-window of earliest and latest occurrence of the
event #tmin(e),#tmax(e) so that setting #time(e) = #tmin(e) or #time(e) = #tmax(e) for
e ∈ Eu results in a complete log of S.

6. Inferring timestamps along entity traces

In Sect. 5.5, we presented the problem of restoring missing events and time-windows for their times-
tamps from a partial event log L1 = (E1,AN 1, {pid},#1) such that the resulting log is consistent with
resource and queueing behavior specified in a PQR System S. In this section, we solve the problem for
PQR systems with acyclic process proclets by casting it into a constraint satisfaction problem, that can
be solved using Linear Programming (LP) [8]. In all subsequent arguments, we make extensive use of
the fact that we can see any multi-entity event log L1 equivalently as family of sequential event logs
σ(L1, et) with traces σidet and as the system-level run π(L1) = (E1, <1,AN 1, {pid},#1) with strict
partial order (E1, <1).

In Sect. 6.1, we show how to infer unobserved events and resource and queue identifiers (from S)
to construct an under-specified intermediate system-level run π2 = (E2, <2,AN 2, {pid, rid, qid},#2)
where all unobserved events Eu = E2 \ E1 have no timestamp but where <2 already contains all
ordering constraint that must hold in S.

In Sect. 6.2 we then refine π2 into π(L3) = (E2, <3,AN 3, {pid, rid, qid},#3) where <3 is no
longer explicitly constructed but completely inferred from time stamps that fit S. We determine minimal
and maximal timestamps #3

tmin(e) and #3
tmax(e) for each unobserved event e ∈ Eu (through a linear

program) so that if we set #3
time(e) = #3

tmin(e) or #3
time(e) = #3

tmax(e), the induced partial order
<3 refines <2, i.e., <2 ⊆ <3. By construction of #3

tmin(e) and #3
tmax(e), L3 is a complete log of M

and has L1 as a partial log. We explain our approach using another (more compact running) example
shown in Fig. 7(a) for two bags 53 and 54 processed in the system of Fig 4. The events in grey italic
(i.e., f3, f5, f6, f14) are unobserved.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 231

a)
Event,Id,Activity,Time

f1, 53, c1, 8:00:00

f3, 53, m2, 8:00:15

f5, 53, m3, 8:00:30

f6, 53, m4, 8:00:45

f9, 53, d1, 8:01:00

f0, 54, c3, 8:01:20

f12,54, m3, 8:00:35

f14,54, m4, 8:00:50

f16,54, d1, 8:01:05

Figure 7. Another partial event log of the system in Fig. 4 for bags 53 and 54 (a), partially complete traces
of the Process (b), Resource (c) and Queue (d) proclets, restored by oracles O1, O2. Only observed events are
ordered, e.g., f9 <d1

rid f16, while the other events are isolated.

6.1. Infer potential complete runs from a partial run

We first infer from the partial event log L1 an under-specified intermediate system-level run π2
containing all unobserved events and an explicitly constructed SPO <2 so that each entity-level run
πid2,pid is complete (can be replayed on the process proclet in S). In a second step, we relate each
unobserved event e ∈ Eu = E2 \ E1 to a corresponding resource and/or queue identifier which orders
observed events wrt. <rid and <qid. All unobserved events e ∈ Eu lack a timestamp and hence are left
unordered wrt. <rid and <qid in π(L2); we later refine <2 in Sect 6.2.

We specify how to solve each of these two steps in terms of two oracles O1 and O2 and describe
concrete implementations for either.

Restoring process traces Oracle O1 has to return a set of sequential traces L2 = {σidpid | id ∈
pid(L1)} = O1(L1, S) by completing each partial trace σ(L1, pid = id) of any process case id ∈
pid(L1) into a complete trace σidpid that can be replayed on the process proclet of S. Let E2 = {e ∈
σidpid | σidpid ∈ L2}. The restored unobserved events Eu = E2 \E1 only have attributes act and pid and
events are totally ordered along pid in each trace σidpid. O1 can be implemented using well-known trace
alignment [35] by aligning each sequential trace σ(L1, pid = id) on the skeleton net (P, T, F) of the
P-proclet of S. For example, applying O1 on the partial log of Fig. 7(a) results in the complete process
traces of Fig. 7(b).

At this point, the events e ∈ Eu have no time-stamp and the ordering of events is only available in
the explicit sequences σidpid = 〈e1, . . . , en〉. Until we have determined #time(ei), the SPO <2 has to be
constructed explicitly from the ordering of events in the traces σidpid, i.e., we define <2 as ei < ej iff
there ex. a trace 〈. . . , ei, . . . , ej , . . .〉 = σidpid ∈ L2 (see Cor. 4.9).

Moreover, as each trace σidpid can be replayed on the process proclet, each event is either a start event
(replays a start transition t ∈ Tstart) or a complete event (replays a complete transition t ∈ Tcomplete,
see Def. 5.5).

232 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

Inferring dependencies due to shared resources and queues Oracle O2 has to enrich events in E2

with information about queues and resources so that for each e ∈ E2 if resource r is involved in the
step #act(e), then #rid(e) = r and if queue q was involved, then #qid(e) = q.

Moreover, in order to formulate the linear program to derive timestamps in a uniform way, each
event e has to be annotated with the performance information of the involved resource and/or queue.
That is, if e is a start event and #rid(e) = r 6=⊥, then #tsr(e) and #twr(e) hold the minimum
service and waiting time of r, and if #qid(e) = q 6=⊥, then #twq(e) hold the minimum waiting time
of q.

For the concrete PQR systems considered in this paper, we set #rid(e) = r based on the model
S if r is the identifier of the resource proclet that synchronizes with transition t = #act(e) via a
channel c(t) (there is at most one). Attributes #tsr(e), #twr(e), can be set from the model as they
are parameters of the resource proclet. To ease the LP formulation, if e is unrelated to a resource,
we set #rid(e) = r∗ to fresh identifier and #tsr(e) = #twr(e) = 0; #qid(e) and #twq(e) are set
correspondingly. By annotating the events in E2 as stated above, we obtain π2 = (E2, <2,AN 2, {pid,
rid, qid},#2). Moreover, we can update the SPO <2 by inferring lrid and lqid from #time(e) for
all events where #rid(e) 6=⊥ and #qid(e) 6=⊥ (see Def. 4.6).

The system-level run π2, contains complete entity-level runs for pid (except for missing time
stamps). The entity-level runs queues (qid) and resources (rid) already contain all events to be
complete wrt. S but only the observed events are ordered (due to their time stamps). For example,
Fig. 7(d) shows the entity-level run πm4:d1

qid containing events f8, f9, f16, f15 with only f9 <qid f16.
Next, we define constraints based on the information in this intermediate run π to infer timestamps for
all unobserved events.

6.2. Restoring timestamps of unobserved events by linear programming

The SPO π2 = (E2, <2,AN 2, {pid, rid, qid},#2) obtained in Sect. 6.1 from partial log L1 includes
all unobserved events Eu = E2 \ E1 of the complete log, but lacks timestamps for each e ∈ Eu,
#time(e) =⊥. Each observed e ∈ E1 has a timestamp #time(e) and we also added minimum service
time #tsr, waiting time #twr(e) of the resource #rid(e) involved in e and minimum waiting time
#twq(e) of the queue involved in e. We now define a constraint satisfaction problem that specifies the
earliest #tmin(e) and latest #tmax(e) timestamps for each e ∈ Eu so that all earliest (latest) timestamps
yield a consistent ordering of all events in E wrt. <pid (events follow the process), <rid (events follow
resource life-cycle), and <qid (events satisfy queueing behavior). The problem formulation propagates
the known #time(e) values along with the different case notions <pid, <rid, <qid, using tsr, twr, twq.
For that, we introduce variables xtmin

e , xtmax
e ≥ 0 for representing event attributes tmin, tmax of

each e ∈ Eu. For all observed events e ∈ E1, we set xtmin
e = xtmax

e = #time(e) as here the correct
timestamp is known. We now define two groups of constraints to constrain the xtmin

e and xtmax
e values

for the unobserved events further.

In the following, we assume for the sake of simpler constraints presented in this paper, that all
observed events are start events (which is in line with logging in an MHS). The constraints can easily
be reformulated to assume only complete events were observed (as in most business process event logs)
or a mix (requiring further case distinctions).

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 233

6.2.1. Propagate information along process traces

The first group propagates constraints for #time(e) along <pid, i.e., for each process-level run (viz.
process trace) πidpid of pid in π. By the steps in Sect. 6.1, events in πidpid are totally ordered and derived
from the trace σidpid = 〈e1...em〉. Each process step has a start and a complete event in σidpid, i.e.,
m = 2 · y, y ∈ N, odd events are start events and even events are complete events. For each process
step 1 ≤ i ≤ y, the time between start event e2i−1 and complete event e2i is at least the service time of
the resource involved (which we stored as #tsr(e2i−1) in Sect. 6.1). Thus the following constraints
must hold for the earliest and latest time of e2i−1 and e2i.

xtmin
e2i = xtmin

e2i−1
+ #tsr(e2i−1), (1)

xtmax
e2i = xtmax

e2i−1
+ #tsr(e2i−1). (2)

For the remainder, it suffices to formulate constraints only for start events. We make sure that tmin
and tmax define a proper interval for each start event:

xtmin
e2i−1

≤ xtmax
e2i−1

. (3)

We write esi = e2i−1 for the start event of the i-th process step in σidpid and write θidpid = 〈es1, ..., esm〉 for
the sub-trace of start events of σidpid. Any event esi ∈ θidpid that was observed in L1, i.e., esi ∈ E1, has
#time(e

s
i) 6=⊥ defined. By Def. 5.9, σidpid as well as θidpid always start and end with observed events, i.e.,

es1, e
s
y ∈ E1 and #time(e

s
1),#time(e

s
y) 6=⊥. An unobserved event esi has no timestamp #time(e

s
i) =⊥

yet, but #time(e
s
i) is bounded by #time(e

s
1) (minimally) and #time(e

s
y) (maximally). Furthermore,

any two succeeding start events in θpid = 〈..., esi−1, esi , ...〉 are separated by the service time #tsr(e
s
i−1)

of step esi−1 and the waiting time #twq(ei) of the queue from ei−1 to ei. Similar to Eq. 1 and 2, we
formulate this constraint for both xtmin

e and xtmax
e variables:

xtmin
esk
≥ xtmin

esk−1
+ (#tsr(e

s
k−1) + #twq(e

s
k)), (4)

xtmax
esk

≤ xtmax
esk+1

− (#tsr(e
s
k) + #twq(e

s
k+1)). (5)

Fig. 8 uses the Performance Spectrum [3] to illustrate the effect of applying our approach step by
step to the partially complete traces of Fig. 7 obtained in the steps of Sect. 6.1. The straight lines in
Fig. 8(a) from f1 to f9 (for pid=53) and from f12 to f16 (for pid=54) illustrate that L2 (after applying
O1) contains all intermediate steps that both process cases passed through but not their timestamps.
Further (after applying O2), we know for each process step the resources (i.e., c1, m2, m3, m4, d1) and
the queues (c1:m2, m2:m3 etc.), and their minimum service and waiting times tsr, twr, twq. The sum
tsr + twq is visualized as bars on the time axis in Fig. 8(a), the duration of twr is shown in Fig. 8(b).

We now explain the effect of applying Eq. 4 on pid=53 for f3, f5 and f7. We have θ53pid = 〈f1, f3,
f5, f7, f9〉 with f1 and f9 observed, thus xtmin

fi
= xtmax

fi
= #time(fi) for i ∈ {1, 9}. By Eq. 4, we

obtain the lower-bound for the time for f3 by xtmin
f3
≥ xtmin

f1
+ #tsr(f1) + #twq(f3) with #tsr(f1)

and #twq(f3) the service time of resource c1 and waiting time of queue c1:m2. Similarly, Eq. 4 gives
the lower bound for f5 from the lower bound from f3 etc. Conversely, the upper bounds xtmax

fi
are

234 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

(a)

pid=53

pid=54

c1

m2

m4

d1

m3

(b)

Time

Eq.5

observed events
segment
occurrence

resulted regions

tsr+twq

#time(f1)

tmin(f3)

#tmin(f5)

#tmin(f7)

#time(f9)

#tmax(f3)

#tmax(f5)

#tmax(f7)

R1

timestamp intervals

Eq.7

#tmax(f3)

#tmax(f5)

#time(f16)

#tmax(f14)

#time(f12)

#tmin(f12)

(c)

R2

sum of min. resource service
and queue waiting timetsr+twq

#time(f9) #time(f16)

twr

Eq.4

Figure 8. Equations 1-5 define time intervals for unobserved events (a), defining regions for the possible traces
(b). Equations 6-7 propagate orders of cases observed on one resource to other resources (b), resulting in tighter
regions (c).

derived from f9 “downwards” by Eq. 5. This way, we obtain for each fi ∈ θ53pid an initial interval
for the time of fi between the bounds xtmin

fi
≤ xtmax

fi
as shown by the intervals in Fig. 8(a). As

xtmin
f1

= xtmax
f1

= #time(f1) and xtmin
f1

= xtmax
f1

= #time(f9), the lower and upper bounds for the
unobserved events in θ53pid form a polygon as shown in Fig. 8(b). Case 53 must have passed over the
process steps and resources as a path inside this polygon, i.e., the polygon contains all admissible
solutions for the timestamps of the unobserved events of θ53pid; we call this polygon the region of case
53. The region for case 54 overlays with the region for case 53.

6.2.2. Propagate information along resource traces

We now introduce a second group of constraints by which we infer more tight bounds for xtmin
ei and

xtmax
ei based on the overlap with other regions. While the first group of constraints traversed entity traces

along pid (i.e., process traces), the second group of constraints traverses entity traces for resources
along rid.

Each resource trace πrrid in π2, contains all events Errid resource r was involved in – across multiple
different process traces. The SPO <rrid orders observed events of this resource trace due to their known
timestamps; e.g. in Fig. 8(b) f9 <m1

rid f16 with f9 from pid=53 and f16 from pid=54.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 235

The order of the two events esp1 <
r
rid e

s
p2 for the same step #act(e

s
p1) = #act(e

s
p2) = t1 in different

cases #pid(e
s
p1) = p1 6= #pid(e

s
p2) = p2 propagates “upwards” and “downwards” the process traces

πp1pid and πp2pid as follows. Let events f sp1 ∈ E
p1
pid and fp2 ∈ Ep2pid be events in process traces πp1pid and

πp2pid of the same step #act(f
s
p1) = #act(f

s
p2) = tn. We say t1 and tn are in FIFO relation iff there is

a unique path 〈t1...tn〉 between t1 and tn in the process proclet (i.e., no loops, splits, parallelism) so
that between any two consecutive transitions tk, tk+1 only synchronize with single-server resources or
FIFO queues. If t1 and tn are in FIFO relation, then also fsp1 <

r2
rid f

s
p2 on the resource r2 involved in

tn (as the case p1 cannot overtake the case p2 along this path). Thus xtmin
fsp1
≤ xtmin

fsp2
must hold. More

specifically, xtmin
fsp1

+ #tsr(f
s
p1) + #twr(f

s
p1) ≤ xtmin

fsp2
must hold as the service time and waiting time

of the resource involved in fsp1 must elapse.

For any pair esp1, e
s
p2 ∈ Errid with esp1 <

r
rid e

s
p2 and any other trace θr2rid for resource r2 and any pair

fsp1, f
s
p2 ∈ Er2rid such that #pid(e

s
p1) = #pid(f

s
p1),#pid(e

s
p2) = #pid(f

s
p2) and transition #act(e

s
p1)

is in FIFO relation with #act(f
s
p1), we generate the following constraint for tmin between different

process cases p1 and p2:

xtmin
fsp1
≤ xtmin

fsp2
− (#tsr(f

s
p1) + #twr(f

s
p1)), (6)

and the following constraint for tmax:

xtmax
fsp1

≤ xtmax
fsp2

− (#tsr(f
s
p1) + #twr(f

s
p1)), (7)

In the example of Fig. 8(b), we observe f9 <d1rid f16 (both of transition d1s) along resource d1
at the bottom of Fig. 8(b). By Fig. 4, d1s and m3s are in FIFO-relation. Applying Eq. 7 yields
xtmax
f5

≤ #time(f12)− (#tsr(f5)+#twr(f5)), i.e., f5 occurs at latest before f12 minus the service and
waiting time ofm3. This operation significantly reduces the initial regionR1. By Eq. 5, the tighter upper
bound for f5 also propagates along the trace pid=53 to f3, i.e., xtmax

f3
≤ xtmax

f5
−(#tsr(f3)+#twq(f5)),

resulting in a tighter region as shown in Fig. 8(c). If another trace 〈m3s, d1s〉 were present before
trace 53, then this would cause reducing the tmin attributes of the events of trace 53 by Eq. 4,6 in a
similar way. In general, the more cases interact through shared resources, the more accurate timestamp
intervals can be restored by Eq. 1-7 as we will show in Sect. 7.

To construct the linear program, we generate equations 1 to 5 by iteration of each process trace
in L2. Further, iterate over each resource trace and for each pair of events ep1 <rrid ep2 we generate
equations 6,7 for each other pair of events fp1 <r2rid fp2 that is in FIFO relation. The objective function
to maximize is the sum of all intervals

∑
e∈E2

(xtmax
e − xtmin

e) to maximize the coverage of possible
time-stamp values by those intervals.

Solving this linear program assigns to each event e ∈ E2 upper and lower bounds #tmin(e) and
#tmax(e) for #time(e); #tmin(e) = #time(e) = #tmax(e) for all e ∈ E1 (by 1 and 2 the solutions for
the start events propagate to complete events with time difference tsr). By setting #time(e) = #tmin(e)
(or #time(e) = #tmax(e)) we obtain L3 = (E2,AN 3, {pid, rid, qid},#3) where the SPO <3 of the
system-level run π(L3) refines the SPO <2 constructed explicitly in Sect. 6.1.

By oracle O1, σ(L3, pid) can be replayed on the P-proclet.

236 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

By 1 and 6, for any two events e lrid e′ the time difference is #time(e
′) − #time(e) > twr or

#time(e
′)−#time(e) > tsr of the corresponding R-proclet Ri (depending on whether e replays by

the start or the complete transition of Ri). Thus, σ(L3, r) can be replayed on the correspond R-proclet
for any resource r in L3.

By 1 and 4, the time-stamps of e lpid e′ where e replays tenq and e′ replays tdeq of a Q-proclet
Qi have at least time difference twq of Qi (i.e., the time constraint of Qi is satisfied). If for two
process cases p1 and p2 we observe ep1 <rid ep2 at the same step #act(ep1) = #act(ep2) with
#pid(e1) = p1 6= p2 = #pid(e2) at some step, the we also observe fp1 <rid fp2 at another step
#act(fp1) = #act(fp2) with #pid(f1) = p1 6= p2 = #pid(f2) at later events e1 <pid f1 and
e2 <pid f2 (by 6 and 7). As in a PQR system, for each queue, the enqueue transition synchronizes with
a different resources than the dequeue transition, the relation ep1 <qid ep2 and fp1 <qid fp2 also holds
if ep1, ep2 are enqueue events and fp1, fp2 are dequeue events of the same queue Qi. Thus the FIFO
constraint of Qi is satisfied. Thus, σ(L3, q) can be replayed on the correspond Q-proclet for any queue
q in L3.

Altogether, L3 is a complete log that can be replayed on the PQR system S (by Def. 5.8 and
Def. 5.4).

7. Evaluation

To evaluate our approach, we formulated the following questions. (Q1) Can timestamps be estimated in
real-life settings and used to estimate performance reliably? (Q2) How accurately can the load (items
per minute) be estimated for different system parts, using restored timestamps? (Q3) What is the impact
of sudden deviations from the minimum service/waiting times, e.g., the unavailability of resource or
stop/restart of an MHS conveyor, on the accuracy of restored timestamps and the computed load? For
that, we extended the interactive ProM plug-in “Performance Spectrum Miner” with an implementation
of our approach that solves the constraints using heuristics1. As input we considered the process of a
part of real-life BHS shown in Fig. 9 and used Synthetic Logs (SL) (simulated from a model to obtain
ground-truth timestamps) and Real-life Logs (RL) from a major European airport. Regarding Q3, we
generated SL with regular performance and with blockages of belts (i.e., a temporary stand-still); the

to
 a

ir
p

la
n

es

to early bag store

X
-R

ay

sc
re

e
n

in
g

a c1 c2 c3 c4 d1 d2 f

s

Figure 9. In the BHS bags come from check-in counters c1−4 and another terminals d1−2, f , go through
mandatory screening and continue to other locations.

1The simulation model, simulation logs, ProM plugin, and high-resolution figures are available on https://github.com/
processmining-in-logistics/psm/tree/rel.

https://github.com/processmining-in-logistics/psm/tree/rel
https://github.com/processmining-in-logistics/psm/tree/rel

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 237

RL contained both performance characteristics. All logs were partial as described in Sect. 5.5. We
selected the acyclic fragment highlighted in Fig. 9 for restoring timestamps of steps c1−4, d1−2, f, s.

a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s
a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s

(a) (b)

(c) (d)

(e) (f)

(g) (h)

a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s
a:c1
c1:c2
c2:c3
c3:c4
c4:d1
d1:d2
d2:f
f:s

Figure 10. Restored Performance Spectrum for synthetic (a,b) and real-life (e,f) logs. The estimated load
(computed on estimated timestamps) for synthetic (c,d) and real-life (g,h) logs. For the synthetic logs, the load
error is measured and shown in red (c,d). Colored-shaded regions indicate for selected traces the boundaries
of timestamps of reconstructed events between different observed events a to s (yellow), c1 to s (blue), d1 to s
(green).

We evaluated our technique against the ground truth known for SL as follows. For each event
we measured the error of the estimated timestamp intervals [tmin, tmax] against the actual time t as
max{|tmax − t|, |tmin − t|} normalized over the sum of minimal service and waiting times of all
involved steps (to make errors comparable). We report the Mean Absolute Error (MAE) and Root
Mean Square Error (RMSE) of these errors. Applying our technique to SL with regular behavior, we
observed very narrow time intervals for the estimated timestamps, shown in Fig. 10(a), and a MAE of
< 5%. The MAE of the estimated load (computed on estimated timestamps), shown in Fig. 10(c), was

238 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

< 2%. For SL with blockage behavior, the intervals grew proportionally with the duration of blockages
(Fig. 10(b)), leading to a proportional growth of the MAE for the timestamps. However, the MAE of
the estimated load (Fig. 10(d)) was at most 4%. The load MAE for different processing steps for both
scenarios are shown in Table 3. Notably, both observed and reconstructed load showed load peaks each
time the conveyor belt starts moving again.

Table 3. The estimated load (computed on estimated timestamps) Root Mean Squared Error (RMSE) and Mean
Absolute Error (MAE) are shown in % of max. load.

Scenario c4 : d1 d1 : d2 f : s

no blockages
MAE 0.16 0.22 0.17
RMSE 1.01 1.66 0.89

blockages
MAE 1.67 3.19 0.15
RMSE 4.8 7.17 0.75

When evaluating on the real-life event log, we measured errors of timestamps estimation as the
length of the estimated intervals (normalized over the sum of minimal service and waiting times of all
involved steps). Performance spectra built using the restored RL logs are shown in Fig. 10(e,f), and
the load computed using these logs is shown in Fig. 10(g,h). The observed MAE was < 5% in regular
behavior and increased proportionally as observed on SL. The load error could not be measured, but
similarly to synthetic data, it showed peaks after assumed conveyor stops.

The obtained results on SL show that the timestamps can be always estimated, and the actual
timestamps are always within the timestamp intervals (Q1). When the system resources and queues
operate close to the known performance parameters tsr, twr, twq, our approach restores accurate
timestamps resulting in reliable load estimates in SL (Q2). During deviations in resource performance,
the errors increase proportionally with performance deviation while the estimated load remains reliable
(error < 4% in SL) and shows known characteristics from real-life systems on SL and RL (Q3).

8. Conclusion

In this paper, we studied the problem of repairing a partial event log with missing events for the
performance analysis of systems where case interact and compete for shared limited resources. We
addressed the problem of repairing partial event logs that contain only a subset of events which impede
the performance analysis of systems with shared limited resources and queues.

To study and solve the problem, we had to develop novel syntactic and semantic models for behavior
over multiple entities. We specifically introduced a generalized model of event data over multiple
behavioral entities that can be viewed, both, as sequential traces (with shared events) and as a partial
order over the entire system behavior. We have shown in solving our problem that both perspectives are
needed when reasoning about behavior of multiple entities.

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 239

To express domain knowledge about resources and queues, we had to extend the model of syn-
chronous proclets [6] with concepts for time and data, resulting in the notion of CPN proclet systems.
A side effect of our work is a replay semantics for regular coloured Petri nets. We defined the sub-class
of PQR systems to model processes served by shared resources and queues. Our model allows to
decompose the interactions of resources and queues over multiple process cases into entity traces for
process cases, resources and queues that synchronize on shared events (both on the syntactic and on the
semantic level).

We exploit the decomposition when restoring missing events along the process traces using trace
alignment [18]. We exploit the synchronization when formulating linear programming constraints over
timestamps of restored events along, both, the process and the resource traces. As a result, we obtain
timestamps which are consistent for all events along the process, resource, and queue dimensions.
The evaluation of our implementation on synthetic and real-life data shows errors of the estimated
timestamps and of derived performance characteristics (i.e., load) of < 5% under regular performance,
while correctly restoring real-life dynamics (i.e. load peaks) after irregular performance behavior.

Limitations The work made several limiting assumptions. (1) Although the proclet formalism allows
for arbitrary, dynamic synchronizations between process steps, resources, and queues, we limited
ourselves in this work to a static known resource/queue id per process step. The limitation is not severe
for some use cases such as analyzing MHS, but generalizing oracle O2 to a dynamic setting is an
open problem. (2) The LP constraints to restore timestamps assume an acyclic process proclet without
concurrency. Further, the LP constraints assume 1:1 interactions (at most one resource and/or queue
per process step). Both assumptions do not hold in business processes in general; formulating the
constraints for a more general setting is an open problem. (3) Our approach ensures consistency of either
all earliest or all latest timestamps with the given model, it does not suggest how to select timestamps
between the latest and earliest such that the consistency holds. (4) When the system performance
significantly changes, e.g., due to sudden unavailability of resources, the error of restored timestamps is
growing proportionally with the duration of deviations. Points (3) and (4) require attention to further
improve event log quality for performance analysis.

Future work Besides addressing the above limitations, our novel syntactic and semantic models
open up new alleys of research for modeling and analyzing behavior over multiple entities, including
more general conformance and process discovery. Moreover, the replay semantics for coloured Petri
nets is likely to enable new kinds of process mining and conformance checking analyses beyond the
types of systems studied in this paper.

Acknowledgements The research leading to these results has received funding from Vanderlande
Industries in the project “Process Mining in Logistics”. We also thank Mitchel Brunings for his
comments that greatly improved our approach.

References

[1] Maruster L, van Beest NRTP. Redesigning business processes: a methodology based on simulation and
process mining techniques. Knowl. Inf. Syst., 2009. 21(3):267–297. doi:10.1007/s10115-009-0224-0.

240 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

[2] Márquez-Chamorro AE, Resinas M, Ruiz-Cortés A. Predictive Monitoring of Business Processes: A Survey.
IEEE Transactions on Services Computing, 2018. 11(6):962–977. doi:10.1109/TSC.2017.2772256.

[3] Denisov V, Fahland D, van der Aalst WMP. Unbiased, Fine-Grained Description of Processes Performance
from Event Data. In: Weske M, Montali M, Weber I, vom Brocke J (eds.), Business Process Management.
Springer International Publishing, Cham. 2018 pp. 139–157. ISBN:978-3-319-98648-7.

[4] Ahmed T, Pedersen TB, Calders T, Lu H. Online Risk Prediction for Indoor Moving Objects. In: 2016
17th IEEE International Conference on Mobile Data Management (MDM), volume 1. 2016 pp. 102–111.
doi:10.1109/MDM.2016.27.

[5] Denisov V, Fahland D, van der Aalst WMP. Predictive Performance Monitoring of Material Handling
Systems Using the Performance Spectrum. In: 2019 International Conference on Process Mining (ICPM).
2019 pp. 137–144. doi:10.1109/ICPM.2019.00029.

[6] Fahland D. Describing Behavior of Processes with Many-to-Many Interactions. In: Donatelli S, Haar S
(eds.), Application and Theory of Petri Nets and Concurrency. Springer International Publishing, Cham.
2019 pp. 3–24. ISBN:978-3-030-21571-2.

[7] Jensen K, Kristensen LM. Colored Petri nets: a graphical language for formal modeling and validation of
concurrent systems. Commun. ACM, 2015. 58(6):61–70. doi:10.1145/2663340.

[8] Schrijver A. Theory of Linear and Integer Programming. John Wiley & Sons, Chichester, 1986.

[9] van der Aalst WMP. Process Mining - Data Science in Action, Second Edition. Springer, 2016. ISBN-
10:9783662498507, 13:978-3662498507.

[10] Senderovich A, Francescomarino CD, Maggi FM. From knowledge-driven to data-driven inter-case feature
encoding in predictive process monitoring. Inf. Syst., 2019. 84:255–264. doi:10.1016/j.is.2019.01.007.

[11] Gans N, Koole G, Mandelbaum A. Telephone Call Centers: Tutorial, Review, and Research Prospects.
Manufacturing & Service Operations Management, 2003. 5(2):79–141. doi:10.1287/msom.5.2.79.16071.

[12] Brown L, Gans N, Mandelbaum A, Sakov A, Shen H, Zeltyn S, Zhao L. Statistical Analysis of a
Telephone Call Center. Journal of the American Statistical Association, 2005. 100(469):36–50. doi:
10.1198/016214504000001808.

[13] Senderovich A, Weidlich M, Gal A, Mandelbaum A. Queue Mining - Predicting Delays in Service
Processes. In: Advanced Information Systems Engineering - 26th International Conference, CAiSE 2014,
Thessaloniki, Greece, June 16-20, 2014. Proceedings, volume 8484 of Lecture Notes in Computer Science.
Springer, 2014 pp. 42–57. doi:10.1007/978-3-319-07881-6\ 4.

[14] Senderovich A, Beck J, Gal A, Weidlich M. Congestion Graphs for Automated Time Predictions. Pro-
ceedings of the AAAI Conference on Artificial Intelligence, 2019. 33:4854–4861. doi:10.1609/aaai.v33i01.
33014854.

[15] Suriadi S, Andrews R, ter Hofstede A, Wynn M. Event log imperfection patterns for process mining:
Towards a systematic approach to cleaning event logs. Information Systems, 2017. 64:132 – 150. doi:
https://doi.org/10.1016/j.is.2016.07.011.

[16] Conforti R, La Rosa M, ter Hofstede A. Timestamp Repair for Business Process Event Logs. Technical
report, 2018. URL http://hdl.handle.net/11343/209011.

[17] Martin N, Depaire B, Caris A, Schepers D. Retrieving the resource availability calendars of a process from
an event log. Information Systems, 2020. 88:101463. doi:https://doi.org/10.1016/j.is.2019.101463.

http://hdl.handle.net/11343/209011

D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources 241

[18] Carmona J, van Dongen B, Solti A, Weidlich M. Conformance Checking - Relating Processes and Models.
Springer, 2018. ISBN:978-3-319-99414-7.

[19] Pegoraro M, van der Aalst WMP. Mining Uncertain Event Data in Process Mining. In: International
Conference on Process Mining, ICPM 2019, Aachen, Germany, June 24-26, 2019. IEEE, 2019 pp. 89–96.
doi:10.1109/ICPM.2019.00023.

[20] Pegoraro M, Uysal MS, van der Aalst WMP. Discovering Process Models from Uncertain Event Data. In:
Di Francescomarino C, Dijkman R, Zdun U (eds.), Business Process Management Workshops. Springer
International Publishing, Cham. 2019 pp. 238–249. ISBN:978-3-030-37453-2.

[21] van der Aalst WMP, Barthelmess P, Ellis CA, Wainer J. Proclets: A Framework for Lightweight Interacting
Workflow Processes. International Journal of Cooperative Information Systems, 2001. 10(04):443–481.

[22] van der Aalst WMP, Berti A. Discovering Object-centric Petri Nets. Fundam. Informaticae, 2020. 175(1-
4):1–40. doi:10.3233/FI-2020-1946.

[23] Ghilardi S, Gianola A, Montali M, Rivkin A. Petri Nets with Parameterised Data - Modelling and
Verification. In: Fahland D, Ghidini C, Becker J, Dumas M (eds.), Business Process Management - 18th
International Conference, BPM 2020, Seville, Spain, September 13-18, 2020, Proceedings, volume 12168
of Lecture Notes in Computer Science. Springer, 2020 pp. 55–74. doi:10.1007/978-3-030-58666-9\ 4.

[24] Steinau S, Andrews K, Reichert M. Coordinating Large Distributed Process Structures. In: Reinhartz-
Berger I, Zdravkovic J, Gulden J, Schmidt R (eds.), Enterprise, Business-Process and Information Systems
Modeling - 20th International Conference, BPMDS 2019, 24th International Conference, EMMSAD 2019,
Held at CAiSE 2019, Rome, Italy, June 3-4, 2019, Proceedings, volume 352 of Lecture Notes in Business
Information Processing. Springer, 2019 pp. 19–34. doi:10.1007/978-3-030-20618-5\ 2.

[25] Popova V, Fahland D, Dumas M. Artifact Lifecycle Discovery. Int. J. Cooperative Inf. Syst., 2015.
24(1):1550001:1–1550001:44. doi:10.1142/S021884301550001X.

[26] van der Aalst WMP. Object-Centric Process Mining: Dealing with Divergence and Convergence in Event
Data. In: Ölveczky PC, Salaün G (eds.), Software Engineering and Formal Methods - 17th International
Conference, SEFM 2019, Oslo, Norway, September 18-20, 2019, Proceedings, volume 11724 of Lecture
Notes in Computer Science. Springer, 2019 pp. 3–25. doi:10.1007/978-3-030-30446-1\ 1.

[27] Lu X, Nagelkerke M, van de Wiel D, Fahland D. Discovering Interacting Artifacts from ERP Systems.
IEEE Trans. Serv. Comput., 2015. 8(6):861–873. doi:10.1109/TSC.2015.2474358.

[28] Werner M, Gehrke N. Multilevel Process Mining for Financial Audits. IEEE Trans. Serv. Comput., 2015.
8(6):820–832. doi:10.1109/TSC.2015.2457907.

[29] Esser S, Fahland D. Storing and Querying Multi-dimensional Process Event Logs Using Graph Databases.
In: Francescomarino CD, Dijkman RM, Zdun U (eds.), Business Process Management Workshops -
BPM 2019 International Workshops, Vienna, Austria, September 1-6, 2019, Revised Selected Papers,
volume 362 of Lecture Notes in Business Information Processing. Springer, 2019 pp. 632–644. doi:
10.1007/978-3-030-37453-2\ 51.

[30] Berti A, van der Aalst WMP. Extracting Multiple Viewpoint Models from Relational Databases. In: Cer-
avolo P, van Keulen M, López MTG (eds.), Data-Driven Process Discovery and Analysis - 8th IFIP WG 2.6
International Symposium, SIMPDA 2018, Seville, Spain, December 13-14, 2018, and 9th International Sym-
posium, SIMPDA 2019, Bled, Slovenia, September 8, 2019, Revised Selected Papers, volume 379 of Lecture
Notes in Business Information Processing. Springer, 2019 pp. 24–51. doi:10.1007/978-3-030-46633-6\ 2.

242 D. Fahland et al. / Repairing Event Logs of Systems with Shared Resources

[31] Esser S, Fahland D. Multi-Dimensional Event Data in Graph Databases. J. Data Semant., 2021. 10(1):109–
141. doi:10.1007/s13740-021-00122-1.

[32] Denisov V, Fahland D, van der Aalst WMP. Repairing Event Logs with Missing Events to Support
Performance Analysis of Systems with Shared Resources. In: Janicki R, Sidorova N, Chatain T (eds.),
Application and Theory of Petri Nets and Concurrency - 41st International Conference, PETRI NETS
2020, Paris, France, June 24-25, 2020, Proceedings, volume 12152 of Lecture Notes in Computer Science.
Springer, 2020 pp. 239–259. doi:10.1007/978-3-030-51831-8\ 12.

[33] Rosa-Velardo F, de Frutos-Escrig D. Name Creation vs. Replication in Petri Net Systems. Fundam. Inform.,
2008. 88(3):329–356.

[34] van der Aalst WMP, Weijters AJMM, Maruster L. Workflow mining: discovering process models from
event logs. IEEE TKDE, 2004. 16:1128–1142. doi:10.1109/TKDE.2004.47.

[35] van der Aalst WMP, Adriansyah A, Dongen B. Replaying History on Process Models for Conformance
Checking and Performance Analysis. WIREs Data Mining and Knowledge Discovery, 2012. 2:182–192.
doi:10.1002/widm.1045.

	1 Introduction
	2 Related work
	3 Modeling inter-case behavior via shared resources
	3.1 Processes-aware systems with shared resources
	3.2 Information loss because of incomplete logging

	4 Modeling system-level runs from event data
	4.1 Classical event logs
	4.2 Event logs over multiple entities
	4.3 Sequential view on event logs over multiple entities
	4.4 Partially ordered view on event logs over multiple entities
	4.5 Relation between sequential and partially-ordered view

	5 Modeling multi-entity behavior with queueing and time
	5.1 Background on coloured Petri nets
	5.2 An event log replay semantics for colored Petri nets
	5.3 Synchronous proclet systems with data and time
	5.4 PQR systems
	5.5 Restoring partial event logs of a PQR system

	6 Inferring timestamps along entity traces
	6.1 Infer potential complete runs from a partial run
	6.2 Restoring timestamps of unobserved events by linear programming
	6.2.1 Propagate information along process traces
	6.2.2 Propagate information along resource traces

	7 Evaluation
	8 Conclusion

