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Abstract. Let T (G;X,Y ) be the Tutte polynomial for graphs. We study the sequence ta,b(n) =
T (Kn; a, b) where a, b are integers, and show that for every µ ∈ N the sequence ta,b(n) is ul-

timately periodic modulo µ provided a 6= 1 mod µ and b 6= 1 mod µ. This result is related

to a conjecture by A. Mani and R. Stones from 2016. The theorem is a consequence of a more

general theorem which holds for a wide class of graph polynomials definable in Monadic Sec-

ond Order Logic. This gives also similar results for the various substitution instances of the

bivariate matching polynomial and the trivariate edge elimination polynomial ξ(G;X,Y, Z) in-

troduced by I. Averbouch, B. Godlin and the second author in 2008. All our results depend on the

Specker-Blatter Theorem from 1981, which studies modular recurrence relations of combinatorial

sequences which count the number of labeled graphs.

1. Introduction

Boris (Boaz) Abramovich Trakhtenbrot (1921-2016) was one of the pioneers in recognizing the use-

fulness of Monadic Second Order Logic MSOL for treating situations in automata theory [1]. In [2],

published in the Festschrift for Boaz’ 85th birthday, Eldar Fischer and the second author gave an appli-

cation of Monadic Second Order Logic to graph polynomials, by proving that for a graph polynomial
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P (G; x̄) definable in MSOL and a sequence of recursively defined graphs Gi : i ∈ N the sequence of

polynomials P (Gi; x̄) satisfies a linear recurrence relation over the polynomial ring Z[x̄].

Ernst Specker (born in 1920-2011), together with Christian Blatter (1935-2021), was the first to

use Monadic Second Order Logic to prove a meta-theorem in counting combinatorics, [3]. In order

to celebrate Boaz’ centenary we shall give another application of Monadic Second Order Logic to

MSOL-definable graph polynomials P (G; x̄), where the proof again uses the Specker-Blatter Theo-

rem. We fix ā ∈ N
r and look at the sequence p(n, ā) = P (Kn; ā) modulo µ ∈ N, where Kn is the

complete graph on n vertices. We show that, under simple assumption on ā and µ, this sequence is

ultimately periodic modulo µ.

Our results are easy, but possibly unexpected, applications of the Specker-Blatter Theorem. They

illustrate more the power of it, by using general methods of Monadic Second Order Logic MSOL,

rather than applying combinatorial arguments specially tailored to a particular case.

1.1. Some graph polynomials

Let G = (V (G), E(G)) be a finite graph. We put n(G) = |V (G)|, m(G) = |E(G)|, κ(G) is the

number of connected components of G. From a logical point of view G can be represented in various

ways. The vocabulary τgraph consists of one binary relation symbol for E(G) and the vocabulary

τhgraph consists of two unary predicates, one for vertices V (G) and one for edges E(G) and one

binary relation symbol for R(G) for the incidence relation between edges and vertices. τhgraph is also

suitable for representing hypergraphs. Induced subgraphs are substructures in the case of τgraph. and

subgraphs are substructures in the case of τhgraph. In other words, let A ⊆ V (G) be a set of vertices.

The induced subgraph of G generated by A is the graph G[A] = (A,E(G) ∩A2). On the other hand

the graph (A,E) is a subgraph of G for any F ⊆ E(G).

MSOL on graphs allows quantification over subsets of vertices only. MSOL on hypergraphs

allows quantification over subsets of vertices and subsets of edges. MSOL on hypergraphs has the

same expressive power as Second Order Logic SOL on graphs where second order quantification

is restricted to unary predicates and binary relations which are subsets of the edge relation. We

denote this version by GMSOL, for Guarded Monadic Second Order Logic. We assume the reader is

familiar with Monadic Second Order Logic MSOL. For the Monadic Second Order theory of graphs

the reader is referred to the encyclopedic [4]. CMSOL is the logic extending MSOL with modular

counting quantifiers.

A graph polynomial P (G, X̄) is a function P which associates with a graph G a polynomial

P (G, X̄) ∈ Z[X̄], and which is invariant under graph isomorphisms (disregarding the labels). Here

X̄ = (X1, . . . ,Xs).

Let us look at some examples:

(i) Let ik(G) denote the number of independents sets A ⊆ V (G) of size k.

The independence polynomial In(G,X) is defined as

In(G,X) =

n(G)
∑

k=0

ik(G)X
k



T. Kotek and J.A. Makowsky / On the Tutte Polynomial 157

(ii) Let ck(G) denote the number of sets A ⊆ V (G) which induce a clique of size k.

The clique polynomial Cl(G,X) is defined as

Cl(G;X) =

n(G)
∑

k=0

ck(G)X
k

(iii) Let λ ∈ N. χ(G,λ) denotes the number of proper λ-colorings of G.

By the well-known observation of G. Birkhoff (1912), χ(G,λ) is a polynomial in N[λ].
We denote by χ(G,X) the extensions of χ(G,λ) to a polynomial over the complex numbers,

χ(G,X) ∈ C[X]. χ(G,X) is called the chromatic polynomial of G.

(iv) The Tutte polynomial T (G;X,Y ) is defined as

T (G;X,Y ) =
∑

A⊂E(G)

(X − 1)κ(A)−κ(G) · (Y − 1)|A|+κ(A)−|V (G)| (1)

where κ(S) is the number of connected components of the spanning subgraphG[S] = (V (G), S).

(v) The matching polynomials come in two versions: Let G be a graph and mk(G) be the number

of matchings of size k of G. The generating matching polynomial M(G : X) of G is defined as

M(G;X) =

⌊n/2⌋
∑

k=0

mk(G)X
k

and the matching defect aka acyclic polynomial α(G;X) is defined as

α(G;X) =

⌊n/2⌋
∑

k=0

(−1)kmk(G)X
n−2k

The two are related by the equations

α(G;X) = XnM(G;−X−2) and M(G;X) = (−i)nXn/2α(G; iX−1/2)

There is also a bivariate version

M̄(G;X,Y ) =

⌊n/2⌋
∑

k=0

(X)kmk(G)Y
n−2k

where M̄(G;−1, Y ) = α(G;Y ) and M̄(G;X, 1) =M(G;X).

(vi) In [5, 6] the authors introduce a most general edge elimination polynomial in three indetermi-

nates ξ(G;X,Y,Z).

ξ(G;X,Y,Z) =
∑

(A⊔B)⊆E

Xκ(A⊔B)−c(B) · Y |A|+|B|−c(B) · Zc(B) (2)
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Here c((V,E)) is the number of connected components of (V,E) which have at least one

edge. Both the matching polynomials and the Tutte polynomial are substitution instances of

ξ(G;X,Y,Z). In [7, 8] other trivariate graph polynomials are discussed which are equivalent to

ξ(G;X,Y,Z): Among them the subgraph counting polynomial S(G,X, Y, Z) and the covered

components polynomial C(G;X,Y,Z). All these trivariate graph polynomials are substitution

instances of each other. The subgraph counting polynomial S(G;X,Y,Z) is defined as

S(G;X,Y,Z) =
∑

H=(W,F )⊆G

X |W |Y κ(H)Z |F |

where H ranges over all subgraphs of G.

The covered components polynomial C(G;X,Y,Z) is defined as

C(G;X,Y,Z) =
∑

A⊆E

Xκ(([n],A))Y |A|Zc(([n],A))

In [7] it is shown how ξ(G;X,Y,Z) and C(G;X,Y,Z) are related:

Proposition 1.1.

C(G;X,Y,Z) = ξ((G;X,Y,XY Z −XY ) and ξ((G;X,Y,Z) = C(G;X,Y,
Z

XY
+ 1)

A similar relation is given for ξ(G;X,Y,Z) and S(G;X,Y,Z) in [8] which is a bit more complicated,

but no needed for this paper.

Remark 1.2. We note that both the Tutte polynomial and ξ(G; ,X, Y, Z) involve negative exponents,

whereas S(G;X,Y,Z) and C(G;X,Y,Z) do not. This is the source of the difference between Theo-

rem 1.5 and Theorem 1.6.

1.2. The case of G = Kn

Here we shall be concerned with computing a graph polynomial P (G; X̄) in k indeterminates for the

case where the graph G is Kn, the complete graph on n vertices. We define, for fixed non-negative

integers b̄ ∈ N
k the sequence

Pn(b̄) = P (Kn, b̄)

for fixed values b̄ ∈ Z
k. Can we make some general statement about the sequence Pn(b̄)? In some

cases computing Pn(b̄) is very easy, using trivial observations or simple recurrence relations. However,

the resulting graph polynomials may be unexpectedly complicated. The Tutte polynomial and the

matching polynomial will illustrate this in the sequel.

We compute Pn(b̄) first for some straightforward cases:

(i) Independence polynomial:

i(Kn, k) =











0 k ≥ 2

n k = 1

1 k = 0



T. Kotek and J.A. Makowsky / On the Tutte Polynomial 159

Hence,

In(Kn, b) = i1(Kn) · b+ c0(Kn) = nb+ 1

(ii) Clique polynomial: ck(Kn) =
(n
k

)

, hence

Cl(Kn, b) =
n
∑

k=0

(

n

k

)

bk = (b+ 1)n

(iii) Chromatic polynomial: χ(Kn, b) = 0 for n ≥ b+ 1.

1.3. The Tutte polynomial

The case of the Tutte polynomial is a bit more complicated, but of special interest. We note that

(i) T (Kn; 2, 1) counts the number of forests on n vertices.

(ii) T (Kn; 1, 1) counts the number of trees on n vertices.

(iii) T (Kn; 1, 2) counts the number of connected graphs on n vertices.

The earliest computation of Tn(X,Y ) = T (Kn,X, Y ) can be found in [9] which already gives a

recursive computation. I. Gessel [10, 11, 12] and independently I. Pak [13], proved:

T (Kn; a, b) =
n
∑

k=1

(

(n− 1)

(k − 1)

)

(

a+
k−1
∑

i=1

bi

)

T (Kk−1; 1, b) · T (Kn−k; a, b)

I. Pak in [13] also lists many other evaluations of T (Kn;X,Y ) with their combinatorial interpreta-

tions.

However, in [14] it is noted that Tn(X,Y ) does not satisfy a linear recurrence which is independent

of n.

Proposition 1.3. (N.L. Biggs, R.M. Damerell and D.A. Sand)

There is no linear recurrence relation which computes the sequence Tn(a, b) for fixed a, b ∈ Z.

1.4. The matching polynomial

From [15] we know that for the defect matching polynomial (aka the acyclic polynomial)

α(Kn;X) = Hen(X)

where Hen(X) are the probabilist’s Hermite polynomials for n ∈ N. The proof of this is due to C.

Heilmann and E. Lieb [16]. From [17, Equations 3.4 and 3.8] one can derive1 that the polynomials

Hen(X) satisfy the modular recurrence relation

Hen+m(X) = Hen(X) ·Hem(X) = Hen(X) ·Xm ( mod µ) .

and with He0(X) = 1 and one gets Hem(X) = Xm.

1Thanks to V. Rakita for checking this.
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Proposition 1.4. (Carlitz, 1953)

For every a ∈ N the sequence α(Kn; a) = Hen(a) = an is ultimately period modulo µ.

Our Theorem 1.8 below shows the ultimate periodicity modulo µ for M(Kn, a) without using the

connection to the Hermite polynomials.

1.5. Computing Pn(b̄) modulo an integer µ

Let µ ∈ N. We compute Pn(b̄) modulo µ and observe:

(i) For every b ∈ Z and µ ∈ N the sequence In(Kn, b) = nb+ 1 is ultimately periodic.

(ii) For every b ∈ Z and µ ∈ N the sequence Cl(Kn, b) = (b+ 1)n is ultimately periodic.

(iii) The sequence χ(Kn, b) is ultimately constant, hence ultimately periodic.

We shall see that this is the case for a very large class of graph polynomials subject to a definability

condition in MSOL.

Our main results are for the Tutte polynomial T (G;X,Y ), the bivariate matching polynomial

M̄(G;X) and the trivariate edge elimination polynomial ξ(G;X,Y,Z).

Theorem 1.5. For every a, b, µ ∈ N
+ with a, b > 1, gcd(a− 1, µ) = 1 and gcd(b− 1, µ) = 1,

the sequence T (Kn, a, b) is ultimately periodic modulo µ.

Similarly, we also get for the edge elimination polynomial ξ(G;X,Y,Z), the subgraph counting poly-

nomial S(G;X,Y,Z), and the covered components polynomial C(G;X,Y,Z):

Theorem 1.6. (i) For every a, b, c, µ ∈ N
+ the sequences S(Kn, a, b, c) and C(Kn, a, b, c) are

ultimately periodic modulo µ for every µ.

(ii) Assume ab divides c.
Then ξ(Kn, a, b, c) is ultimately periodic modulo µ for every µ.

Remark 1.7. For ξ(Kn, a, b, c) one needs an additional condition like in Theorem 1.5 due to the

negative exponents in the definition 2. of ξ(G; ,X, Y, Z).

Theorem 1.8. For every a, b, µ ∈ N
+ the sequence M̄(Kn, a, b) is ultimately periodic modulo µ.

Theorem 1.8 can be generalized:

Theorem 1.9. If P is a graph polynomial definable in GMSOLhgraph without order, then for every

µ ∈ N and every a, b ∈ Z the sequence P (Kn, a, b) is ultimately periodic modulo µ.

Remark 1.10. We note that Theorem 1.5 is not a special case of Theorem 1.9, as the Tutte polynomial

seems not to be GMSOLhgraph-definable without an order on the vertices.

The three theorems only assert that the sequences are ultimately periodic modulo µ, without any

indication of the length of the periodicity or the initial segment before the periodicity starts.
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1.6. Methods

The proofs use tools from logic and combinatorics. In particular

• Definability in Monadic Second Order Logic MSOL;

• Definability in the extension CMSOL of MSOL, where modular counting quantifiers are added;

• The Specker-Blatter Theorem, which gives a sufficient condition on when certain CMSOL-

definable density functions are ultimately periodic if considered modulo µ.

We assume that our readers are familiar with MSOL and first explain the Specker-Blatter Theorem.

1.7. Related results

The particular sequence Tn(1, b) = T (Kn; 1, b) has been analyzed by A. P. Mani and R.J. Stones,

[18], for µ = pk where p is an odd prime and k ∈ N.

Let φ(n) be the Euler totient function which is defined as the number of integers a ∈ {1, 2, ...,m} =
[m] such that gcd(a,m) = 1, cf. [19].

Proposition 1.11. (A.P. Mani and R.J. Stones)

Let p be a prime, and let k be a positive integer. For b, n ∈ Z such that n ≥ pk and b 6= 1 mod p, it

holds that

Tn(1, b) = mod pk



































b
φ(pk)

2 Cn−φ(pk(b) if p ≥ 3 and n > p

b
φ(p)
2 − 1 if p ≥ 3 and n = p

1 if p = n = 2

2 if p = k = 2 and n = 4

0 otherwise

This is much more informative than our Theorem 1.5 for the case a = 1 and µ = pk. In [18] they

formulate also a conjecture for T (Kn; a, b) for general a, but still for µ = pk.

Conjecture 1.12. (A.P. Mani and R.J. Stones)

Let p be an odd prime and let k be a positive integer.

(i) If n ≥ pk, a, b ∈ Z, and b 6≡ 1 mod p, then modulo p we have

T (Kn; a, b) ≡ mod p















b
φ(p)
2

−1 if p ≥ 3, n = p

and a = 1 mod p

b
φ(pk)

2 · T (Kn−φ(pk); a, b) otherwise

(ii) If n ≥ pk, a, b ∈ Z, and b ≡ 1 mod p, then

T (Kn; a, b) ≡ mod pk

{

(n + a− 1)p
k

· T (Kn−pk ; a, b) n > pk

(a− 1)p
k−1 n = pk
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1.8. Outline of the paper

In Section 2 we present the Specker-Blatter Theorem. In Section 3 we prove Theorem 1.8, and in In

Section 4 we prove Theorem 1.5 and 1.6. In Section 5 we prove Theorem 1.9. Finally, in Section 6

we present our conclusions and suggestions for further research.

2. The Specker-Blatter Theorem

The Specker-Blatter Theorem from 1980 is the first application of Logic to Combinatorial Counting.

At the time the theorem was hardly noticed, mostly due to its unlucky placement for publication,

[20, 3, 21]. An easily accessible place to find proofs and a survey of further developments is [22].

2.1. Counting graphs: The density function

A labeled graph G with n vertices will have V (G) = {0, 1, . . . , n − 1} = [n]. There are gr(n) =

2(
n

2) = 2
n(n−1)

2 many graphs with n vertices.

A graph property is a class of finite graphs closed under graph isomorphisms. For a graph property

P denote by Pn the graphs with n vertices in P, and by dP (n) =| Pn |, the number of graphs G with

V (G) = [n] which are in P. dP (n) is called the density function of P. The density function counts

labeled graphs. LetG consist of the vertices [n] and one single edge which is not a loop. There is, up to

isomorphisms (disregarding the labels) one such graph, but there are n(n− 1)/2 such labeled graphs.

A graph property P is hereditary if it is closed under induced subgraphs. P is monotone if it is

closed under (not necessarily induced) subgraphs. If P is hereditary or monotone, the density function

dP (n) of P is also called the speed of P, since it is an ultimately monotone increasing function, cf.

[23, 24, 25]. Studying the possible growth rate of the speed of a graph property was initiated in

1994 by E. Scheinerman and J. Zito in [26]. E. Specker and C. Blatter already in 1980 studied under

what conditions the density function of graph properties satisfy recurrence relations. The definition of

the density function can be extended to relational structures of any vocabulary τ . However, we will

consider only vocabularies τ without function symbols.

Examples 2.1. (i) If P = Graphs consists of all simple graphs,

dGraphs(n) = 2(
n

2)

In the unlabeled case the function is rather complicated.

(ii) If P = LinOrd consists of all linear orders.

dLinOrd(n) = n!

In the unlabeled case we have the constant function with value 1.

(iii) If P = SqGrids consists of all square grids,

dSqGrids(n) =

{

n!
4 if n = m2

0 else

In the unlabeled case we have 1 instead of n! in the above expression.
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For some graph properties P the density functions satisfies a linear recurrence relation over Z.

However, this is not always the case.

Lemma 2.2. (Folklore)

Let f : Z → Z a function which satisfies a linear recurrence relation

f(n+ 1) =
k
∑

i=0

aif(n− i)

over Z. Then there is a constant c ∈ Z such that f(n) ≤ 2cn.

Corollary 2.3. For C ∈ {Graphs, LinOrd, SqGrids}, dC(n) does not satisfy a linear recurrence

over Z.

2.2. Modular counting

Let µ ∈ N.

Observation 2.4. For every µ ∈ N and for large enough n we have n! = 0 (mod µ)

Hence, for n ≥ N(µ) we have

dLinOrd(n+ 1) = dLinOrd(n) (mod µ)

and
dSqGrid(n+ 1) = dSqGrid(n) (mod µ)

We say that a function f(n) satisfies a trivial modular recurrence if for every µ there exists Nµ such

that if n > Nµ then f(n) ≡ 0 (mod µ). Clearly, the two examples above satisfy trivial modular

recurrences.

Observation 2.5. f(n) satisfies a trivial modular recurrence iff there exist functions g(n), h(n) with

g(n) tending to infinity such that f(n) = g(n)! · h(n).

In other words, trivial modular recurrences are always caused by some factor which is a factorial.

It is sometimes more intuitive to say of integer sequences with values in [m] that they are ultimately

periodic rather than to talk about modular linear recurrence.

Proposition 2.6. (Folklore)

Let an be an integer sequence.

an satisfies a linear recurrence relation modulo µ iff an is ultimately periodic modulo µ.

The following are two instructive examples. First, we look at the class of all graphs.
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Example 2.7. The density function for all graphs is given by

dGraphs(n+ 1) = 2(
n+1
2 ) = 2(

n

2) · 2n.

Therefore

dGraphs(n+m) = dGraphs(n) ·

m−1
∏

i=0

2n+i = dGraphs(n) · 2
nm ·

m−1
∏

i=0

2i

As ap−1 = a (mod p) (Fermat’s Little Theorem) we get with a = 2n and m = p a prime

dGraphs(n + p) = dGraphs(n) ·

p−1
∏

i=0

2i (mod p)

This is a non-trivial recurrence for µ = p a prime. It is also different for distinct primes p and p′, In

other words, the existence of the modular recurrence is non-uniform in p.

The second example is the class of graphs EQ2CLIQUE which consists of the graphs which are

the disjoint unions of two equal-sized cliques.

Example 2.8. For density function dEQ2CLIQUE(n) we have

dEQ2CLIQUE(n) = b2(n) =

{

1
2

(

2m
m

)

for n = 2m

0 else

The factor 1
2 is there because we cannot distinguish the choice of the first clique from the choice of its

complement.

The function b2(n) was studied by F. E. A. Lucas (1842-1891) in 1878, but not published at the

time. It was found in his notes in the National Archive of France. A proof may be reconstructed from

the hints in [19, Exercise 5.61].

Proposition 2.9. (Lucas, 1878)

For every n which is not a power of 2, we have b2(n) ≡ 0 (mod 2), and for every n which is a power

of 2 we have b2(n) ≡ 1 (mod 2).
In particular, b2(n) is not ultimately periodic modulo 2.

We conclude that dEQ2CLIQUE(n) is not ultimately periodic modulo 2.

Finally, here is an example, were the precise counting is known. It is originally due to Redfield,

[27] and was rediscovered by R.C. Read and G. Polya, [28, 29, 30].

Example 2.10. Let Rd be the class of regular graphs of degree d and dRd
(n) its density function.

It is not at all obvious that dRd
(n) is ultimately periodic modulo µ, but it follows from the Specker-

Blatter Theorem 2.12 below that, indeed, it is.
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Proposition 2.11. (J.H. Redfield, 1927)

For d = 3 we have dR3(2n+ 1) = 0 and

dR3(2n) =
(2n)!

6n
?
∑

j,k

(−1)j(6k − 2j)!6j

(3k − j)!(2k − j)!(n − k)!
48k

∑

i

(−1)ij!

(j − 2i)!i!

An accessible proof can be found in [31, page 187].

2.3. MSOL-definable graph properties

We now look at the density functions of graph properties P which are definable in MSOL.

Theorem 2.12. (Specker-Blatter Theorem)

Let P be a graph property which is MSOL-definable and let dP(n) be its density function.

• dP (n) satisfies modular recurrence relations for each µ ∈ N, hence it is ultimately periodic

modulo µ.

• This remains true for vocabularies τ with several binary edge relations and unary predicates on

the vertices.

The Specker-Blatter Theorem does not hold if one allows quaternary relations in τ , [32, 33].

Theorem 2.13. (E. Fischer, 2003)

Let τ0 consist of one quaternary relation. There is a class of FOL(τ0)-definable τ0-structures F such

that dF is not ultimately periodic modulo 2.

The proof consists of a very clever encoding of EQ2CLIQUE using the quaternary relation.

The restriction to binary relations is not needed if the graph property P contains only graphs of

bounded degree, see [34]. The same works for classes of τ -structures of bounded degree, where the

degree is defined via the Gaifman graph of the structures.

The Gaifman graph of a τ -structure A is the (undirected, loop-free) graph GA with vertex set A,

the universe of A and an edge between two distinct vertices a, binA iff there exists an R ∈ τ and a

tuple (a1, .., ar) ∈ R
A such that a, b ∈ {a1, .., ar}, cf. [35].

3. The matching polynomial of the complete graph

Here we prove

Theorem 1.8: For all a, b, µ ∈ N. M̄(Kn; a, b) is ultimately periodic modulo µ.

In particular M(Kn; a) is ultimately periodic modulo µ.

Proof:

First we prove it for M(Kn; a) and note first that M(Kn; a) is of the form

M(Kn; a) = Pψ(Kn, a) =
∑

F⊆E(G):ψ(E,F )

a|F |



166 T. Kotek and J.A. Makowsky / On the Tutte Polynomial

where ψ(E,F ) says that E is the edge relation of Kn and F ⊆ E is a set of independent edges of Kn.

We interpret aF as the set of functions f : F → [a]. Each f induces a partition of F with

Ff (i) = {e ∈ F : f(e) = i}.

We have

a|F | = |{f : F → [a]}|.

Next we look at the density function of

ga(n) = |{U1, . . . Ua ⊆ [n]2, F ⊆ [n]2 : φ1(Ū , F ), ψ(E,F )}|

where φ1(Ū ) says: U1, . . . , Ua partition F and ψ(E,F ) says that E is the edge relation of Kn and

F ⊆ E is a set of independent edges of Kn. ga(n) encodes the computation of M(Kn; a).

Claim 3.1.

ga(n) = Pψ(Kn, a) =
∑

F⊆E(G):ψ(E,F )

a|F | =M(Kn; a)

All the relation symbols of φ1 and ψ are binary, therefore we can apply the Specker-Blatter Theorem

and conclude that ga(n) is ultimately periodic modulo every µ ∈ N, and so is M(Kn; a).

The proof for M̄(Kn; a, b) is similar.

M̄(Kn; a, b) =

⌊n/2⌋
∑

k=0

(X)kmk(G)Y
n−2k =

∑

F⊆E(G):ψ(E,F )

(a)|F |mk(G)b
|dF |

where dF is the set of vertices in [n] not covered by F . If F has k edges, then dF has n− 2k vertices.

⊓⊔

4. The Tutte polynomial of a complete graph

Now we prove

Theorem 1.5

For every a, b, µ ∈ N
+ with a, b > 1, gcd(a − 1, µ) = 1 and gcd(b − 1, µ) = 1,

Tn(a, b) = T (Kn, a, b) is ultimately periodic modulo µ.

Proof:

We first rewrite the Tutte polynomial as

T (G;X,Y ) =
1

(Y − 1)|V (G)| · (X − 1)κ(G))

∑

A⊆E(G)

(X − 1)κ(A) · (Y − 1)κ(A)+|A|

and put G = Kn. Now |V (Kn)| = n and |E(Kn)| =
(

n
2

)

, and κ(Kn) = 1.

T (Kn;X,Y ) =
1

(Y − 1)n · (X − 1)

∑

A⊆E(G)

(X − 1)κ(A) · (Y − 1)κ(A)+|A|.
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Like in the proof Theorem 1.8 we interpret aA as the set of functions f : A→ [a]. Each f induces

a partition of A with

Af (i) = {e ∈ A : f(e) = i}.

We have

a|A| = |{f : A→ [a]}|.

In the case of aκ(A) the sets Af (i) have to be A-closed, in order to partition the connected components

of the spanning induced by the set of edges of A. Next look at the function

fa,b(n) = (b− 1)n · (a− 1) · T (Kn, a, b) =
∑

A⊆E(G)

(a− 1)κ(A) · (b− 1)κ(A) · (b− 1)|A|

as a MSOL-definable density function:

fa,b(n) = |{Ū , R̄, S̄ ⊆ [n] : φ1(Ū , A), φ2(R̄, A), φ3(S̄), A ⊆ E}|

where for Ū = (U1, . . . , Ua−1) and R̄ = (R1, . . . , Rb−1) are unary relations and S̄ = (S1, . . . , Sb−1)
are binary, and

(i) each U1, . . . , Ua−1, R1, . . . , Rb−1, S1, . . . , Sb−1 ⊆ [n];

(ii) φ1(Ū , A) says: U1, . . . , Ua−1 partitions the connected components of G[A], and each Ui is a

disjoint union of connected components of the graph G = ([n], A);

(iii) φ2(R̄, A) says: R1, . . . , Rb−1 also partitions the connected components of G = ([n], A),

(iv) and φ3(S̄) says: S1, . . . , Sb−1 partitions A ⊆ [n]2.

All the formulas φ1(Ū , A), φ2(R̄, A), φ3(S̄) are in MSOL and contain only unary and binary relation

symbols. It follows by Theorem 2.12 that fa,b(n) is ultimately periodic modulo every µ ∈ N.

Claim 4.1.

fa,b(n) =
∑

A⊆E(G)

(a− 1)κ(A)) · (b− 1)κ(A) · (b− 1)|A|

Now we need a lemma.

Lemma 4.2. Let d1(n), d2(n) be integer functions.

(i) Let c, µ ∈ N
+.

Assume c · d1(n) is ultimately periodic modulo µ and gcd(c, µ) = 1.

Then d1(n) is ultimately periodic modulo µ.

(ii) Let t, µ ∈ N
+ with gcd(t, µ) = 1.

Assume that tn · d2(n) is ultimately periodic modulo µ.

Then d2(n) is ultimately periodic modulo µ.
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Proof:

(i) is left to the reader.

(ii): Since t and µ are relatively prime, t has a multiplicative inverse g modulo µ: g · t ≡ 1( mod µ).
The product of two ultimately periodic sequence is ultimately periodic, hence this is true for the

product of g and tn · d2(n). But we have

gn · tn · d2(n) ≡ d2(n)( mod µ),

hence d2(n) is ultimately periodic. ⊓⊔

To complete the proof of Theorem 1.5 we note that κ(E) = 1 and |V | = n, and we put:

d1(n) = T (Kn, a, b) and d2(n) = (b− 1) · T (Kn, a, b)

We have fa,b(n) = (a − 1)n · d2(n) is ultimately periodic modulo µ for gcd((a − 1), µ) = 1. By

the Lemma 4.2(ii) we have that d2(n) ultimately periodic modulo µ for gcd((a − 1), µ) = 1. By the

Lemma 4.2(i) we have that d1(n) ultimately periodic modulo µ for gcd((b− 1), µ) = 1. ⊓⊔

The proofs of Theorem 1.6 for S(G; a, b, c) and C(G; a, b, c) are similar as for fa,b(n).
For ξ(G; a, b, c) we note that ξ((G;X,Y,Z) = C(G;X,Y, Z

XY + 1) from Proposition 1.1.

To be able to use now C(G; a, b, cab + 1) one requires that ab divides c so that c
ab is a non-negative

integer.

5. Theorem 1.9 and its limitations

The logic CMSOL is the extension of MSOL by adding modular counting quantifiers. Let φ(x) be

a formula with free variable x. A modular counting quantifier Cµ,kxφ(x) says that there are, modulo

µ, k-many elements satisfying φ(x). Using Ehrenfeucht-Fraı̈ssé games for MSOL one can show that

Cµ,kxφ(x) is not expressible in MSOL. However, for φ(x) a formula in SOL the formula Cµ,kxφ(x)
it is expressible in SOL. We say that there is an equivalence relation E on the set defined by φ(x)
which has exactly one equivalence class of size k and all the other non-empty equivalence classes are

of size µ. There are other ways of defining Cµ,kxφ(x) in SOL. Instead of the existence of one binary

relation we can also assert that there are µ disjoint subsets of equal size of the set defined by φ(x) and

the complement of their union has size k. But then we need the existence of a binary relation which

expresses that the unary predicates are of equal size.

CMSOL is like MSOL but modular counting quantifiers are allowed. The syntax of CMSOL is

obtained from the syntax of MSOL by allowing also quantification with Cµ,kx. The meaning function

of MSOL is then naturally extended to CMSOL. CGMSOL is defined analogously by adding modular

counting quantifiers to GMSOL.

It was shown in [34, 22] that the Specker-Blatter Theorem also holds for CMSOL for relational

structures with relations of arity at most two, and for CGMSOL graphs.
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5.1. CMSOL-definable graph polynomials

We now discuss how Theorems 1.5 and 1.8 can be extended.

A univariate graph polynomial of the form

Pφ(G;X) =
∑

A⊆V (G):φ(E,A)

X |A|

is CMSOL definable if φ(A,E) is a CMSOL-formula in the language of graphs with an additional

predicate for A.

A univariate graph polynomial of the form

Pψ(G;X) =
∑

F⊆E(G):ψ(E,F )

X |F |

is CGMSOL definable if ψ(F,E) is a CGMSOL-formula in the language of graphs with an additional

predicate for A or for F ⊆ E. The independence polynomial and the clique polynomial are of the first

form. The matching polynomials α and M are of the second form.

Analyzing the proof of Theorem 1.8 immediate gives Theorem 1.9:

If P is a graph polynomial definable in CGMSOLgraph without order, then for every

µ ∈ N and every a, b ∈ Z

the sequence P (Kn, a, b) is ultimately periodic modulo µ.

The proof of Theorem 1.5 also works for the graph polynomials listed in Theorem 1.6. Unfortunately,

we have not found interesting applications of Theorem 1.9. In many cases P (Kn, a, b) can be shown

directly to satisfy linear recurrence relations over Z.

Examples 5.1. (i) If P is a graph property which does not contain any complete graph and is de-

finable in CMSOL for graphs and φP (A,E) says that A induces a graph G[A] ∈ P then

PφP (G;X) =
∑

A⊆V (G):φP (E,A)

X |A|

trivializes for PφP (Kn;X).

(ii) If instead, φ
′

P (A,E
′) says that (A,E′) is a subgraph P Pφ′

P

(Kn;X) may be non-trivial.

(iii) The domination polynomial D(G;X) is obtained by taking φdom(A,E) which says that A is a

dominating set for E. In [36, 37] it is shown that D(Kn+1;X) = D(Kn;X)(X + 1) +X. For

X = a this is a linear recurrence relation, hence Theorem 1.9 gives nothing new.

(iv) The univariate interlace polynomial q(G;X) from [38] is CMSOL-definable, as shown in [39].

But q(Kn;X) = 2n−1X, hence q(Kn+1;X) = 2Xq(Kn;X). Again Theorem 1.9 gives nothing

new.
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Problem 5.2. Find more graph polynomials P (G; ā)where for ā ∈ N
k, µ ∈ N the sequence P (Kn; ā)

is not obviously ultimately periodic modulo µ.

Problem 5.3. Find interesting cases of graph polynomials where Theorem 1.9 gives a non-trivial

result.

We have seen that Theorem 1.9 also holds for multivariate polynomials. The Tutte polynomial

is not of this form, because of the term (X − 1)κ(S). It is of this form in the language of ordered

graphs. However, the Specker-Blatter Theorem formulated for ordered structures trivializes, because

the ordering adds a factor of the form n!, hence the sequence satisfies a trivial modular recurrence.

5.2. Why complete graphs?

Complete labeled graphs on n vertices are definable in FOL in the empty vocabulary and are unique,

not only up to isomorphisms. The same is true about the empty graph.

Proposition 5.4. Assume φ(x̄, ȳ) is a formula of CMSOL over the empty vocabulary which defines

a unique edge relation Eφ on k-tuples of a set [n]. Then the graph G = ([n]k, Eφ) is either a complete

graph or the empty graph.

The way we used the Specker-Blatter Theorem in the proof of Theorem 1.9 did require that the func-

tion

ga(n) = |{U1, . . . Ua ⊆ [n], F ⊆ [n]2 : φ1(Ū , F ), ψ(F )}|

evaluates the matching polynomial at a for G = Kn. If instead of G = Kn we use some G =
([n]k, Eφ) with k = 1 we can modify ga(n) and still apply the Specker-Blatter Theorem to it, but

the modified version ga,φ(n) will not evaluate the matching polynomial anymore. Let sp(φ, n) be

the number of labeled graphs of the form G = ([n], Eφ). Even if all the graphs Gn = ([n], Eφ) are

isomorphic, ga,φ(n) computes

ga,φ(n) =M(Gn; a) · sp(φ, n)

which will be ultimately periodic modulo µ. However, this does not suffice to conclude that M(Gn; a)
is ultimately periodic modulo µ.

Facit: Our proofs of Theorems 1.5, 1.9 and 1.8 only work for G = Kn or G = K̄n.

6. Conclusions

Inspired by the paper of A.P. Mani and R.J. Stones [18] we have examined modular recurrences for

the matching and the Tutte polynomial of a complete graph. We have noted that the existence of

modular recurrence relation follows from the Specker-Blatter Theorem, without explicitly describing

the exact modular recurrence. The conjectures of A.P. Mani and R.J. Stones are more ambitious,

as they give a precise statement about how these modular recurrences look in the case of the Tutte

polynomial. We also noted that our approach via the Specker-Blatter Theorem 2.12 works for other
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graph polynomials definable in variants of MSOL. Most strikingly, it works for the trivariate edge

elimination polynomial ξ(G;X,Y,Z), which is the most general edge elimination polynomial, and

generalizes both the matching polynomials and the Tutte polynomial.

Our result suggests that the use of the Specker-Batter Theorem to CMSOL-definable (CGMSOL-

definable) graph polynomials should be further investigated. In [40, 22] a logic-free version of

the Specker-Batter Theorem is discussed, where instead of the graph property P being definable in

CMSOL one only requires that P has finite Specker rank. Here we note that there uncountably many

graph properties of finite Specker rank, but there only countably many CMSOL-definable graph prop-

erties. CMSOL-definable graph properties have always finite Specker rank, but the upper bound on

the Specker rank which follows from CMSOL-definability is very often exponentially bigger than

the true Specker rank. On the other hand the parameters which characterize the ultimate periodicity

depend only polynomially on the Specker rank, hence the structure of the modular recurrences can be

more precisely described using the Specker rank.
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