
Appeared in Fundamenta Informaticae 183(3-4) : 293–317 (2021). 293
Available at IOS Press through:
https://doi.org/10.3233/FI-2021-2089

Automated Repair of Process Models with Non-local Constraints
Using State-Based Region Theory

Anna Kalenkova*†

School of Computing and Information Systems
The University of Melbourne, Australia
anna.kalenkova@unimelb.edu.au

Josep Carmona‡

Department of Computer Science
Polytechnic University of Catalonia, Spain
jcarmona@cs.upc.edu

Artem Polyvyanyy*

School of Computing and Information Systems
The University of Melbourne, Australia
artem.polyvyanyy@unimelb.edu.au

Marcello La Rosa*

School of Computing and Information Systems
The University of Melbourne, Australia
marcello.larosa@unimelb.edu.au

Abstract. State-of-the-art process discovery methods construct free-choice process models from
event logs. Consequently, the constructed models do not take into account indirect dependencies
between events. Whenever the input behaviour is not free-choice, these methods fail to provide
a precise model. In this paper, we propose a novel approach for enhancing free-choice process
models by adding non-free-choice constructs discovered a-posteriori via region-based techniques.
This allows us to benefit from the performance of existing process discovery methods and the ac-
curacy of the employed fundamental synthesis techniques. We prove that the proposed approach
preserves fitness with respect to the event log while improving the precision when indirect de-
pendencies exist. The approach has been implemented and tested on both synthetic and real-life
datasets. The results show its effectiveness in repairing models discovered from event logs.

Keywords: free-choice Petri nets, region state-based synthesis, event logs, transition systems,
process mining, process enhancement

*Address for correspondence: School of Computing and Information Systems, The University of Melbourne, Australia
†This work was partly supported by the Australian Research Council Discovery Project DP180102839.
‡This work was supported by MINECO and FEDER funds under grant TIN2017-86727-C2-1-R.

ar
X

iv
:2

10
6.

15
39

8v
2

 [
cs

.A
I]

 1
3

D
ec

 2
02

1

https://doi.org/10.3233/FI-2021-2089
https://orcid.org/0000-0002-5088-7602
https://orcid.org/0000-0001-9656-254X
https://orcid.org/0000-0002-7672-1643
https://orcid.org/0000-0001-9568-4035

294 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

1. Introduction

Process mining is a family of methods used for the analysis of event data, e.g., event logs [1]. These
methods include process discovery aimed at constructing process models from event logs; confor-
mance checking applied for finding deviations between real (event logs) and expected (process models)
behaviour [2]; and process enhancement used for the enrichment of process models with additional
data extracted from event logs. The latter also includes process repair applied to realign process mod-
els in accordance with the event logs. Event logs are usually represented as sequences of events (or
traces). The main challenge of process discovery is to efficiently construct fitting (capturing traces of
the event log), precise (not capturing traces not present in the event log) and simple process models.

Scalable process discovery methods, which are most commonly used for the analysis of real-life
event data, either produce directly follows graphs or use them as an intermediate process representa-
tion to obtain a Petri net or a BPMN model [3] (see, e.g., Inductive miner [4] and Split miner [5]).
Directly follows graphs are directed graphs with nodes representing process activities and arcs rep-
resenting the directly follows (successor) relation between them. Being simple and intuitive, these
graphs considerably generalise process behaviour, e.g., they add combinations of process paths that
are not observed in the event log. This is because they do not represent higher-level constructs such as
parallelism and long-distance (i.e., non-local) dependencies. The above-mentioned discovery methods
construct directly follows graphs from event logs and then recursively find relations between sets of
nodes in these graphs, in order to discover a free-choice Petri net [6], which can then be seamlessly
converted into a BPMN model [7] – the industry language for representing business process models.
In free-choice nets, the choice between conflicting activities (such that only one of them can be exe-
cuted) is always “free” from additional preconditions. Although free-choice nets can model parallel
activities, non-local choice dependencies are modelled by non-free-choice nets [8]. Several methods
for the discovery of non-free-choice Petri nets exist. However, these methods are either computation-
ally expensive [9, 10, 11, 12, 13] or heuristic in nature (i.e., the derived models may fail to replay
the traces in the event log) [8]. Other methods are exact and demonstrate good performance, but they
usually produce unstructured process models. [14, 15, 16]. In contrast, the approach proposed in this
paper starts with a simple free-choice “skeleton”, which is then enhanced with additional constraints.

In this paper, we propose a repair approach to enhance free-choice nets by adding extra constructs
to capture non-local dependencies. To find non-local dependencies, a transition system constructed
from the event log is analysed. This analysis checks whether all the free-choice constructs of the
original process model correspond to free-choice relations in the transition system. For process activ-
ities with non-free-choice relation in the transition system but with free-choice relation in the process
model, region theory [17] is applied to identify, whenever possible, additional places and arcs to be
added to the Petri net to ensure the non-local relations between the corresponding transitions. Re-
markably, although we have implemented our approach over state-based region theory [9, 10, 11], the
proposed approach can also be extended to language-based region theory [12, 18], or to geometric or
graph-based approaches that have been recently proposed [19, 20].

Importantly, we apply a goal-oriented state-based region algorithm to those parts of the transition
system where the free-choice property is not fulfilled. This allows us to reduce the computation
time, relegating region-theory to when it is needed. We prove that important quality metrics of the

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 295

initial free-choice (workflow) net are either preserved or improved for those cases where non-local
dependencies exist, i.e., fitness is never reduced, and precision can increase. Hence, when using our
approach on top of an automated discovery method that returns a free-choice Petri net, one can still
keep the complexity of process discovery manageable, obtaining more precise process models that
represent the process behaviour recorded in the event log.

In contrast to the existing process repair techniques, which change the structure of the process
models by inserting, removing [21, 22, 23] or replacing tasks and sub-processes [24], the approach
proposed in this paper only imposes additional restrictions on the process model behaviour, preserving
fitness and improving precision where possible.

We implemented the proposed approach as a plugin of Apromore [25]1 and tested it both on
synthetic and real-world event data. The tests show the effectiveness of our approach within reasonable
time bounds.

This article is an extended version of our conference paper [26]. It makes the following additions
to the original conference paper:

• Extends the repair approach to the set of free-choice models with silent transitions;
• Presents an optimized version of the repair algorithm and analyses its time complexity;
• Introduces a technique to convert workflow nets with non-local constraints to high-level BPMN

models with data objects;
• Reports on large-scale experiments of applying the proposed techniques to real-world data.

The paper is organized as follows. Section 2 illustrates the approach by a motivating example.
Section 3 contains the main definitions used throughout the paper. The state-based region technique
is introduced in Section 4. The proposed model repair approach is then described in Section 5. Addi-
tionally, Section 5 contains formal proofs of the properties of the repaired process model. High-level
process modelling constructs, e.g., BPMN modelling elements representing non-free-choice routing,
are also discussed in Section 5. The results of the experiments are presented in Section 6. Finally,
Section 7 concludes the paper.

2. Motivating example

This section presents a simple motivating example inspired by the real-life BPIC’2017 event log2 and
examples discussed in [8]. Consider the process of a loan application. The process can be car-
ried out by a client or by a bank employee on behalf of the client. Thus, this process can be de-
scribed by two possible sequences of events (traces) which together can be considered as an event log
L ={〈send application, check application, notify client , accept application〉, 〈create application,
check application, complete application, accept application〉}. According to one trace, the client
sends a loan application to the bank, then this application is checked. After that, the client is noti-
fied, and the application is accepted. The other trace corresponds to a scenario when the application
is initially created by a bank employee and checked. After that, the bank employee contacts the

1https://apromore.org
2https://data.4tu.nl/repository/uuid:5f3067df-f10b-45da-b98b-86ae4c7a310b

296 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

client to complete the application. Finally, the application is accepted. Figure 1 presents a work-
flow net discovered by Inductive miner [4] and Split miner [5] from L. This model accepts two ad-
ditional traces: 〈send application, check application, complete application, accept application〉,
〈create application,check application, notify client , accept application〉 not presented in L. These

send application

create application

check application

notify client

complete application

accept application

Figure 1: A workflow net discovered from L by Inductive miner and Split miner.

traces violate the business logic of the process. If the application was sent by a client, it is completed,
and there is no need to take the complete application step. Also, if the application was initially created
by a bank employee, the step complete application is mandatory.

This example demonstrates that the choice between the notify client and complete application
activities depends on the history of the trace. The transition system in Figure 2 shows the behaviour
recorded in event log L. State s1 corresponds to a choice between activities send application and
create application . This choice does not depend on any additional conditions. In contrast, for
the system being in states s4 and s5, there is no free choice between notify client and complete
application activities. In state s4, only the notify client activity can be executed, while in state s5,
only complete application can be performed. This means that there are states in the transition sys-
tem where the activities notify client and complete application are not in a free-choice relation (the
choice depends on additional conditions and is predefined), while they are in a free-choice relation in
the discovered model (Figure 1).

To impose additional restrictions on the process model the state-based region theory can be ap-
plied [27, 28, 11]. Figure 2 presents three regions r1 = {s4, s5}, r2 = {s2, s4}, and r3 = {s3, s5}
with outgoing transitions labelled by notify client and complete application events discovered by the
state-based region algorithm [11].

send
 application

create
application

notify
 client

complete
 application

accept appl ication

s1 s6 s7

r2s2 s4
check

 application

r1

check
 applications3 s5

r3

Figure 2: Transition system that encodes event log L.

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 297

Figure 3 presents a target workflow net obtained from the initial workflow net (Figure 1) by insert-
ing places that correspond to the discovered regions. As one may note, in addition to r1, two places r2

and r3 were added. These places impose additional constraints, such that the enhanced process model
accepts event log L and does not support additional traces and, hence, is more precise.

send application

create application

check application

notify client

complete application

accept application

r1

r2

r3

Figure 3: A workflow net enhanced with additional regions (places) r2 and r3.

In the next sections, we describe an approach that implements this idea.

3. Preliminaries

In this section, we formally define event logs and process models, such as transition systems, Petri
nets, and workflow nets.

3.1. Sets, multisets, event logs

Let S be a finite set. A multiset m over S is a mapping m : S → N0, where N0 is the set of all natural
numbers (including zero), i.e., multiset m contains m(s) copies of element s ∈ S.

For two multisetsm,m′ we writem ⊆ m′ iff ∀s ∈ S : m(s) ≤ m′(s) (the inclusion relation). The
sum of two multisets m and m′ is defined as: ∀s ∈ S : (m+m′)(s) = m(s) +m′(s). The difference
of two multisets is a partial function: ∀s ∈ S, such thatm(s) ≥ m(s′), (m−m′)(s) = m(s)−m′(s).

Let E be a finite set of events. A trace σ (over E) is a finite sequence of events, i.e., σ ∈ E∗,
where E∗ is the set of all finite sequences over E, including the empty sequence of zero length. An
event log L is a set of traces, i.e., L ⊆ E∗.

3.2. Transition systems, Petri nets, workflow nets

Let S and E be two disjoint non-empty sets of states and events, B ⊆ S × Eτ × S, where Eτ =
E ∪ {τ} and τ /∈ E is a special silent event, be a transition relation. A transition system is a tuple
TS = (S,E,B, si , Sfin), where si ∈ S is an initial state and Sfin ⊆ S – a set of final states. Elements
of B are called transitions. We write s e→ s′, when (s, e, s′) ∈ B and s e→, when ∃s′ ∈ S, such that
(s, e, s′) ∈ B; s 6 e→, otherwise. Transition system TS is τ -free iff ∀(s, e, s′) ∈ B it holds that e 6= τ .

A trace σ = 〈e1, . . . , em〉 is called feasible in TS iff ∃s1, . . . , sn ∈ S : si
ē1→ s1

ē2→ . . .
ēn→

sn, n ≥ m, sn ∈ Sfin , and 〈e1, . . . , em〉 = 〈ē1, . . . , ēn〉 |{τ}, where 〈ē1, . . . , ēn〉 |{τ} is a se-
quence obtained from 〈ē1, . . . , ēn〉 by removing all τ without changing the order of the remaining

298 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

elements, i.e., a feasible trace leads from the initial state to some final state possibly taking silent
transitions. A language accepted by TS is defined as the set of all traces feasible in TS, and is denoted
by L(TS).

We say that a transition system TS encodes an event log L iff it is τ -free and each trace from L
is a feasible trace in TS, and inversely each feasible trace in TS belongs to L. An example of a τ -free
transition system is shown in Figure 2. States and transitions are presented by vertices and directed
arcs respectively. The initial state s1 is marked by an additional incoming arrow, while the only final
state s7 is indicated by a circle with double border.

Let P and T be two finite disjoint sets of places and transitions, and F ⊆ (P × T) ∪ (T × P) be
a flow relation. Let also E be a finite set of events, and l : T → Eτ , where Eτ = E ∪ {τ}, τ /∈ E, be
a labelling function, such that ∀t1, t2 ∈ T, t1 6= t2, l(t1) 6= τ , it holds that l(t1) 6= l(t2), i.e., all the
non-silent transitions are uniquely labelled. Then N = (P, T, F, l) is a Petri net. If ∀t ∈ T : l(t) 6= τ ,
then N is a τ -free Petri net.

A marking in a Petri net is a multiset over the set of its places. A marked Petri net (N,m0) is a
Petri net N together with its initial marking m0.

Graphically, places are represented by circles, transitions by boxes, and the flow relation F by
directed arcs. Places may carry tokens represented by filled circles. A current markingm is designated
by putting m(p) tokens into each place p ∈ P . Marked Petri nets are presented in Figures 1 and 3.

For a transition t ∈ T , an arc (p, t) is called an input arc, and an arc (t, p) an output arc, p ∈ P .
The preset •t and the postset t• of transition t are defined as the multisets over P , such that •t(p) = 1,
if (p, t) ∈ F , otherwise •t(p) = 0, and t•(p) = 1 if (t, p) ∈ F , otherwise t•(p) = 0. A transition
t ∈ T is enabled in a marking m iff •t ⊆ m. An enabled transition t may fire yielding a new marking

m′ =def m − •t + t• (denoted m t→ m′, m
l(t)→ m′, or just m → m′). We say that mn is reachable

from m1 iff there is a (possibly empty) sequence of firings m1 → · · · → mn and denote this relation
by m1

∗→ mn.
R(N,m) denotes the set of all markings reachable in Petri net N from marking m. A marked

Petri net (N,m0), N = (P, T, F, l) is safe iff ∀p ∈ P,∀m ∈ R(N,m0) : m(p) ≤ 1, i.e., at most one
token can appear in a place.

A reachability graph of a marked Petri net (N,m0), N = (P, T, F, l), with a labelling function
l : T → Eτ , is a transition system TS = (S,E,B, si , Sfin) with the set of states S = R(N,m0) and

transition relation B defined by (m, e,m′) ∈ B iff m t→ m′, where e = l(t). The initial state in TS
is the initial marking m0. If some reachable markings in (N,m0) are distinguished as final markings,
they are defined as final states in TS. The language of a Petri net (N,m0), denoted by L(N,m0) is the
language of its reachability graph, i.e., L(N,m0) = L(TS). We say that a Petri net (N,m0) accepts a
trace iff this trace is feasible in the reachability graph of (N,m0); a Petri net accepts a language iff this
language is accepted by its reachability graph. When S is finite we can construct a τ -free transition
system T̂S, such that L(T̂S) = L(TS) [29], we will call it a τ -closure of the reachability graph TS.

Given a Petri net N = (P, T, F, l), two transitions t1, t2 ∈ T are in a free-choice relation iff
•t1 ∩ •t2 = ∅ or •t1 = •t2. When l(t1) 6= τ and l(t2) 6= τ , we also say that events (or activities)
l(t1) and l(t2) are in a free-choice relation. Petri net N is called free-choice iff for all t1, t2 ∈ T , it

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 299

p1 p2 p3

t1 t2

Figure 4: A non-free-choice Petri net.

holds that t1 and t2 are in a free-choice relation. This is one of the several equivalent definitions for
free-choice Petri nets presented in [6]. A Petri net is called non-free-choice iff it is not free-choice.
Figure 4 presents an example of a non-free-choice Petri net, where for two transitions t1 and t2 it holds
that •t1 ∩ •t2 = {p1, p2} 6= ∅ and •t1 = {p1, p2} 6= •t2 = {p1, p2, p3}.

The choice of which transition will fire depends on an additional constraint imposed by place p3.
If m(p1) > 0, m(p2) > 0, and m(p3) = 0, then only t1 is enabled, thus there is no free-choice
between t1 and t2. Another example of a non-free-choice Petri net was presented earlier in Figure 3,
where transitions labelled by notify client and complete application are not in a free-choice relation,
thus the Petri net is not free-choice. An example of a free-choice Petri net is presented in Figure 1.

Workflow nets are a special subclass of Petri nets designed for modelling workflow processes [30].
A workflow net has one initial and one final place, and every place or transition is on a directed path
from the initial to the final place.

Formally, a marked Petri net N = (P, T, F, l) is called a workflow net iff

1. There is one source place i ∈ P and one sink place o ∈ P , such that i has no input arcs and o
has no output arcs.

2. Every node from P ∪ T is on a directed path from i to o.

3. The initial marking contains one token in the source place.

4. The final markings contain one token in the sink place.

The language of a workflow net N is denoted by L(N).

A workflow net N with the initial marking [i] containing only one token in the source place and
the final marking [o] containing only one token in the sink place is sound iff

1. For every state m reachable in N , there exists a firing sequence leading from m to the final
state [o]. Formally, ∀m : [([i]

∗→ m) implies (m
∗→ [o])];

2. The state [o] is the only state reachable from [i] inN with at least one token in place o. Formally,
∀m : [([i]

∗→ m) ∧ ([o] ⊆ m) implies (m = [o])];

3. There are no dead transitions in N . Formally, ∀t ∈ T ∃m,m′ : ([i]
∗→ m

t→ m′).

Note that both models presented in Figures 1 and 3 are sound workflow nets.

300 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

4. Region state-based synthesis

In this section, we give a brief description of the well-known state-based region algorithm [27] applied
for the synthesis of Petri nets from transition systems.

Let TS = (S,E, T, si , Sfin) be a τ -free transition system with a finite set of states S and r ⊆ S be
a subset of states. Subset r is a region iff for each event e ∈ E one of the following conditions holds:

• all the transitions s1
e→ s2 enter r, i.e., s1 /∈ r and s2 ∈ r,

• all the transitions s1
e→ s2 exit r, i.e., s1 ∈ r and s2 /∈ r,

• all the transitions s1
e→ s2 do not cross r, i.e., s1, s2 ∈ r or s1, s2 /∈ r.

In other words, all the transitions labelled by the same event are of the same type (enter, exit, or
do not cross) for a particular region.

A region r′ is said to be a subregion of a region r iff r′ ⊆ r. A region r is called a minimal region
iff it does not have any subregions other than r.

The state-based region algorithm covers the transition system by its minimal regions [31]. Fig-
ure 5 presents the transition system from Figure 2 covered by minimal regions: r1 = {s4, s5},
r2 = {s2, s4}, r3 = {s3, s5}, r4 = {s2, s3}, r5 = {s6}, r6 = {s1}, and r7 = {s7}. According

send
 application

create
application

notify
 client

complete
 application

accept appl ication
s1

s6 s7

r2s2 s4
check

 application

r1

check
 applications3 s5

r3

r4
r5r6 r7

Figure 5: Applying the state-based region algorithm to the transition system presented in Figure 2.

to the algorithm in [27], every minimal region is transformed to a place p in the target Petri net and
connected with transitions corresponding to the exiting and entering events by outgoing and incoming
arcs, respectively (refer to Figure 6). If a region contains the initial state of TS, the corresponding place
p is added to the initial marking of the target Petri net. If a region contains a final state of TS, new
final markings are obtained by adding p to the existing final markings and these new final markings
are added to the overall set of the final markings of the target Petri net.

Region r separates two different states s, s′ ∈ S, s 6= s′, iff s ∈ r and s′ /∈ r. Finding such a
region is the state separation problem between s and s′ and is denoted by SSP(s, s′). When an event
e is not enabled in a state s, i.e., s 6 e→, a region r, containing s may be found, such that e does not
exit r. Finding such a region is known as the event/state separation problem between s and e and is
denoted by ESSP(s, e).

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 301

A well-known result in region theory establishes that if all SSP and ESSP problems are solved,
then synthesis is exact [17]:

Theorem 4.1. A τ -free TS with a finite number of states can be synthesized into a safe τ -free Petri
net N with the reachability graph isomorphic to TS if all SSP and ESSP problems are solvable.

These problems are also known to be NP-complete [17]. In this paper, we reduce the size of these
problems by constructing regions corresponding to particular events only.

send application

create application

check application

notify client

complete application

accept application

r1

r2

r3

r4
r6

r5
r7

Figure 6: A Petri net synthesized from the transition system presented in Figure 5.

5. Repairing free-choice process models

In this section, we describe our approach for repairing free-choice workflow nets using non-local
constraints captured in the event logs. Additionally, we investigate formal properties of the repaired
process models.

5.1. Problem definition

Let N be a free-choice workflow net discovered from event log L and let TS be a transition system
encoding L. Due to limitations of the automated discovery methods [4, 5] that construct free-choice
workflow nets (even if they discover models from a wider class of workflow nets with silent transi-
tions), not all the places that correspond to minimal regions may have been derived, and therefore
important SSP /ESSP problems may not be solved in N , when considering τ -closure of the reacha-
bility graph R̂(N, [i]) as the behaviour to represent with N .

This brings us to the following characterization of the problem. Let t1, . . . , tn be non-silent tran-
sitions, i.e., l(t1) 6= τ, . . . , l(tn) 6= τ , in N with •t1 = •t2 = · · · = •tn, i.e., t1, . . . , tn are in the
free-choice relation in N , and let TS = (S,E, T, si , Sfin) be a minimal transition system encoding the
event log L. If there exists a state s ∈ S, and 1 ≤ i < j ≤ n such that:

1. ei, ej correspond to transitions ti, tj , respectively,

2. s ei→,

3. s 6
ej→

Then, the relation of t1, . . . , tn in N corresponds to a false free-choice relation, not observed in TS.

302 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

There is no place in N corresponding to a region that solves the ESSP(s, ej) problem, because
t1, . . . , tn are in a free-choice relation in N . For instance, the Petri net in Figure 1 contains places
corresponding to regions r1, r4, r5, r6, and r7 shown in Figure 5, and none of those regions solves the
ESSP(s4, complete application) and ESSP(s5,notify client) problems in the transition system.

Note that we define the notion of a false free-choice relation for a minimal transition system
(transition system with a minimal number of states [29]) encoding the event log. This is done in order
to avoid the case when there exists a state s′ which is equivalent to s, such that s′

ej→. During the
minimization, these equivalent states will be merged into one state with outgoing transitions labelled
by ei and ej showing that there is no false free-choice relation between corresponding transitions.
Another reason to minimize the transition system is to reduce the number of states being analysed.

Note that there is no guarantee that an ESSP problem can be solved. Nevertheless, in the run-
ning example, regions r2 and r3 solve ESSP(s4, complete application) and ESSP(s5,notify client)
problems.

5.2. Algorithm description

In this subsection, we present an algorithm for enhancement of a free-choice workflow net N with
additional constraints from event log L (Algorithm 1).

Algorithm 1: RepairFreeChoiceWorkflowNet
Input: Free-choice workflow net N ; Event log L.
Output: Repaired net N ′ obtained from N by inserting additional non-local constraints.
/* Construct minimal transition system */

1 TS ← ConstructMinTS(L);

/* Compute ESSP problems */

2 ESSPProblems ← FindFalseFreeChoiceRelations(N,TS);

3 N ′ ← N ;

4 foreach (s, e) fromESSPProblems do
/* Solve ESSP(s, e) */

5 Y ← ComputeRegionsESSP(TS,s,e);

6 if (Y 6= ∅) then
/* ESSP(s, e) has been solved */

7 N ′ ← AddNewConstraints(N ′,Y);

8 end
9 return N ′

Firstly, by applying ConstructMinTS , a minimal transitional system encoding the event log L is
constructed.3 Then, false free-choice relations and corresponding ESSP problems are identified. Ac-
cording to the definition of a false free-choice relation presented earlier, the procedure for finding false

3Transition system can be constructed from the event log as a prefix-tree [10] with subsequent minimization [29].

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 303

free-choice relations FindFalseFreeChoiceRelations is polynomial in time. Indeed, to find all the
false free-choice relations one needs to check whether all the states of the transition system have none
or all outgoing transitions labelled by events assumed to be in free-choice relations within the original
workflow net N . When the false free-choice relations are discovered, for each corresponding ESSP
problem, the function ComputeRegionsESSP , which finds regions solving the ESSP problem, is
applied. Finally, if new regions solving ESSP problems are found, the function AddNewConstraints
adds the corresponding constraints (places) to the target workflow net N ′.

Since the problem of finding minimal regions which solve the ESSP problem is known to be
NP-complete, this is the most time consuming step of Algorithm 1.

Suppose that transitions t1, . . . , tn in N labelled by e1, . . . , en, respectively, are in a false free-
choice relation. Hence, there exist a state s in TS and two events ei, ej , i, j ∈ [1, . . . , n], such that s ei→
and s 6

ej→. To solve ESSP(s, ej) problem we need to find a region r, such that s ∈ r and ej does not
exit r (Figure 7a). Then, this region will be converted to a place (Figure 7b) that imposes additional
behavioural constraints. Note that region r′ in Figure 7a and Figure 7b corresponds to the original
free-choice relation.

s

ei ej

r

r'

(a) Solving ESSP(s, ej) problem.

ei

r

ej

r'

(b) Adding non-local constraint r.

Figure 7: Finding a new region that solves the ESSP problem.

The goal of the repair algorithm is to find additional constraints for the transitions that are in false
free-choice relations. Therefore, we may narrow the search space and consider only those regions
containing s where ei is the exiting event. Since ei may be involved in several ESSP problems (with
different states s and not-exiting transitions ej), the general approach could be to construct all the
minimal regions with the exiting event ei and check whether these regions do not correspond to the
free-choice relation, i.e., not all the events from {e1, . . . , en} are exiting.

According to [32], when constructing regions, the space of potential solutions expands in no more
than two directions for each of the events. Suppose that |E| is a set of events, then the time complexity
of constructing regions with exiting event ei ∈ E can be estimated as O(2|E|−1). Suppose that
E′ ⊆ E is a set of events corresponding to transitions in false free-choice relations, then the overall
time complexity of the repair algorithm is O(|E′| · 2|E|−1). Although the upper time bound of the
algorithm is exponential, the search space is not always expanded in two directions, and often only one
search direction is possible, or no search directions are possible at all. Moreover, we do not construct
all the regions covering the transition system, but only those that repair the model. In Section 6, we

304 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

demonstrate that this algorithm can be efficiently applied to repair process models discovered from
real-life event data.

5.3. Formal properties

In this subsection, we prove the formal properties of Algorithm 1. Firstly, we study the relation
between the languages of the initial and target workflow nets. Theorem 5.1 proves that if a trace fits
the initial model (i.e., the initial model accepts the trace), it also fits the target model. Although the
proof seems trivial, we consider different cases in order to verify that a final marking is reached.

Theorem 5.1. (Fitness)
Let σ ∈ L be a trace of an event log L ∈ E∗, and N = (P, T, F, l), l : T → Eτ be a free-choice
workflow net, such that its language contains σ, i.e., σ ∈ L(N). Workflow netN ′ = (P∪P ′, T, F ′, l),
l : T → Eτ , is obtained from N and L using Algorithm 1. Then the language of N ′ contains σ, i.e.,
σ ∈ L(N ′).

Proof:
Let us prove that an insertion of a single place by Algorithm 1 preserves the ability of the workflow
net to accept trace σ. Consider a place r (Figure 8b) constructed from the corresponding region r
(Figure 8a) with entering events b1, . . . , bm and exiting events a1, . . . , aq, . . . ap. Events aq, . . . , ap
can belong to a larger set of events aq, . . . , ap, . . . , ak which are in a free-choice relation within N .
Consider the workflow net N ′ with a new place r (the fragment of N ′ is presented in Figure 8b) and
the following four cases:

b1

r

a1 ak...

b1 b2 bm...

r

bm

ap ...

a1 ap

...

...

a. b.(a) A fragment of transition system encoding L.

b1

r

a1 ak...

b1 b2 bm...

r

bm

ap ...

a1 ap

...

...

a. b.

aq...

(b) A fragment of N ′.

Figure 8: Adding a new place r.

1. Suppose σ = 〈e1, . . . , el〉 ∈ L does not contain events from {b1, . . . , bm} and {a1, . . . ,ap} sets.
Since σ ∈ L(N), there is a sequence of firings in N : m0

e1→ m1
e2→ . . .

el→ mn, where m0

and mn are the initial and final markings of the workflow net respectively. The same sequence
of firings can be repeated within the target workflow net N ′, because σ does not contain events
from the sets {b1, . . . , bm} and {a1, . . . , ap}, and the place r is not involved in this sequence of
firings.

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 305

2. Now let us consider trace σ = 〈e1, . . . , bi, . . . , aj , . . . , el〉 in which each occurrence of event bi
from the set {b1, . . . , bm} is followed by an occurrence of event aj from {a1, . . . , ap}. Similarly,
for the firing sequence within N : m0

e1→ m1
e2→ . . .

bi→ mi → . . .→ mj
aj→ . . .

el→ mn, there is
a corresponding sequence m0

e1→ m1
e2→ . . .

bi→ m′i → . . . → m′j
aj→ . . .

el→ mn for N ′, such
that ∀p ∈ P : m′i(p) = mi(p), m′i(r) = 1, ∀p ∈ P : m′j(p) = mj(p), and m′j(r) = 1.

3. Consider trace σ where an event from {b1, . . . , bm} is not followed by an event from the set
{a1, . . . , ap}. More precisely, there are two possible cases: (1) trace σ contains an event
from {b1, . . . , bm} and does not contain an event from {a1, . . . , ap}; (2) an occurrence of an
event from set {b1, . . . , bm} is followed by another occurrence of an event from the same set
{b1, . . . , bm} and only after that an event from the set {a1, . . . , ap} may follow. For the case
(1), it is possible that the final state so belongs to the region r (Figure 9a). Then, the fir-
ing sequence in N: m0

e1→ m1
e2→ . . .

bi→ mi → . . .
el→ mn corresponds to the firing sequence

m0
e1→ m1

e2→ . . .
bi→ m′i → . . .

el→ m′n in N ′, where ∀p ∈ P : m′i(p) = mi(p),m
′
i(r) = 1,

. . . ,m′n(p) = mn(p),m′n(r) = 1 and, according to the synthesis algorithm (Section 4), m′n is
a new added final marking.

b1

r

bm

ap

...

...

a1

cd

b1

...
bm

...

si
so

a1 ap

a. b.

r

(a) Start/final state inside the region r.

b1

r

bm

ap

...

...

a1

cd

b1

...
bm

...

si
so

a1 ap

a. b.

r

(b) The bypass incoming/outgoing transitions.

Figure 9: Fragments of the transition system that encodes L.

The other possible scenario for the cases (1) and (2), is that the trace σ does not terminate inside
region r. In both cases, there is a transition labelled by an event c /∈ {a1, . . . , ap} which exits
region r (Figure 9b). While it is obvious for the case (1), for the case (2) this can be proven
by the fact that there are two occurrences of events from {b1, . . . , bm} with no occurrences
of events from {a1, . . . , ap} in between, and hence the trace σ leaves the region r in order to
enter it again with a transition labelled by an event from {b1, . . . , bm}. Having a new exiting
event c /∈ {a1, . . . , ap} contradicts the definition of the region r which has {a1, . . . , ap} as a
set of exiting events. Thus, we have proven that there is no such a trace in the initial event log
containing an event from the set {b1, . . . , bm} which is not followed by an event from the set
{a1, . . . , ap}.

306 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

4. Consider the last possible case when an event from {a1, . . . , ap} is not preceded by an event
from {b1, . . . , bm} in trace σ. Here again we can distinguish two situations: (1) σ contains
an event from {a1, . . . , ap} and does not contain an event from {b1, . . . , bm}; (2) the occur-
rence of an event from {a1, . . . , ap} is firstly preceded by another occurrence of an event from
{a1, . . . , ap} which in its turn can be preceded by an event from {b1, . . . , bm}. Just like in the
previous case, two scenarios are possible: the trace starts inside the region r (Figure 9a.) or
there is a transition entering r and labelled by an event d /∈ {b1, . . . , bm} (Figure 9b). Simi-
larly to the case (3), we can prove that either (1) we adjust the initial marking, or (2) r is not
a region.

Thus, we have proved that if a place corresponding to a region constructed by the Algorithm 1 is
added to the initial workflow net N then all the traces from L accepted by N are also accepted by the
resulting workflow net N ′. ut

The following theorem states that the resulting model cannot be less precise than the initial process
model, i.e., it cannot accept new traces which were not accepted by the initial model.

Theorem 5.2. (Precision)
Let N = (P, T, F, l), l : T → Eτ , be a free-choice workflow net and let L be an event log over a set
of events E. If workflow net N ′ is obtained from N and L by Algorithm 1, then the language of N
contains the language of N ′, i.e., L(N ′) ⊆ L(N).

Proof:
The proof follows from the well-known result that the addition of new places (preconditions) can only
restrict the behaviour and, hence, the language of the Petri net [33]. ut

Next, we formulate and prove a sufficient condition for the soundness of the resulting workflow
net. This condition is formulated in terms of the state-based region theory.

Theorem 5.3. (Soundness)
Let L be an event log over set E. Let N = (P, T, F, l), l : T → Eτ be a sound free-choice workflow
net with initial and final markings [i] and [o], respectively. Suppose that workflow net N ′ = (P ∪
P ′, T, F ′, l) is obtained from N and L by applying Algorithm 1 to a set of transitions t1, . . . , tq
in a free-choice relation within N , such that these transitions are all not silent, i.e., ∀j ∈ [1, q] :
l(tj) 6= τ . Suppose also that {r(1), . . . , r(n)} is a set of regions constructed by Algorithm 1 in the
transition system encoding L (Figure 10b). Let E(1)

ent = {b(1)
1 , . . . , b

(1)
m }, . . . , E(n)

ent = {b(n)
1 , . . . , b

(n)
t }

and E(1)
exit = {a(1)

1 , . . . , a
(1)
p }, . . . , E(n)

exit = {a(n)
1 , . . . , a

(n)
k } be sets of entering and exiting events for

the regions r(1), . . . , r(n) respectively. Consider unions of these sets: Eent = E
(1)
ent ∪ . . . ∪ E

(n)
ent

and Eexit = E
(1)
exit ∪ . . . ∪ E

(n)
exit . Suppose that Eexit = {l(t1), . . . , l(tq)} and ∀j, k, j 6= k holds that

E
(j)
exit∩E

(k)
exit = ∅. If there exists a (not necessarily minimal) region r in the τ -closure of the reachability

graph of N (Figure 10a) with entering and exiting sets of events Eent and Eexit , respectively, which
does not contain states corresponding to [i] (initial) and [o] (final) markings of N , then N ′ is sound.

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 307

b1

a1
...

b1 bm...

r1

bm

ap
...

a1
a. b.

a1

...

(1)
(1)

...

bt
(n)b1

(n)

(1) (1)
b1 bt...

rn

(n) (n)

p*

...

(1)

ap
(1) (n)

ak
(n)

a1
(n)

ak
(n)(1) (1)

r

(a) A fragment of the reachability graph ofN .

b1

a1
...

b1 bm...

r1

bm

ap
...

a1
a. b.

a1

...

(1)
(1)

...

bt
(n)b1

(n)

(1) (1)
b1 bt...

rn

(n) (n)

p*

...

(1)

ap
(1) (n)

ak
(n)

a1
(n)

ak
(n)(1) (1)

r

(b) A fragment of N ′.

Figure 10: Adding new places to N .

Proof:
Repeating the proof of Theorem 5.1 and taking into account that the initial and final states of τ -closure
of the reachability graph of N do not belong to the region r, we can state that there is a following
relation between Eent and Eexit within L(N), i.e, for each trace, each occurrence of the event from
Eent is followed by an occurrence of the event from Eexit and there are no other occurrences of events
from Eent between them.

The firing sequences of N ′ which do not involve firings of transitions labelled by events from
Eent and Eexit repeat the corresponding firing sequences of N and do not violate the soundness of the
model.

Let us consider a firing sequence ofN ′ which involves firings of transitions labelled by events from
Eent and Eexit . Consider b ∈ Eent , the firing sequence enabling and firing b in N ′: [i]

∗→ m′1
b→ m′2,

corresponds to the firing sequence performed by N : [i]
∗→ m1

b→ m2, where ∀p ∈ P : m1(p) =

m′1(p), m2(p) = m′2(p). Without loss of generality, suppose that b ∈ E(i)
ent , then m′2(ri) = 1, where

ri is a place constructed by Algorithm 1.
Since Eent and Eexit events are in a following relation within L(N), they are in the following

relation within L(N ′), because L(N ′) ⊆ L(N). Consider sequences of steps leading to some of the
events from Eexit . These firing sequences will be: m′2

∗→ m′3 and m2
∗→ m3, where m3(p) = m′3(p)

and m′3(ri) = 1, in N ′ and N respectively.
In model N ′ transitions labelled by the events from E

(i)
exit will be enabled in m′3, all other trans-

itions labelled by events from Eexit \E(i)
exit have their preceding places empty in m′3: m′3(rj) = 0,

i 6=j.
In workflow net N ′ it holds that m′3(ri) = 1 and m′3(p∗) = 1 (p∗ is a choice place for the

transitions in a free-choice relation within N , see Figure 10b) and hence a step: m′3
a→ m′4, where

a ∈ E(i)
exit can be performed. After a is fired the place ri is emptied. A corresponding firing step in N :

m3
a→ m4 can be taken, because m3(p∗) = 1, and all the transitions labelled by events from Eexit are

308 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

enabled in m3. These steps lead models to the same markings: ∀p ∈ P : m4(p) = m′4(p) from which
firing the same transitions the final marking [o] can be reached. If the rest sequence of firings contains
events from Eent and Eexit , we repeat the same reasoning.

Thus, we have shown that all the transitions within N ′ can be fired. Due to the soundness of N ,
since all the firing sequences of N ′ correspond to firing sequences of N , and the number of tokens in
each place from P in corresponding markings of N ′ and N coincide, the final marking can be reached
from any reachable marking of N ′ and there are no reachable markings in N ′ with tokens in the final
place o and some other places. ut

5.4. Using high-level constructs to model discovered non-local constraints

In this subsection, we demonstrate how the discovered process models with non-local constraints
can be presented using high-level modelling languages, such as BPMN (Business Process Model
and Notation) [3]. Free-choice workflow nets can be modelled by a core set of process modelling
elements that includes start and end events, tasks, parallel and choice gateways, and sequence flows.
The equivalence of free-choice workflow nets and process models based on the core set of elements is
studied in [34, 30]. Most process modelling languages, such as BPMN, support these core elements.
A BPMN model corresponding to the discovered free-choice workflow net (shown in Figure 1) is
presented in Figure 11.

1/18/2020 diagram (6).svg

file:///C:/Users/akalenkova/Downloads/diagram (6).svg 1/1

notify client send
 application

check

application

create

application
complete

application

accept
application

Figure 11: A BPMN model that corresponds to the workflow net in Figure 1.

If a workflow net is not free-choice, it cannot be presented using core elements only [34]. However,
the BPMN language offers additional high-level modelling constructs which can be used to model non-

1/18/2020 diagram (7).svg

file:///C:/Users/akalenkova/Downloads/diagram (7).svg 1/1

notify client send
application

check
application

create
application

complete

application

accept
application

sent by client

created by

employee

sent by client

created by
employee

Figure 12: A BPMN model with signals corresponding to the workflow net presented in Figure 3.

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 309

free-choice constraints. Figure 12 demonstrates a BPMN model that corresponds to a non-free-choice
net (in Figure 3) constructed by Algorithm 1.

In addition to core modelling elements, signal events and an event-based gateway can be used.
Assuming throw signal events are buffered within the scope of the corresponding process instance
(this depends on the chosen BPMN engine), the signal events can capture the discovered non-local
dependencies. For instance, after the send application task is performed, a signal sent by client is
thrown. After that, an event-based gateway is used to select a branch depending on which of the
catching signal events that immediately follow the gateway is fired. For example, if the type of the
caught event is signal and its value is sent by client , then task notify client is performed.

Besides that, the long-distance dependencies can be modelled in BPMN using data objects and
conditional sequence flows [35, 36]. Figure 13 shows the same process where send application and
create application tasks define the value of the ApplicationType data object, and then, depending on
its value one of the process branches is activated.

11/20/2020 diagram (35).svg

file:///C:/Users/akalenkova/Downloads/diagram (35).svg 1/1

send
application

create

application

check
application

notify client

complete

application

accept
application

ApplicationType

ApplicationType=
'Sent by client'

ApplicationType!=
'Sent by client'

Figure 13: A BPMN model with a data object corresponding to the workflow net presented in Figure 3.

6. Case study

In this section, we demonstrate the results of applying our approach to synthetic and real-life event
logs. The approach is implemented as an Apromore [25] plugin called “Add long-distance relations”
and is available as part of the Apromore Community Edition. 4 All the results were obtained in real-
time using Intel(R) Core(TM) i7-8550U CPU @1.80 GHz with 16 GB RAM.

6.1. Synthetic event logs

To assess the ability of our approach to automatically repair process models we have built a set of
workflow nets with non-local dependencies. An example of one of these workflow nets is presented
in Figure 14.

4https://github.com/apromore/ApromoreCE_ExternalPlugins

https://github.com/apromore/ApromoreCE_ExternalPlugins

310 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

a
b

c

d

e

f

g

h

i

j

k

l

m

Figure 14: A workflow net used for the synthesis of an event log.

We simulated each of the workflow nets and generated event logs containing accepted traces. After
that, from each event log L we discovered a free-choice workflow net N using Split miner. Then, our
approach was applied toN and L producing an enhanced workflow netN ′ with additional constraints.
To compare behaviours of N and N ′ workflow nets, conformance checking techniques [37] assessing
fitness (the share of the log behaviour accepted by a model) and precision (the share of the model
behaviour captured by the log) were applied. In all the cases, both models N and N ′ accept all
the traces from L showing maximum fitness values of 1.0 (according to Theorem 5.1, if N accepts
a trace, then N ′ also accepts this trace). Precision values as well as the structural characteristic of
the workflow nets are presented in Table 1. These results demonstrate that our approach is able to
automatically reveal hidden non-local constraints discovering precise workflow nets when applied to
synthetic event logs.

Table 1: Structural (number of transitions and number of places) and behavioural characteristics (pre-
cision) of free-choice (N) and enhanced (N ′) workflow nets.

Event log #Transitions / #Transitions / Precision Precision

#Places in N #Places in N ′ (N,L) (N ′, L)

1 18 / 14 18 / 18 0.972 1.0

2 13 / 12 13 / 14 0.945 1.0

3 10 / 9 10 / 11 0.899 1.0

4 12 / 13 12 / 15 0.911 1.0

5 6 / 4 6 / 6 0.841 1.0

At the same time, while other approaches for the discovery of non-free-choice workflow nets,
such as α++ Miner [8] and the original Petri net synthesis technique [10] can also synthesize precise
workflow nets from this set of simple event logs, they often either produce unsound workflow nets with
dead transitions (in the case of α++ Miner), or fail to construct a model in reasonable time (in case
of the original synthesis approach) when applied to real-world event logs. In the next subsection, we
apply our approach to a real-world event log showing that our approach can discover a more precise
and sound process model in a real-world setting.

6.2. Real-life event logs

The proposed approach was applied to Business Process Intelligence Challenge (BPIC) real-world
event logs, including: (1) the event logs of a university travel expense claims system that processes

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 311

Domestic Declarations (DD-BPIC20) [38], Prepaid Travel Costs (PTC-BPIC20) [39], and Request
For Payment (RP-BPIC20) [40] documents; (2) the Hospital Billing (HB-BPIC17) [41] event log
obtained from financial modules of a hospital information system; (3) the event log of a Road Traffic
Fine Management (RTF-BPIC15) [42] system; (4) the Receipt phase event log of a building permit
application process (RPBP-BPIC14) [43]; (5) the Detailed Incident Activity (DIA-BPIC14) [44] event
log of an ITIL (Information Technology Infrastructure Library) process that aligns IT services and
banking procedures.

To reduce noise and apply the proposed technique to the most frequent behaviour, we filtered
each event log, keeping only 20 of its most frequent traces.5 Then, for each filtered event log L, the
Inductive mining algorithm [4] guaranteeing perfect fitness (the language of the discovered model
contains all traces from the event log) was applied and a corresponding free-choice workflow net N
was discovered. For each pair (N,L), we applied our repair algorithm (Algorithm 1) and constructed
a workflow net N ′ enhanced with additional places. Table 2 presents the characteristics of each log L,
such as the overall number of occurrences of events and traces, the number of events, the structural
characteristics of workflow nets, such as the size of N (the number of places and transitions) and the
number of places added to N ′, the behavioural characteristics (precision) of N and N ′ with respect
to L, and the overall computation time in milliseconds.

These results demonstrate that although we add extra places, increasing the size of the workflow
net, we also improve its precision by imposing additional behavioural constraints. To calculate preci-
sion we apply the entropy-based conformance checking metric [37] that is monotonic, i.e., the lower
the share of model traces that are not present in the log, the higher the precision. At the same time,
we preserve model fitness. According to Theorem 5.1, since the fitness of the initial workflow net
is 1.0 (the workflow net accepts all the event log traces), the fitness of the corresponding enhanced
workflow net is also 1.0. All the enhanced workflow nets were constructed in less than a second for
each of the event logs.

Table 2: Event log characteristics (number of occurrences of events and traces, number of events), size
(the number of nodes) of free-choice workflow net N , number of new places in enhanced workflow
net N ′, behavioural characteristics (precision) of N and N ′ in respect to L, and calculation time in
milliseconds.

Event #Events’ #Traces’ #Unique Size #New Prec. Prec. Time

log occur. occur. Events N Places (N,L) (N ′, L) (ms)

DD-BPIC20 54,863 10,313 14 72 14 0.270 0.487 133

PTC-BPIC20 14,448 1,727 18 67 26 0.233 0.397 252

RP-BPIC20 35,342 6,694 16 76 14 0.317 0.529 213

HB-BPIC17 401,718 94,056 13 69 3 0.310 0.393 142

RTF-BPIC15 552,379 149,145 11 44 4 0.340 0.434 57

RPBP-BPIC14 7,526 1,328 15 47 6 0.463 0.546 120

DIA-BPIC14 43,828 10,560 10 31 1 0.851 0.873 23

5In contrast to the definition of event logs given in Section 3, in real-life event logs, traces can appear multiple times.

312 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

The workflow net N discovered from the real-world event log L of DIA-BPIC14 is presented in
Figure 15. The repair algorithm applied to the model N and event log L constructs N ′ by discovering
a false free-choice relation for the activities Quality Indicator Fixed, Resolved and Update and adds
a place (region) r that also specifies Caused by CI (Caused by Configuration Item) as an exit event.
This new place restricts the model behaviour in such a way that the Caused by CI event can occur
only if Resolved and Update events did not occur. According to the synthesis algorithm (Section 4), in
addition to the initialm0 and finialmf markings ofN with one token in places p0 and p12 respectively,
N ′ assumes a final marking m′f , such that m′f (p12) = m′f (r) = 1. In contrast to N , N ′ is not sound
because a marking with tokens in places p12 and r is reachable. However, according to Theorem 5.1,
N ′ can replay all the traces from L; also, N ′ is more precise than N , in respect to L, i.e., precision for
N is 0.851, while precision for N ′ is 0.873 (Table 2).

Open

Quality Indicator
Fixed

Assignment

Status
Change

Resolved

Update

Mail to Customer

Operator
 Update

Caused By CI

Closed

p0 p1

p2

p3

p4

p5

p6 p7

p8 p10

p9 p11

p12

r

Figure 15: The workflow net N discovered from DIA-BPIC14 event log using the Inductive mining
algorithm that guarantees perfect fitness and an enhanced model N ′ with an additional place r discov-
ered by the repair algorithm. The initial markingm0 ofN ′ is the marking with only one token in place
p0, i.e., m0(p0) = 1, for two final markings mf and m′f of N ′, it holds that mf (p12) = m′f (p12) = 1
and, additionally m′f (r) = 1.

To analyse the calculation times, we compared the proposed repair technique to the region-based
approaches that discover process models from event logs without constructing intermediate process
representations (Table 3). To that end, we applied the region synthesis algorithm [28] to the transition
systems constructed from the real-world event logs described in Table 2. The discovered Petri nets
N were obtained in a reasonable time that was higher than the time of applying the proposed repair
technique, because not only the regions that solve the outlined ESSP problems were discovered,
but also other places. The Petri net models N are more compact than the original workflow nets
N and N ′, because they do not contain silent transitions. However, the structure of these Petri nets
is not presented by solid control flow graphs and they usually contain unconnected transitions. For
instance, the Petri net discovered from the event log DIA-BPIC14 contains five transitions Quality
Indicator Fixed, Assignment, Status Change, Mail to Customer and Operator Update that do not
have any incoming or outgoing flows. To discover Petri nets that are represented by a solid control
flow, the synthesis algorithm [32] that incorporates the label splitting procedure can be applied. We
synthesised workflow nets N with duplicate transitions (transitions with the identical labels) from

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 313

the real-world event logs (Table 2) using the ProM (Process Mining Framework) 6 plugin Convert to
Petri net using Regions [10]. As follows from Table 3, this technique is time consuming and some
of the event logs could not be analysed in a reasonable amount of time. The discovered models N
are not block-structured and contain duplicate transitions, however, they are comparable in size to the
repaired models N ′ and clearly represent the control flow structure. Comparing to the other region-
based techniques, our repair approach achieves two goals: it constructs structured process models
(with additional constraints) in a feasible time.

Table 3: The size (the number of nodes) and the discovery time (in milliseconds) for Petri nets N and
workflow nets with duplicated labelsN , discovered using region-based techniques from the event logs
described in Table 2.

Event Size Disc. time Size Disc. time

log N N (ms) N N (ms)

DD-BPIC20 45 669 – –

PTC-BPIC20 63 2,761 – –

RP-BPIC20 51 1,056 – –

HB-BPIC17 37 482 51 630,308

RTF-BPIC15 32 487 43 13,258

RPBP-BPIC14 30 417 62 259,642

DIA-BPIC14 19 235 39 2,462

7. Conclusion and future work

This paper presents an automated repair approach for obtaining precise process models under the
presence of non-local dependencies. The approach identifies opportunities for improving the process
model by analysing the process behaviour recorded in the input event log. It then uses goal-oriented
region-based synthesis to discover new Petri net fragments that introduce non-local dependencies.

The theoretical contributions of this paper have been implemented as an open-source plugin of the
Apromore process mining platform. This implementation has then been used to provide experimental
results. Based on the experiments conducted, the proposed approach shows good performance.

We foresee different research directions arising from this work. First, implementing the proposed
approach for alternative region techniques like language-based [12, 18] or geometric [19, 20] is an
interesting avenue to explore. Second, evaluating the impact that well-known problems with event
logs, like noise or incompleteness, may have on the approach, and proposing possible ways to over-
come these problems should be explored. Finally, we plan to investigate and classify behavioural
characteristics of unsound models discovered by our repair approach.

6https://www.promtools.org/.

https://www.promtools.org/.

314 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

References

[1] van der Aalst W. Process mining: data science in action. Springer, 2016. ISBN 978-3-662-
49850-7.

[2] Carmona J, van Dongen B, Solti A, Weidlich M. Conformance checking - relating processes and
models. Springer, 2018. ISBN:978-3-319-99413-0.

[3] OMG. Business Process Model and Notation (BPMN), Version 2.0.2, 2013. URL http://www.

omg.org/spec/BPMN/2.0.2.

[4] Leemans S, Fahland D, van der Aalst W. Discovering block-structured process models from
incomplete event logs. In: ATPN’2014, volume 8489 of LNCS, pp. 91–110. Springer, 2014.
doi:10.1007/978-3-319-07734-5 6.

[5] Augusto A, Conforti R, Dumas M, La Rosa M, Polyvyanyy A. Split Miner: Automated discov-
ery of accurate and simple business process models from event logs. Knowl. Inf. Syst., 2019.
59(2):251–284. doi:10.1007/s10115-018-1214-x.

[6] Desel J, Esparza J. Free choice Petri nets. Cambridge University Press, USA, 1995. ISBN:
0521465192.

[7] Kalenkova A, van der Aalst W, Lomazova I, Rubin V. Process mining using BPMN: Relating
event logs and process models process mining using BPMN. Software and Systems Modeling,
2017. 16:1019–1048. doi:10.1007/s10270-015-0502-0.

[8] Wen L, Aalst W, Wang J, Sun J. Mining process models with non-free-choice constructs. Data
Min. Knowl. Discov., 2007. 15(2):145–180. doi:10.1007/s10618-007-0065-y.

[9] Carmona J, Cortadella J, Kishinevsky M. A region-based algorithm for discovering Petri nets
from event logs. In: Business Process Management. Springer Berlin Heidelberg, Berlin, Heidel-
berg. 2008 pp. 358–373. ISBN:978-3-540-85758-7.

[10] van der Aalst W, Rubin V, Verbeek H, van Dongen B, Kindler E, Günther C. Process min-
ing: a two-step approach to balance between underfitting and overfitting. Software & Systems
Modeling, 2010. 9(1):87. doi:10.1007/s10270-008-0106-z.

[11] Solé M, Carmona J. Process mining from a basis of state regions. In: Proceedings of the 31st
International Conference on Applications and Theory of Petri Nets, PETRI NETS’10. Springer-
Verlag, Berlin, Heidelberg. 2010 p. 226–245. ISBN:3642136745.

[12] van der Werf J, van Dongen B, Hurkens C, Serebrenik A. Process discovery using integer linear
programming. In: Applications and Theory of Petri Nets. Springer Berlin Heidelberg, Berlin,
Heidelberg. 2008 pp. 368–387. ISBN:978-3-540-68746-7.

[13] Bergenthum R. Prime miner - process discovery using prime event structures. In: 2019 Interna-
tional Conference on Process Mining (ICPM). 2019 pp. 41–48. doi:10.1109/ICPM.2019.00017.

http://www.omg.org/spec/BPMN/2.0.2
http://www.omg.org/spec/BPMN/2.0.2

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 315

[14] van Zelst S, van Dongen B, van der Aalst W, Verbeek H. Discovering workflow nets using integer
linear programming. Computing, 2018. 100(5):529–556. doi:10.1007/s00607-017-0582-5.

[15] Mannel L, van der Aalst W. Finding uniwired Petri nets using eST-Miner. In: Business Pro-
cess Management Workshops. Springer International Publishing, Cham. 2019 pp. 224–237.
ISBN:978-3-030-37453-2.

[16] Mannel L, van der Aalst W. Finding complex process-structures by exploiting the token-game.
In: 40th International Conference, PETRI NETS’19, Proceedings, volume 11522 of Lecture
Notes in Computer Science. Springer, 2019 pp. 258–278. doi:10.1007/978-3-030-21571-2 15.

[17] Badouel E, Bernardinello L, Darondeau P. Petri net synthesis. Texts in Theoretical Computer
Science. An EATCS Series. Springer, 2015. ISBN:978-3-662-47966-7.

[18] Bergenthum R, Desel J, Lorenz R, Mauser S. Synthesis of Petri nets from finite partial languages.
Fundam. Inform., 2008. 88(4):437–468.

[19] Best E, Devillers R, Schlachter U. A graph-theoretical characterisation of state separation. In:
SOFSEM - 43rd International Conference on Current Trends in Theory and Practice of Computer
Science, Proceedings. 2017 pp. 163–175. doi:10.1007/978-3-319-51963-0 13.

[20] Schlachter U, Wimmel H. A geometric characterisation of event/state separation. In: Application
and Theory of Petri Nets and Concurrency - 39th International Conference, PETRI NETS’18,
Proceedings. 2018 pp. 99–116.

[21] Polyvyanyy A, van der Aalst W, ter Hofstede A, Wynn M. Impact-driven process model repair.
ACM Trans. Softw. Eng. Methodol., 2016. 25(4). doi:10.1145/2980764.

[22] Armas-Cervantes A, van Beest N, La Rosa M, Dumas M, Garcı́a-Bañuelos L. Interactive and
incremental business process model repair. In: On the Move to Meaningful Internet Systems.
OTM 2017 Conferences. Springer International Publishing, Cham. 2017 pp. 53–74. ISBN:978-
3-319-69462-7. doi:10.1007/978-3-319-69462-7 5.

[23] Fahland D, van der Aalst W. Model repair — aligning process models to reality. Information
Systems, 2015. 47:220–243. doi:10.1016/j.is.2013.12.007.

[24] Mitsyuk A, Lomazova I, Shugurov I, van der Aalst W. Process model repair by detect-
ing unfitting fragments. In: AIST 2017, CEUR Workshop Proceedings. 2017 pp. 301–313.
doi:d429471f542a45f09a62131cf704e730.

[25] La Rosa M, Reijers H, van Der Aalst W, Dijkman R, Mendling J, Dumas M, Garcı́a-Bañuelos L.
APROMORE: An advanced process model repository. Expert Systems with Applications, 2011.
38(6):7029–7040. doi:10.1016/j.eswa.2010.12.012.

[26] Kalenkova A, Carmona J, Polyvyanyy A, La Rosa M. Automated repair of process models using
non-local constraints. In: 41st International Conference, PETRI NETS’20, Proceedings, volume
12152 of Lecture Notes in Computer Science. Springer, 2020 pp. 280–300.

316 A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr.

[27] Cortadella J, Kishinevsky M, Lavagno L, Yakovlev A. Deriving Petri nets from finite transition
systems. IEEE Transactions on Computers, 1998. 47(8):859–882. doi:10.1109/12.707587.

[28] Carmona J, Cortadella J, Kishinevsky M. New region-based algorithms for deriving bounded
Petri nets. IEEE Trans. Computers, 2010. 59(3):371–384. doi:10.1109/TC.2009.131.

[29] Hopcroft J, Ullman J. An n log n algorithm for detecting reducible graphs. In: Proe. 6th Annual
Princeton Conf. on Inf. Sciences and Systems. 1972 pp. 119–122.

[30] van der Aalst W, Hirnschall A, Verbeek H. An alternative way to analyze workflow graphs.
In: Advanced Information Systems Engineering. Springer Berlin Heidelberg. 2002 pp. 535–552.
ISBN:978-3-540-47961-1. doi:10.1007/3-540-47961-9 37.

[31] Desel J, Reisig W. The synthesis problem of Petri nets. Acta Inf., 1996. 33(4):297–315.
doi:10.1007/s002360050046.

[32] Cortadella J, Kishinevsky M, Lavagno L, Yakovlev A. Deriving Petri nets from finite transition
systems. IEEE Transactions on Computers, 1998. 47(8):859–882.

[33] Reisig W. Petri nets: An introduction. Springer-Verlag, Berlin, Heidelberg, 1985. ISBN:
0387137238. doi:10.5555/3405.

[34] Favre C, Fahland D, Völzer H. The relationship between workflow graphs and free-choice work-
flow nets. Information Systems, 2015. 47:197 – 219.

[35] Meyer A, Pufahl L, Fahland D, Weske M. Modeling and enacting complex data dependencies
in business processes. 2013 pp. 171–186. In: Business Process Management. Springer Berlin
Heidelberg. ISBN:978-3-642-40176-3. doi:10.1007/978-3-642-40176-3 14.

[36] Kalenkova A, Burattin A, de Leoni M, van der Aalst W, Sperduti A. Discovering high-
level BPMN process models from event data. Business Process Management Journal, 2019.
25(5):995–1019. doi:10.1108/BPMJ-02-2018-0051.

[37] Polyvyanyy A, Solti A, Weidlich M, Di Ciccio C, Mendling J. Monotone precision and recall
measures for comparing executions and specifications of dynamic systems. ACM Trans. Softw.
Eng. Methodol., 2020. 29(3):1–41. doi:10.1145/3387909.

[38] van Dongen B. BPI challenge 2020: Domestic declarations, 2020. doi:10.4121/uuid:3f422315-
ed9d-4882-891f-e180b5b4feb5.

[39] van Dongen B. BPI challenge 2020: Prepaid travel costs, 2020. doi:10.4121/uuid:5d2fe5e1-
f91f-4a3b-ad9b-9e4126870165.

[40] van Dongen B. BPI challenge 2020: Request for payment, 2020. doi:10.4121/uuid:895b26fb-
6f25-46eb-9e48-0dca26fcd030.

[41] Mannhardt F. Hospital billing - event log, 2017. doi:10.4121/uuid:76c46b83- c930-4798-a1c9-
4be94dfeb741.

A. Kalenkova et al. / Automated Repair of Proc. Models Using Non-local Constr. 317

[42] de Leoni M, Mannhardt F. Road traffic fine management process, 2015. doi:10.4121/uuid:
270fd440-1057-4fb9-89a9-b699b47990f5.

[43] Buijs J. Receipt phase of an environmental permit application process (‘WABO’), CoSeLoG
project, 2014. doi:10.4121/uuid:a07386a5- 7be3-4367-9535-70bc9e77dbe6.

[44] van Dongen B. BPI challenge 2014: Activity log for incidents, 2014. doi:10.4121/uuid:
86977bac-f874-49cf-8337-80f26bf5d2ef.

	1 Introduction
	2 Motivating example
	3 Preliminaries
	3.1 Sets, multisets, event logs
	3.2 Transition systems, Petri nets, workflow nets

	4 Region state-based synthesis
	5 Repairing free-choice process models
	5.1 Problem definition
	5.2 Algorithm description
	5.3 Formal properties
	5.4 Using high-level constructs to model discovered non-local constraints

	6 Case study
	6.1 Synthetic event logs
	6.2 Real-life event logs

	7 Conclusion and future work

