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Abstract. We investigate the problem of parameter synthesis for time Petri nets with a cost vari-
able that evolves both continuously with time, and discretely when firing transitions. More pre-
cisely, parameters are rational symbolic constants used for time constraints on the firing of transi-
tions and we want to synthesise all their values such that some marking is reachable, with a cost
that is either minimal or simply less than a given bound.

We first prove that the mere existence of values for the parameters such that the latter property
holds is undecidable. We nonetheless provide symbolic semi-algorithms for the two synthesis
problems and we prove them both sound and complete when they terminate. We also show how
to modify them for the case when parameter values are integers. Finally, we prove that these
modified versions terminate if parameters are bounded. While this is to be expected since there
are now only a finite number of possible parameter values, our algorithms are symbolic and
thus avoid an explicit enumeration of all those values. Furthermore, the results are symbolic
constraints representing finite unions of convex polyhedra that are easily amenable to further
analysis through linear programming.

We finally report on the implementation of the approach in Romeo, a software tool for the analysis
of time Petri nets.
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1. Introduction

So-called priced or cost timed models are suitable for representing real-time systems whose behaviour
is constrained by some resource consuming (be it energy or CPU time, for instance) and for which
we need to assess the total cost accumulated during their execution. Such models can even describe
whether the evolution of the cost during the run is caused by staying in a given state (continuous cost)
or by performing a given action (discrete cost). Thus, the task of finding if the model can reach some
“good” states while keeping the overall cost under a given bound (or, further, finding the minimum
cost) can prove of interest in many real-life applications, such as optimal scheduling or production
line planning.

Timed models, however, require a thorough knowledge of the system for their analysis and are
thus difficult to build in the early design stages, when the system is not fully identified. Even when
all timing constraints are known, the whole design process must often be carried out afresh, whenever
the environment changes. To obtain such valuable characteristics as flexibility and robustness, the
designer may want to relax constraints on some specifications by allowing them a wider range of
values. To this end, parametric reasoning is particularly relevant for timed models, since it allows
designers to use parameters instead of definite timing values.

We therefore propose to tackle the definition and analysis of models that support both (linear) cost
functions and timed parameters.

Related work Parametric timed automata (PTA) [1] extend timed automata [2] to overcome the
limits of checking the correctness of the systems with respect to definite timing constraints. The
reachability-emptiness problem, which tests whether there exists a parameter valuation such that the
automaton has an accepting run, is fundamental to any verification process but is undecidable [1].
L/U automata [3] use each parameter either as a lower bound or as an upper bound on clocks. The
reachability-emptiness problem is decidable for this model, but the state-space exploration, which
would allow for explicit synthesis of all the suitable parameter valuations, still might not terminate [4].
To obtain decidability results, the approach described in [4] does not rely on syntactical restrictions
on guards and invariants, but rather on restricting the parameter values to bounded integers. From a
practical point of view, this subclass of PTA is not that restrictive, since the time constraints of timed
automata are usually expressed as natural (or perhaps rational) numbers.

In [5], the authors have proved the decidability of the optimal-cost problem for Priced Timed Au-
tomata with non-negative costs. In [6, 7, 8], the computation of the optimal-cost to reach a goal loca-
tion is based on a forward exploration of zones extended with linear cost functions. In [9], the authors
have improved this approach, so as to ensure termination of the forward exploration algorithm, even
when clocks are not bounded and costs are negative, provided that the automaton has no negative cost
cycles. In [10], the considered model is a timed arc Petri net, under weak firing semantics, extended
with rate costs associated with places and firing costs associated with transitions. The computation of
the optimal-cost for reaching a goal marking is based on similar techniques to [5]. In [11], the authors
have investigated the optimal-cost reachability problem for time Petri nets where each transition has a
firing cost and each marking has a rate cost (represented as a linear rate cost function over markings).
To compute the optimal-cost to reach a goal marking, the authors have revisited the state class graph
method to include costs.
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Our contribution We propose in Section 2 an extension of time Petri nets with costs (both dis-
crete and continuous with time) and timing parameters, i.e., rational symbolic constants used in the
constraints on the firing times of transitions.

Within this formalism, we define three problems dealing with parametric reachability with cost
constraints. We prove in Section 3 that the existence of a parameter valuation to reach a given marking
under a given bounded cost is undecidable. This proof adapts a 2-counter machine encoding first
proposed in [12] for PTA. To our knowledge it is the first time a direct Petri net encoding is provided
and the adaptation is not trivial. We give in Section 4 a symbolic semi-algorithm that computes all
such parameter valuations when it terminates, and we prove its correctness. We also provide another
symbolic semi-algorithm that computes all parameter valuations such that a given marking is reachable
with a minimal cost (over all runs and all parameter valuations), with corresponding completeness and
soundness proofs. We propose in Section 5 variants of these semi-algorithms that compute integer
parameter valuations and prove in Section 6 their termination provided parameter valuations are a
priori bounded and the cost of each run is uniformly lower-bounded for integer parameter valuations.
This technique is symbolic and avoids the explicit enumeration of all possible parameter valuations.
The basic underlying idea of using the integer hull operator was first investigated in [4] for PTA, but
this is the first time that it is adapted and proved to work with state classes for time Petri nets, and the
fact that it naturally also preserves costs for integer parameter valuations is new and very interesting.
We finally describe in Section 7 the implementation of the approach in the tool Romeo by analysing
a small scheduling case-study. This article is an extension of [13], with mainly the addition of the
optimal synthesis problem, algorithm, and implementation in Romeo.

2. Parametric cost time Petri nets

2.1. Preliminaries

We denote the set of natural numbers (including 0) by N, the set of integers by Z, the set of rational
numbers by Q and the set of real numbers by R. We note Q≥0 (resp. R≥0) the set of non-negative
rational (resp. real) numbers. For n ∈ N, we let J0, nK denote the set {i ∈ N | i ≤ n}. For a finite set
X , we denote its size by |X|.

Given a set X , we denote by I(X), the set of non empty real intervals that have their finite end-
points in X . For I ∈ I(X), I denotes its left end-point if I is left-bounded and −∞ otherwise.
Similarly, I denotes the right end-point if I is right-bounded and∞ otherwise. We say that an interval
I is non-negative if I ⊆ R≥0. Moreover, for any non-empty non-negative interval I and any d ∈ R≥0

such that d ≤ d′ for some d′ ∈ I , we let I 	 d be the interval defined by {θ− d | θ ∈ I ∧ θ− d ≥ 0}.
Note that this is again a non-empty non-negative interval.

Given sets V and X , a V -valuation (or simply valuation when V is clear from the context) of X
is a mapping from X to V . We denote by V X the set of V -valuations of X . When X is finite, given
an arbitrary fixed order on X , we often equivalently consider V -valuations as vectors of V |X|. Given
a V -valuation v of X and Y ⊆ X , we denote by v|Y the projection of v on Y , i.e., the valuation on Y
such that ∀x ∈ Y, v|Y (x) = v(x).
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2.2. Time Petri nets with costs and parameters

Definition 2.1. (Parametric Cost Time Petri Net (pcTPN))
A Parametric Cost Time Petri Net (pcTPN) is a tupleN = (P, T,P, •., .•,m0, Is, costt, costm) where:

• P is a finite non-empty set of places,

• T is a finite set of transitions such that T ∩ P = ∅,

• P is a finite set of parameters,

• •. : T → NP is the backward incidence mapping,

• .• : T → NP is the forward incidence mapping,

• m0 ∈ NP is the initial marking,

• Is : T → I(N ∪ P) is the (parametric) static firing interval function,

• costt : T → Z is the discrete cost function, and

• costm : NP → Z is the cost rate function.

Given a parameterized object x (be it a pcTPN, a function, an expression, etc.), and a Q-valuation
v of parameters, we denote by v(x) the corresponding non-parameterized object, in which each pa-
rameter a has been replaced by the value v(a).

A marking is an N-valuation of P . For a marking m ∈ NP , m(p) represents a number of tokens
in place p. A transition t ∈ T is said to be enabled by a given marking m ∈ NP if for all places p,
m(p) ≥ •t(p). We also write m ≥ •t. We denote by en(m) the set of transitions that are enabled by
the marking m: en(m) = {t ∈ T | m ≥ •t}.

Firing an enabled transition t from marking m leads to a new marking m′ = m − •t + t•. A
transition t′ ∈ T is said to be newly enabled by the firing of a transition t from a given marking
m ∈ NP if it is enabled by the new marking but not by m− •t (or it is itself fired)1.

We denote by newen(m, t) the set of transitions that are newly enabled by the firing of t from the
marking m: newen(m, t) =

{
t′ ∈ en(m− •t+ t•) | t′ 6∈ en(m− •t) or t = t′

}
A state of the netN is a tuple (m, I, c, v) in NP ×I(R≥0)T ×R×QP

≥0, where: m is a marking of
N , I is called the interval function and associates a temporal interval to each transition enabled by m.
Value c is the cost associated with that state and valuation v assigns a rational value to each parameter
for the state.

Definition 2.2. (Semantics of a pcTPN)
The semantics of a pcTPN is a timed transition system (Q,Q0,→) where:

• Q ⊆ NP × I(R≥0)T × R×QP
≥0

• Q0 = {(m0, I0, 0, v)|v ∈ QP
≥0, ∀t ∈ T, v(Is(t)) 6= ∅} where ∀t ∈ en(m0), I0(t) = Is(t)

• → consists of two types of transitions:
1With that definition we use the classical “intermediate semantics” of Berthomieu [14]. A study of alternative semantics can
be found in [15].
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– discrete transitions: (m, I, c, v)
t∈T−−→ (m′, I ′, c′, v) iff

* m ≥ •t, m′ = m− •t+ t• and I(t) = 0,

* ∀t′ ∈ en(m′)

· I ′(t′) = v(Is(t
′)) if t′ ∈ newen(m, t),

· I ′(t′) = I(t′) otherwise

* c′ = c+ costt(t)

– time transitions: (m, I, c, v)
d∈R≥0−−−−→ (m, I 	 d, c′, v), iff ∀t ∈ en(m), ∃d′ ∈ I(t) s.t. d ≤

d′ and c′ = c+ costm(m) ∗ d.

A run of a pcTPN N is a possibly infinite sequence q0a0q1a1q2a2 · · · such that q0 ∈ Q0, for all
i > 0, qi ∈ Q, ai ∈ T ∪ R≥0 and qi

ai−→ qi+1. The set of runs of N is denoted by Runs(N ). We

note (m, I, c, v)
t@d−−→ (m′, I ′, c′, v) for the sequence of elapsing d ≥ 0 followed by the firing of the

transition t. We denote by sequence(ρ) the projection of the run ρ over T : for a run ρ = q0
t0@d0−−−→

q1
t1@d1−−−→ q2

t2@d2−−−→ q3
t3@d3−−−→ · · · , we have sequence(ρ) = t0t1t2t3 · · · . We write q

t
↪−→ q′ if there

exists d ≥ 0 such that q t@d−−→ q′.
For a finite run ρ we denote by last(ρ) the last state of ρ and by lastm(ρ) its marking. A state

(m, I, c, v) is said to be reachable if there exists a finite run ρ of the net, with last(ρ) = (m, I, c, v).
A marking m is reachable for parameter valuation v, if there exists some I and c such that (m, I, c, v)
is reachable.

For k ∈ N and parameter valuation v, the (Cost) Time Petri net v(N ) is said to be k-bounded if
for all reachable markings m, and all places p, m(p) ≤ k. We say that v(N ) is bounded if there exists
k such that it is k-bounded.

The cost cost(ρ) of a finite run ρ, with last state (m, I, c, v) is c.
Since we are interested in minimising the cost, the cost of a sequence of transitions σ is defined as

cost(σ) = infρ∈Runs(N ),sequence(ρ)=σ cost(ρ).
For the sake of the clarity of the presentation, we consider only closed intervals (or right-open to

infinity) so this infimum is actually a minimum.

p0

p1

t0

cost(t0) = 2

[a, a]

t1

[2, 5] p2

cost(~m) = 2m(p0) +m(p1)

Figure 1. A parametric cost time Petri net.
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Example 2.3. Consider the net in Figure 1. It has one parameter a, and the cost increases with time
with a rate equal to twice the number of tokens in p0 + once the number of tokens in p1. It also
increases by 2 when firing t0 and does not change when firing t1 (so we omit it in the figure). For
parameter value v(a) = 2, the initial state is ({p0, p1}, I(t0) = [2, 2], I(t1) = [2, 5], 0, 2). We write
the marking as the set of marked places because the net is safe to make it simpler. Cost is initially 0.

Then a possible run is:

({p0, p1}, I(t0)= [2, 2], I(t1) = [2, 5], 0, 2)
2−→ ({p0, p1}, I(t0)= [0, 0], I(t1) = [0, 3], 6, 2)
t0−→ ({p0, p1}, I(t0)= [2, 2], I(t1) = [0, 3], 8, 2)
0.2−−→ ({p0, p1}, I(t0)= [1.8, 1.8], I(t1) = [0, 2.8], 8.6, 2)
t1−→ ({p0, p2}, I(t0)= [1.8, 1.8], 8.6, 2)

2.3. Parametric cost problems

Given a set of target markings Goal, the problems we are interested in are:

1. the existential problem: Given a finite maximum cost value cmax, is there a parameter valuation
v such that some marking in Goal is reachable with a cost less than cmax in v(N )?

2. the bounded synthesis problem: Given a finite maximum cost value cmax ,compute all the parame-
ter valuations v such that some marking in Goal is reachable with a cost less than cmax in v(N ).

3. the optimal synthesis problem: Compute the infimum of the cost of all runs that reach a marking
in Goal, infm∈Goal,v∈PQ,ρ∈Runs(N ),lastm(ρ)∈Goal cost(ρ), and all the parameter valuations v such
that this infimum cost can be achieved in v(N ),

Example 2.4. For the net in Figure 1, there is no parameter valuations allowing to reach p2 = 1 with
a cost less or equal to 5, because we need to wait at least 2 time units (t.u.) before firing t1 with a cost
rate of 3. For a bound equal to 8, it will be 1 ≤ a so that t0 fires at most once before t1.

The minimum cost to reach p2 = 1 is 6 and this can be achieved iff 2 ≤ a, so that t0 is not forced
to fire before t1.

We prove in Section 3 that the existential problem is undecidable.

3. Undecidability results

The existential parametric time bounded reachability problem for bounded parametric time Petri nets
asks whether a given target marking is reachable for some valuation of the parameter(s) within cmax

time units. This is a special case of the existential cost bounded reachability problem defined in
Section 2, with no discrete cost and a uniform cost rate of 1. Proposition 3.2 therefore implies the
undecidability of that more general problem.

As in [1], our proof is based on a blocking variant of classical two counter machines. We first
prove the undecidability of the halting problem for this variant in Lemma 3.1, since this has to the best
of our knowledge never been done formally.



D. Lime et al. / Cost Problems for Parametric Time Petri Nets 103

Lemma 3.1. Consider a non-deterministic counter machine with two non-negative counters C1 and
C2, control states {s1, . . . , sn}, and, for i, j ∈ {1, . . . , n}, and x ∈ {1, 2}, instructions of the form:

1. in state si, increment counter Cx, and go to state sj ;

2. in state si, if Cx > 0 decrement Cx and go to state sj else block;

3. in state si, if Cx = 0 then go to state sj else block.

Assume the machine halts when reaching sn. Then the halting problem for such a machine, i.e.,
knowing whether the machine will eventually halt or not, is undecidable.

Px≤b

Px=b

Px≥b

Px=a+b

Py≤b

Py=b

Py≥b

Py=a+b

Pz=0 Pz≤b Pz=b Pz≥b Pz=a+b

si

PxPy

okx oky

sj

εz0

[0, 0]

tz=b

[b, b]

εzb

[0, 0]

tz=a+b

[a, a]

εza+b

[0, 0]

tx=a+b[a, a]

tx=b[b, b]

ty=a+b [a, a]

ty=b [b, b]

εxa+b[0, 0]

εxb[0, 0]

εya+b [0, 0]

εyb [0, 0]

start [0, 0]

R(y) [0, 0]R(x)[0, 0]

done [0, 0]

P0 Ploopa

P1 Pa

loopa

[0, a] Ploopb

Pb

loopb

[0, b]

ta [a, a] tb [b, b]t1[1, 1]

εa

[0, 0]
εb

[0, 0]

ε1

[0, 0]

Px=b

Py=b Pz=0

s0

start [0, 0]

2.b) Initialise the parameters a and b
such that: 0 < a ≤ 1 and 0 < b ≤ 1

2.a) Encoding of: when in state si,
increment Cy and go to sj

Figure 2. Increment gadget (left) and initial gadget (right)

Proof:
Consider a classical deterministic Minsky machine [16], instead of our decrement and zero test it has
instructions of the form: “in state si, if Cx > 0 decrement Cx and go to state sj else go to sk”.

We can simulate such an instruction by a non-deterministic choice between instructions: “in state
si, if Cx > 0 decrement Cx and go to state sj else block” and “in state si, if Cx = 0 then go to state
sk else block”.

It is clear that the resulting machine has exactly one non-blocking path, corresponding to the path
of the classical deterministic Minsky machine. Since the halting problem is undecidable for the latter,
it is therefore undecidable for our blocking machines. ut

Proposition 3.2. Existential parametric time bounded reachability is undecidable for bounded para-
metric time Petri nets.
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Proof:
Given a bounded parametric time Petri netN , we want to decide whether there exists some parameter
valuation v such that some given marking can be reached within cmax time units in v(N ). The idea
of this proof was first sketched in [12] for parametric timed automata. We encode the halting problem
for two-counter machines, which is undecidable [16], into the existential problem for parametric time
Petri nets.

We consider the 2-counter machine variant described in Lemma 3.1. The machine starts in state
s0 and halts when it reaches a particular state shalt.

Given such a machineM, we now provide an encoding as a parametric time Petri net NM: each
state si of the machine is encoded as place, which we also call si. The encoding of the 2-counter
machineM is as follows: it uses two rational-valued parameter a and b, and three gadgets shown in
Figure 2.a modelling three clocks x, y, z. Provided all intervals are closed, which is the case in this
proof, for a state (m, I, c, v), the duration for which an enabled transition t has been continuously
enabled, which we call enabling time of t, is v(Is(t) − I(t)). For the gadget modelling clock x, the
value of clock x is equal to: i) the enabling time of transition tx=b when Px≤b is marked; ii) b when
Px=b is marked; iii) the sum of b and the enabling time of transition tx=a+b when Px≥b is marked (note
that this value is lower than a+ b); iv) a+ b when Px=a+b is marked; v) an unknown (and irrelevant)
value in all other cases. The gadget encoding the increment instruction of Cy is given in Figure 2.a.
Clocks x and y store the value of each counter Cx and Cy as follows x = b − aCx and y = b − aCy
when z = 0. The zero-test gadget is given in Figure 3. The system is studied over 2 time units, one of
which is spent in the initialisation gadget.

Initialisation We use the gadget in Figure 2.b to initialise a and b such that 0 < a ≤ 1 and 0 < b ≤
1. We explain how this works for a, the case of b is similar. First, if a = 0 then ta must be fired at
date 0 and the token produced in Pa will be consumed by transition εa before transition start has a
chance to fire. Now, if we do not want the token produced in P1 at date 1 to be consumed for sure by
transition ε1, transition ta must fire at date 1 at the latest, and therefore a must be less than or equal
to 1. Finally, when 0 < a ≤ 1, a sufficient number of iterations of transition loopa allows a token to
be produced in Pa exactly at date 1: it is for instance always possible to choose some duration d ≤ a,
spent before each iteration of loopa and a number of iterations n such that nd = 1 − a. All in all,
transition start can thus be fired if and only if 0 < a ≤ 1 and 0 < b ≤ 1.

Increment We start from some encoding configuration: x = b − aCx, y = b − aCy and z = 0 in
a marking such that places Pz=0 and si are marked. After the firing of transition start, there is an
interleaving of transitions R(x) and R(y) that go through the gadget. Suppose that 1 < Cx < Cy (the
other cases are similar). It follows that for x and y, places Px≤b and Py≤b are marked. Then the next
transition to fire is tx=b and when it fires we have x = b, y = b−aCy+aCx and z = a.Cx. ThenR(x)
fires, which corresponds to resetting x to 0: the token is back in Px≤b and transition tx=b has been
enabled for 0 t.u. Then ty=b fires (because aCy ≤ b), and then we have x = aCy − aCx, y = b, and
z = aCy. Then ty=a+b fires, and we have x = aCy−aCx+a, y = a+b and z = aCy+a. ThenR(y)
fires, which corresponds to resetting y to 0. Then tz=b fires and we have x = b−aCx, y = b−aCy−a
and z = b. Finally, done fires which resets z and we have x = b−aCx, y = b−a(Cy+1) and z = 0 as
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expected. Note that if a(Cy +1) > b, then tz=b must fire before ty=a+b and then εzb fires immediately
and done can never be fired. Therefore, v(NM) will block for all the parameter valuations v that do
not correctly encode the machine.

Decrement By replacing the arc from Pz=b to done by an arc from Pz=a+b to done, the only differ-
ence with the previous reasoning is that the time to fire done is increased by a. Then, when Cx > 0,
we obtain z = 0, x = b+ a− aCx = b− a(Cx− 1) and y = b− aCy corresponding to the decrement
of Cx.

When Cx = 0, we must begin with R(x), then the sequence is ty=b, ty=a+b, R(y), tz=b as before
and we obtain x = b, y = b − aCy − a, z = b. Now, since x = b but Px≤b is still marked, and
since a > 0, tx=b must fire next, i.e., before tz=a+b. And then for the same reasons, εxb must fire and
consume the token in okx which means that done can never fire and the machine is blocked.

We can obtain symmetrically (by swapping x and y) the increment of Cx and the decrement ofCy.

Zero-test of x We start again from some encoding configuration: x = b − aCx, y = b − aCy and
z = 0 in a marking such that places Pz=0 and si are marked. After the firing of transition start, there
is an interleaving of transitionsR(x) andR(y) that go through the gadget. Suppose that 0 < Cx < Cy
(the cases where Cx > 0 and Cx ≥ Cy are similar). As before Px≤b and Py≤b are marked. Then the
next transition to fire is tx=b and when it fires we have x = b, y = b−aCy+aCx and z = a.Cx. Then
R(x) fires and x is reset to 0. Then ty=b fires, and we have x = aCy − aCx, y = b, and z = aCy.
Then R(y) fires and y is reset to 0. Then tz=b fires and we have x = b−aCx, y = b−aCy and z = b.
But then place Px≤b is marked and not place Px=b so transition zero cannot fire. Also x < b because
Cx > 0 so transition tx=b cannot fire immediately. So the only firable transition is notzero, and firing
it blocks the machine.

Suppose now that Cx = 0 and Cy > 0 (the case where both are 0 is similar). Then Px=b and Py≤b
are marked. We then fire R(x) so x becomes 0. Then we fire ty=b, R(y), and tz=b as before, giving
x = b, y = b− aCy and z = b. But now tx=b is firable, so we fire it and get Px=b marked so zero can
now fire which resets z and we finally have x = b, y = b− aCy and z = 0 as expected.

Proving the equivalence Both the increment gadget and the zero-test gadget require b time units,
and the decrement gadget requires (a+ b) time units. Since the system executes over 1 time unit, for
any value of a > 0 and b > 0, the number of operations that the machine can perform is finite. We
consider two cases:

1. Either the machine halts. Then both counters Cx and Cy are bounded. Let c be their maximum
value over the whole execution and let m be the number of steps of the finite halting execution
of the machine. If c = 0 then the machine is a sequence of m zero-tests taking m.b time units
and the parametric Petri netNM can go within 1 time unit to a marking mhalt if 0 < a ≤ 1 and
0 < b ≤ 1

m . If c > 0, since an instruction requires at most a+ b time units, if a+ b ≤ 1
m and if

0 < a ≤ b
c then there exists a run that correctly simulates the machine, and eventually reaches

mhalt within 1 time unit.

This set of valuations is non-empty: for example if c = 0, then we can choose a = b = 1
m and

if c > 0, then, since m ≥ c, we can choose a = b
m and b = 1

1+m hence a = 1
m(1+m) .



106 D. Lime et al. / Cost Problems for Parametric Time Petri Nets

2. Or the machine does not halt. A step requires at least b time units then for any value v of
the parameters, after a maximum number of steps (at most 1

b ), one whole time unit will elapse
without v(NM) reaching mhalt. ut

Px≤b

Px=b

Px≥b

Px=a+b

Py≤b

Py=b

Py≥b

Py=a+b

Pz=0 Pz≤b Pz=b Pz≥b Pz=a+b

si

PxPy

okx oky

sj

εz0

[0, 0]

tz=b

[b, b]

εzb

[0, 0]

tz=a+b

[a, a]

εza+b

[0, 0]

tx=a+b[a, a]

tx=b[b, b]

ty=a+b [a, a]

ty=b [b, b]

εxa+b[0, 0]

εxb[0, 0]

εya+b [0, 0]

εyb [0, 0]

start [0, 0]

R(y) [0, 0]R(x)[0, 0]

zero[0, 0] notzero [0, 0]

Figure 3. Encoding 0-test over bounded-time: when in state si, if Cx = 0 then go to sj

4. Symbolic semi-algorithms for parameter synthesis

4.1. State classes

We now introduce the notion of state classes for pcTPNs. It was originally introduced for time Petri
nets in [17, 14], and extended for timing parameters in [18], and for costs in [11]. We show that those
two extensions seamlessly blend together.

For an arbitrary sequence of transitions σ = t1 . . . tn ∈ T ∗, let Cσ be the set of all states that can

be reached by the sequence σ from any initial state q0 : Cσ = {q ∈ Q|q0
t1
↪−→ q1 · · ·

tn
↪−→ q}. All the

states of Cσ share the same marking and can therefore be written as a pair (m,D) where m is the
common marking and, if we note en(m) = {t1, . . . , tn}, then D is the set of points (θ1, . . . , θn, c, v)
such that (m, I, c, v) ∈ Cσ and for all ti ∈ en(m), θi ∈ I(ti). For short, we will often write (~θ, c, v)
for such a point, with ~θ = (θ1, . . . , θn) and a small abuse of notation. We denote by Θ the set of θi
variables, of which we have one per transition of the net: for the sake of simplicity, we will usually
use the same index to denote for instance that θi corresponds to transition ti.

Cσ is called a state class and D is its firing domain.
Lemma 4.1 equivalently characterises state classes, as a straightforward reformulation of the defi-

nition:

Lemma 4.1. For all classes Cσ = (m,D), (~θ, c, v) ∈ D if and only if there exists a run ρ in v(N ),
and I : en(m)→ I(Q≥0), such that sequence(ρ) = σ, (m, I, c) = last(ρ), and ~θ ∈ I .
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From Lemma 4.1, we can then deduce a characterisation of the “next” class, obtained by firing a
firable transition from some other class. This is expressed by Lemma 4.2.

Lemma 4.2. Let Cσ = (m,D) and Cσ.tf = (m′, D′), we have:

(~θ′, c′, v) ∈ D′ iff ∃(~θ, c, v) ∈ D s.t.


∀ti ∈ en(m), θi − θf ≥ 0

∀ti ∈ en(m− •tf ), θ′i = θi − θf
∀ti ∈ newen(m, tf ), θ′i ∈ v(Is)(ti)

c′ = c+ costm(m) ∗ θf + costt(tf )

Proof:
Consider (~θ′, c′, v) ∈ D′. Then by Lemma 4.1, there exists a run ρ′ in v(N ), and I ′ : en(m) →
I(Q≥0), such that sequence(ρ′) = σ.tf , (m′, I ′, c′) = last(ρ′), and ~θ′ ∈ I ′. Consider the prefix ρ of
ρ′ such that sequence(ρ) = σ. The last state of ρ can be written (m, I, c, v) for some I and c. We
know that tf is fired from (m, I, c, v) so there exists some delay d such that I(tf ) ≤ d and for all

other transitions ti enabled by m, I(ti) ≥ d. Furthermore, c = c′ − costm(m) ∗ d − costt(tf ). It
follows that there exists a point ~θ ∈ I with the desired properties.

The other direction is similar. ut

Note that according to Lemma 4.2, D′ is not empty if and only if there exists (~θ, c, v) in D such
that for all ti ∈ en(m), θi ≥ θf . In that case we say that tf is firable from (m,D) and note tf ∈
firable((m,D)).

From Lemma 4.2, it follows that Cσ.tf can be computed from Cσ using Algorithm 1. Note that it
is formally the same algorithm as in [11].

Given a class C and a transition t firable from C, we note Next(C, t) the result of applying Algo-
rithm 1 to C and t.

Algorithm 1 Successor (m′, D′) of (m,D) by firing tf
1: m′ ← m− •tf + t•f
2: D′ ← D ∧

∧
i 6=f,ti∈en(m) θf ≤ θi

3: for all ti ∈ en(m− •tf ), i 6= f , add variable θ′i to D′, constrained by θi = θ′i + θf
4: add variable c′ to D′, constrained by c′ = c+ θf ∗ costm(m) + costt(tf )
5: eliminate (by projection) variables c, θi for all i from D′

6: for all tj ∈ newen(m, tf ), add variable θ′j to D′, constrained by θ′j ∈ Is(tj)

LetC0 = (m0, D0) be the initial class. DomainD0 is defined by the constraints ∀ti ∈ en(m0), θi ∈
Is(ti), ∀t ∈ T, Is(t) 6= ∅, and c = 0. This gives a convex polyhedron of R|en(m0)|+|P|+1

≥0 ; since all the
operations on domains in Algorithm 1 are polyhedral, all the domains of state classes are also convex
polyhedra. Note that only enabled transitions are constrained in the domain of a state class.

Naturally, we define the cost of state class Cσ as cost(Cσ) = cost(σ).
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Example 4.3. For the net in Figure 1, the initial state class is defined by m0 = {p0, p1} and D0 =
{θ0 = a, 2 ≤ θ1 ≤ 5, c = 0, a ≥ 0}. Firing t0 from C0, we get C1 = (m1, D1) with m1 = m0, and
D1 = {t0 = a, 0 ≤ t1, 2− a ≤ t1 ≤ 5− a, c = 2 + 3a, a ≤ 5}. More generally, after firing n times
t0 consecutively, we get Cn = (m0, Dn) with Dn = {t0 = a, 0 ≤ t1, 2 − na ≤ t1 ≤ 5 − na, c =
n(2 + 3a), na ≤ 5}. Finally, when firing t1 from Cn, with n > 0, we get C ′n = ({p0, p2}, D′n) with
D′n = {0 ≤ t0 ≤ a, (n+ 1)a− 5 ≤ t0 ≤ (n+ 1)a− 2, c = n(2 + 3a) + 3(a− t0), 2

n+1 ≤ a ≤
5
n}.

When firing t1 from C0, we get C ′0 = ({p0, p2}, D′0) withD′0 = {0 ≤ t0 ≤ a, a−5 ≤ t0 ≤ a−2, c =
3(a− t0), 2 ≤ a}.

In the next two subsections we present parameter synthesis algorithms based on the state classes
with parameters and cost we have just defined.

4.2. Bounded-cost synthesis semi-algorithm

Algorithm 2 Symbolic semi-algorithm computing all parameter valuations such that some markings
are reachable with a bounded cost.

1: PolyRes← ∅
2: PASSED ← ∅
3: WAITING ← {(m0, D0)}
4: while WAITING 6= ∅ do
5: select Cσ = (m,D) from WAITING

6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
D ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C ′ ∈ PASSED, Cσ 64 C ′ then

10: add Cσ to PASSED

11: for all t ∈ firable(Cσ), add Cσ.t to WAITING

12: end if
13: end while
14: return PolyRes

We start with the problem of finding parameter valuations for which we can reach some given
markings, with a cost that is less or equal to a given constant cmax. In Algorithm 2, we explore the
symbolic state-space in a classical manner. Whenever a goal marking is encountered we collect the
parameter valuations that allowed that marking to be reached with a cost less or equal to cmax.

The PASSED list records the visited symbolic states. Instead of checking new symbolic states for
membership, we test a weaker relation denoted by 4: does there exist a visited state allowing more
behaviors with a cheaper cost?

For any state class C = (m,D) and any point (~θ, v) ∈ D|Θ∪P, the optimal cost of (~θ, v) in D is
defined by costD(~θ, v) = inf

(~θ,c,v)∈D c.
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Definition 4.4. Let C = (m,D) and C ′ = (m′, D′) be two parametric cost state classes. We say
that C is subsumed by C ′, which we denote by C 4 C ′ iff m = m′, D|Θ∪P ⊆ D′|Θ∪P, and for all
(~θ, v) ∈ D|Θ∪P, costD′(~θ, v) ≤ costD(~θ, v).

The following result is a fairly direct consequence of Definition 4.4:

Lemma 4.5. Let Cσ1 and Cσ2 be two state classes such that Cσ1 4 Cσ2 .
If a transition sequence σ is firable from Cσ1 , it is also firable from Cσ2 and cost(Cσ1.σ) ≥

cost(Cσ2.σ).

Proof:
Let Cσ1 = (m1, D1) and Cσ2 = (m2, D2). From Definition 4.4, for any point (~θ, c1, v) ∈ D1, there
exists a point (~θ, c2, v) ∈ D2 such that c2 ≤ c1. This implies that: (i) cost(Cσ1) ≥ cost(Cσ2); (ii) if
transition t is firable from Cσ1 , then it is firable from Cσ2 and Next(Cσ1 , t) 4 Next(Cσ2 , t). And the
result follows by a straightforward induction. ut

While 4 can be checked using standard linear algebra techniques, we can also reduce it to stan-
dard inclusion on polyhedra by removing the upper bounds on cost (an operation called cost relax-
ation) [11].

Example 4.6. Using the classes given in Example 4.3, we see that for all n, for all m ≤ n, we have
Cn 64 Cm because Dn|Θ∪P 6⊆ Dm|Θ∪P. This means Algorithm 2 will not terminate, whatever the
value of the cost bound.

Nonetheless, for a cost bound of 5, we see that from D′0 we obtain an empty set of parameters
meeting the bound which is empty, as expected, because t0 ≤ a−2 so c = 3(a− t0) is at least 6. And
for a bound greater of equal to 6 we get a ≥ 2. With a bound of 8, we need to explore C ′1 to find that
a can actually be greater or equal to 1, and so on.

Lemma 4.7 states a technical invariant of the while loop.

Lemma 4.7. The following invariant holds after each iteration of the while loop in Algorithm 2: for
all Cσ = (m,D) ∈ PASSED,

1. for all prefixes σ′ of σ, Cσ′ ∈ PASSED;

2. if m ∈ Goal then
(
D ∩ (c ≤ cmax)

)
|P ⊆ PolyRes;

3. if t is firable from Cσ:

• either Cσ.t ∈ WAITING,

• or there exists C ′ ∈ PASSED such that Cσ.t 4 C ′.

Proof:
We prove this lemma by induction. Before the while loop starts, PASSED is empty so the invariant
is true. Let us now assume that the invariant holds for all iterations up to the n-th one, with n ≥ 0,
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and that WAITING 6= ∅. Let Cσ ∈ WAITING be the selected class at line 5; to check whether the
invariant still holds at the end of the (n + 1)-th iteration, we only have to test the case where Cσ is
added to PASSED (which means that the condition at line 9 is true). We can then check each part of
the invariant:

1. Cσ was picked from WAITING (line 5); except for the initial class (for which σ is empty, and
therefore has no prefix), it means that, in a previous iteration, there was a sequence σ′ and a
transition t ∈ firable(Cσ′) such that σ = σ′.t (line 11) and Cσ′ ∈ PASSED (line 10). Since we
add at most one state class to PASSED at each iteration, Cσ′ was added in a previous iteration
and we can apply to it the induction hypothesis, which allows us to prove the first part of the
invariant;

2. lines 6 and 7 obviously imply the second part of the invariant;

3. if Cσ ∈ PASSED, then the condition of the if on line 9 is true and then for any transition t that is
firable from Cσ, Cσ.t is added to WAITING (line 11) so the third part of the invariant holds for
Cσ. Nevertheless, Cσ itself is no longer in WAITING, and it is (except for the initial state class)
the successor of some state class in PASSED. But then we have only two possibilities: either Cσ
has been added to PASSED in line 10 if the condition on line 9 was true, and certainly Cσ 4 Cσ,
or there exists C ′ ∈ PASSED such that Cσ 4 C ′ if that condition was false. Therefore the third
part of the invariant holds.

Both the basis case and the induction step are true: the result follows by induction. ut

We can now prove the correctness of semi-algorithm, and its completeness when it terminates.

Proposition 4.8. After any iteration of the while loop in Algorithm 2:

1. if v ∈ PolyRes, then there exists a run ρ in v(N ) such that cost(ρ) ≤ cmax and lastm(ρ) ∈
Goal.

2. if WAITING = ∅ then, for all parameter valuations v such that there exists a run ρ in v(N ) such
that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal, we have v ∈ PolyRes.

Proof:
1. By induction on the while loop: initially, PolyRes is empty so the result holds trivially. Suppose

it holds after some iteration n, and consider iteration n + 1. Let v ∈ PolyRes after iteration
n+ 1. If v was already in PolyRes after iteration n then we can apply the induction hypothesis.
Otherwise it means that if Cσ = (m,D) is the class examined at iteration n+1, thenm ∈ Goal
and v ∈

(
D ∩ (c ≤ cmax)

)
|P. This means that there exists some point (~θ, c, v) ∈ D with

c ≤ cmax. By Lemma 4.1, this means that there exists a run ρ such that (m, I, c, v) = last(ρ),
for some I such that ~θ ∈ I , and therefore lastm(ρ) ∈ Goal and cost(ρ) ≤ cmax.

2. Let v be a parameter valuation such that there exists a run ρ in v(N ) such that cost(ρ) ≤ cmax

and lastm(ρ) ∈ Goal. Let σ = sequence(ρ). We proceed by induction on the length n of
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the biggest suffix σ2 of σ such that, either σ2 is empty or, if we note σ = σ1σ2, with the first
element of σ2 being transition t, then Cσ1t 6∈ PASSED.

If n = 0, then Cσ = (m,D) ∈ PASSED. By Lemma 4.1, v ∈ D|P and m ∈ Goal. From the
latter, with Lemma 4.7, we have

(
D ∩ (c ≤ cmax)

)
|P ⊆ PolyRes and therefore v ∈ PolyRes

because v ∈
(
D ∩ (c ≤ cmax)

)
|P.

Consider now n > 0 and assume the property holds for n− 1. Since n > 0, then there exists a
transition t and a sequence σ3 such that σ2 = t.σ3. By definition of σ2, we have Cσ1 ∈ PASSED

but Cσ1.t 6∈ PASSED. By Lemma 4.7, since WAITING = ∅, there must exists some class
Cσ′ ∈ PASSED such that Cσ1.t 4 Cσ′ . From Lemma 4.5, sequence σ3 is also firable from Cσ′

and Cσ′.σ3 = (m,D′), with cost(Cσ′.σ3) ≤ cost(Cσ) ≤ cmax. By Lemma 4.1, there exists thus
a run ρ′ in v(N ), with sequence(ρ′) = σ′.σ3, lastm(ρ′) ∈ Goal and cost(ρ′) ≤ cmax. Also,
from Lemma 4.7 (item 1), we know that for all prefixes of σ′, the corresponding state class is in
PASSED, so the biggest suffix of σ′.σ3 as defined above in the induction hypothesis has length
less or equal to n− 1, and the induction hypothesis applies to ρ′, which allows to conclude.

ut

In particular, if the algorithm terminates, then the waiting list is empty and PolyRes is exactly the
solution to the synthesis problem.

4.3. Infimum-cost synthesis semi-algorithm

We now address the optimal cost synthesis problem, that is compute the infimum cost over all runs
(and thus over all parameter valuations) and all parameter valuations for which this optimal cost can
be achieved.

Algorithm 3 explores the state-space in the same way as Algorithm 2. The difference lies in how
it collects “good” parameter valuations: the idea is to always store the parameter valuations for which
the minimal possible cost in the class is realisable.

Example 4.9. As we have seen previously, the minimum cost for C ′0 is 6 with a ≥ 2 and this is
actually optimal because for all n > 0, the minimum cost for C ′n will be n(2 + 3a) + 3(a− t0) with
t0 ≤ (n+ 1)a− 2, i.e., a− t0 ≥ 2− na and c ≥ 2n+ 3na+ 6− 3na = 2n+ 6 > 6.

As before we first prove a simple technical invariant on the while loop.

Lemma 4.10. The following invariant holds after each iteration of the while loop in Algorithm 3: for
all Cσ = (m,D) ∈ PASSED,

1. for all prefixes σ′ of σ, Cσ′ ∈ PASSED;

2. if t is firable from Cσ:

• either Cσ.t ∈ WAITING,

• or there exists C ′ ∈ PASSED such that Cσ.t 4 C ′.
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Algorithm 3 Symbolic semi-algorithm computing all parameter valuations such that some markings
are reachable with the infimum cost.

1: COST ←∞
2: PolyRes← ∅
3: PASSED ← ∅
4: WAITING ← {(m0, D0)}
5: while WAITING 6= ∅ do
6: select Cσ = (m,D) from WAITING

7: if m ∈ Goal then
8: if cost(Cσ) < COST then
9: COST ← cost(Cσ)

10: PolyRes←
(
D ∩ (c = COST)

)
|P

11: else if cost(Cσ) = COST then
12: PolyRes← PolyRes ∪

(
D ∩ (c = COST)

)
|P

13: end if
14: end if
15: if for all C ′ ∈ PASSED, Cσ 64 C ′ then
16: add Cσ to PASSED

17: for all t ∈ firable(Cσ), add Cσ.t to WAITING

18: end if
19: end while
20: return (COST,PolyRes)

3. cost(Cσ) ≥ COST;

4. if m ∈ Goal and cost(Cσ) = COST then
(
D ∩ (c = cost(Cσ))

)
|P ⊆ PolyRes;

Proof:
The proof works by induction exactly as the one of Lemma 4.7. The specific last two items are a direct
consequence of the updates in lines 7 to 14 and of the induction hypothesis. ut

We can now prove correctness and completeness (the latter provided the semi-algorithm termi-
nates).

Proposition 4.11. After any iteration of the while loop in Algorithm 3:

1. if v ∈ PolyRes, then there exists a run ρ in v(N ) such that cost(ρ) = COST and lastm(ρ) ∈
Goal.

2. if WAITING = ∅ then if some marking in Goal is reachable for some parameter valuation then
COST = minρ∈Runs(N ),lastm(ρ)∈Goal cost(ρ) otherwise COST = +∞.

3. if WAITING = ∅ then for all parameter valuations v such that there exists a run ρ in v(N ) such
that cost(ρ) = COST and lastm(ρ) ∈ Goal, we have v ∈ PolyRes;



D. Lime et al. / Cost Problems for Parametric Time Petri Nets 113

Proof:
1. This works as in the proof for Proposition 4.8, replacing c ≤ cmax by c = COST.

2. If no marking in Goal is reachable then clearly, from its initialisation, COST = +∞ when the
algorithm terminates with WAITING = ∅.
If some marking in Goal is reachable for some parameter valuation v, let ρ be one of the runs
reaching Goal with the smallest cost and let σ = sequence(ρ). First remark that cost(Cσ) =
cost(ρ) because ρ realises the minimum cost of all runs reaching Goal, and therefore in partic-
ular of all runs firing transition sequence σ.

We prove that COST = cost(ρ). We proceed again by induction on the length n of the biggest
suffix σ2 of σ such that, either σ2 is empty or, if we note σ = σ1σ2, with the first element of σ2

being transition t, then Cσ1t 6∈ PASSED.

If n = 0, then Cσ = (m,D) ∈ PASSED. Then, by Lemma 4.10, COST ≤ cost(Cσ), which
implies COST < +∞. It is therefore clear that there is some σ′ = (m′, D′) ∈ PASSED such
that COST = cost(Cσ′). If COST < cost(Cσ), then by Lemma 4.1 there exists a run ρ′

reaching Goal with cost(ρ′) < cost(ρ), which is not possible since ρ realises the minimum
cost. Therefore COST = cost(Cσ) = cost(ρ).

Consider now n > 0 and assume the property holds for n − 1. Since n > 0, then there
exists a transition t and a sequence σ3 such that σ2 = t.σ3. By definition of σ2, we have
Cσ1 ∈ PASSED but Cσ1.t 6∈ PASSED. By Lemma 4.7, since WAITING = ∅, there must exists
some class Cσ′ such that Cσ1.t 4 Cσ′ . From Lemma 4.5, sequence σ3 is also firable from Cσ′

and Cσ′.σ3 = (m,D′), with cost(Cσ′.σ3) ≤ cost(Cσ) = cost(ρ). By Lemma 4.1, there exists
thus a run ρ′, with sequence(ρ′) = σ′.σ3, lastm(ρ′) ∈ Goal and cost(ρ′) ≤ cost(ρ). Since ρ
realises the minimum of the cost for runs reaching Goal, this means that cost(ρ′) = cost(ρ).
From Lemma 4.10 (item 1), we know that for all prefixes of σ′, the corresponding state class is
in PASSED, so the biggest suffix of σ′.σ3 as defined above in the induction hypothesis has length
less or equal to n− 1, and the induction hypothesis applies to ρ′, which allows to conclude.

3. Let v be a parameter valuation such that there exists a run ρ in v(N ) such that cost(ρ) = COST

and lastm(ρ) ∈ Goal. Let σ = sequence(ρ). We proceed by induction on the length n of
the biggest suffix σ2 of σ such that, either σ2 is empty or, if we note σ = σ1σ2, with the first
element of σ2 being transition t, then Cσ1t 6∈ PASSED.

If n = 0, then Cσ = (m,D) ∈ PASSED. By Lemma 4.1, v ∈ D|P and m ∈ Goal. From the
latter, with Lemma 4.10, we have

(
D ∩ (c = COST)

)
|P ⊆ PolyRes and therefore v ∈ PolyRes

because v ∈
(
D ∩ (c = COST)

)
|P.

Consider now n > 0 and assume the property holds for n− 1. Since n > 0, then there exists a
transition t and a sequence σ3 such that σ2 = t.σ3. By definition of σ2, we have Cσ1 ∈ PASSED

but Cσ1.t 6∈ PASSED. By Lemma 4.7, since WAITING = ∅, there must exists some class
Cσ′ ∈ PASSED such that Cσ1.t 4 Cσ′ . From Lemma 4.5, sequence σ3 is also firable from Cσ′

and Cσ′.σ3 = (m,D′), with cost(Cσ′.σ3) ≤ cost(Cσ) = COST. By Lemma 4.1, there exists
thus a run ρ′ in v(N ), with sequence(ρ′) = σ′.σ3, lastm(ρ′) ∈ Goal and cost(ρ′) ≤ COST.
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Since WAITING = ∅, we can use item 2 above and therefore, since Goal is reachable, COST is
finite and is the minimum cost of runs reaching Goal (and in particular for those with parameter
valuation v). So cost(ρ′) = COST. Furthermore, from Lemma 4.10 (item 1), we know that for
all prefixes of σ′, the corresponding state class is in PASSED, so the biggest suffix of σ′.σ3 as
defined above in the induction hypothesis has length less or equal to n − 1, and the induction
hypothesis applies to ρ′, which allows to conclude.

ut

5. Restricting to integer parameters

Obviously, in general, (semi-)Algorithm 2 will not terminate, since the emptiness problem for the set
it computes is undecidable. Semi-algorithm 3 will not terminate either for similar reasons.

To ensure termination, we can however follow the methodology of [4]: we require that parameters
are bounded integers and, instead of just enumerating the possible parameter values, we propose a
modification of the symbolic state computation to compute these integer parameters symbolically. For
this we rely on the notion of integer hull.

We call integer valuation a Z-valuation. Note that a Z-valuation is also an R-valuation, and given
a set D of R-valuations, we denote by Ints(D) the set of integer valuations in D.

The convex hull of a set D of valuations, denoted by Conv(D), is the intersection of all the convex
sets of valuations that contain D.

The integer hull of a set D of valuations, denoted by IH(D), is defined as the convex hull of the
integer valuations in D: IH(D) = Conv(Ints(D)).

For a state class C = (m,D), we write IH(C) for (m, IH(D)).

Before we see how our result can be adapted for the restriction to integer parameter valuations,
and from there how we can enforce termination of the symbolic computations when parameters are
assumed to be bounded, we need some results on the structure of the polyhedra representing firing
domains of cost TPNs.

By the Minkowski-Weyl theorem (see e.g. [19]), every convex polyhedron can be either described
as a set of linear inequalities, as seen above, or by a set of generators. More precisely, for the latter: if d
is the dimension of polyhedron P , there exists v1, . . . , vp, r1, . . . , rs ∈ Rd, such that for all points x ∈
P , there exists λ1, . . . , λp ∈ R, µ1, . . . , µs ∈ R≥0 such that

∑
i λi = 1 and x =

∑
i λivi +

∑
i µiri.

The vi’s are called the vertices of P and the ri’s are the extremal rays of P . The latter correspond to
the directions in which the polyhedron is infinite. In our case, they correspond to transitions with a
(right-)infinite static interval, and possibly the cost.

A classical property of vertices, which can also be used as a definition, is as follows: ~v is a vertex
of P iff for all non-null vectors ~x ∈ Rd, either ~v + ~x 6∈ P or ~v − ~x 6∈ P (or both), + and − being
understood component-wise.

Proposition 5.1. Let N be a (non-parametric) cost TPN and let C = (m,D) be one of its state
classes, then D has integer vertices.
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Proof:
We have proved in [11] that the domain D of a state class of a cost TPNs, with removed upper bounds
on cost (so-called relaxed classes), can be partitioned into a union of simpler polyhedra

⋃n
i=1Di that

have the following key properties: (1) by projecting the cost out we obtain a convex polyhedron Di|Θ
with integer vertices (actually a zone, as in [20, 14]), and (2) these simpler polyhedra all have exactly
one constraint on the cost variable, i.e., of the form c ≥ `(~θ), with integer coefficients. Note that the
same result can be obtained, with the same technique, if we consider non-relaxed state classes, except
that, we also have an upper bound on cost that is always greater or equal to the lower bound. We prove
in Lemma 5.2 that each of these simpler polyhedra also has integer vertices. Since D and each of the
Di’s are convex and since D =

⋃
iDi, D is equal to the convex hull of the vertices of the Di’s and

therefore D also has integer vertices. ut

Lemma 5.2. Let D be a convex polyhedron on variables θ1, . . . , θn, c such that the projection of D
on the θ variables has integer vertices, and there are two constraints on c of the form c ≥ `(θ1, . . . , θn)
and c ≤ `′(θ1, . . . , θn), with ` and `′ linear terms with integer coefficients, such that `(θ1, . . . , θn) ≤
`′(θ1, . . . , θn), for all values of the θi’s.

Then, the vertices of D are the points (θ1, . . . , θn, `(θ1, . . . , θn)) and (θ1, . . . , θn, `
′(θ1, . . . , θn))

such that (θ1, . . . , θn) is a vertex of D|Θ, and they are integer points.

Proof:
Recall here that we consider all constraints in D to be non-strict so all polyhedra are topologically
closed. The reasoning extends with no difficulty to non-necessarily-closed polyhedra by considering
so-called closure points in addition to vertices [21].

Consider a non-vertex point ~θ in D|Θ and let (~θ, c) be a point of D. Then using the form of the
unique cost constraint, we have c ≥ `(~θ). Now since ~θ is not a vertex, there exists a vector ~x such that
both ~θ+~x and ~θ−~x belong to D|Θ. Then, for sure, (~θ+~x, `(~θ+~x)) ∈ D and (~θ−~x, `(~θ−~x)) ∈ D.
And since ` is linear, (~θ + ~x, `(~θ) + `(~x))) ∈ D, i.e., (~θ, `(~θ)) + (~x, `(~x)) ∈ D. And similarly,
(~θ, `(~θ)) − (~x, `(~x)) ∈ D. Using again the form of the unique cost constraint, and the fact that
c ≥ `(~θ), we finally have (~θ, c) + (~x, `(~x)) ∈ D and (~θ, c) − (~x, `(~x)) ∈ D, that is, (~θ, c) is not a
vertex of D.

By contraposition, any vertex of D extends a vertex of D|Θ, and using a last time the form of the
cost constraint, any vertex of D, is of the form (~θ, `(~θ)), with ~θ a vertex of D|Θ: suppose (~θ, c) is a
vertex of D, with c > `(~θ), then for ~x defined with c − `(~θ) on the cost variable, and 0 on all other
dimensions, we clearly have both (~θ, c) + ~x and (~θ, c)− ~x in D, which is a contradiction.

We conclude by remarking that, sinceD|Θ has integer vertices, all the coordinates of ~θ are integers,
and since ` has integer coefficients then `(~θ) is an integer.

We can deal with the upper bound defined by `′ in exactly the same way. ut

From Proposition 5.1, we can prove the following lemma that will be very useful in the subsequent
proofs.

Lemma 5.3. Let (m,D) be a state class of a pcTPN and let (~θ, c, v) be a point in D.
If v is an integer valuation, then (~θ, c, v) ∈ IH(D).
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Proof:
Since (~θ, c, v) ∈ D then (~θ, c) ∈ v(D). By Proposition 5.1, v(D) being the firing domain of a
state class in a (non-parametric) cost TPN, it has integer vertices, and therefore v(D) = IH(v(D)).
Point (~θ, c) is therefore a convex combination of integer points in v(D). Clearly, for all integer points
(~θ′, c′) in v(D), we have that (~θ′, c′, v) is an integer point of D. Since D is convex, this implies that
(~θ, c, v) ∈ IH(D). ut

When we restrict ourselves to integer parameter but continue to work symbolically, we need to
adjust the definitions of the firability of a transition from a class and of the cost of a class.

First, a transition tf is firable for integer parameter valuations from a class (m,D), call this NP-
firable, if there exists an integer parameter valuation v and a point (~θ, c, v) in D such that for all
transitions ti ∈ en(m), θi ≥ θf .

Lemma 5.4. Let C = (m,D) be a state class. Transition tf ∈ en(m) is NP-firable from C if and
only if it is firable (not necessarily NP-firable) from (m, IH(D)).

Proof:
⇐: trivial because IH(D) ⊆ D.
⇒: since tf is NP-firable from C, there exists an integer parameter valuation v, and (~θ, c, v) ∈ D

such that for all transitions ti ∈ en(m), θi ≥ θf . And the result follows from Lemma 5.3 because v is
an integer valuation. ut

Second, the cost of a class C = (m,D), for integer parameters, is costN(C) = inf
(~θ,c,v)∈D,v∈NP c.

Lemma 5.5 is a direct consequence of Lemma 5.3:

Lemma 5.5. Let (m,D) be a state class. We have: costN((m,D)) = cost((m, IH(D)).

Lemma 5.6. If v is an integer parameter valuation, then for all classes Cσ = (m,D), (~θ, c, v) ∈
IH(D) if and only if there exists a run ρ in v(N ), and I : en(m)→ I(Q≥0), such that sequence(ρ) =

σ, (m, I, c) = last(ρ), and ~θ ∈ I .

Proof:
⇒: if (~θ, c, v) ∈ IH(D) then it is also in D and the result follows from Lemma 4.1.
⇐: by Lemma 4.1, we know that there exists some (~θ, c, v) ∈ D, and since v is an integer

valuation, by Lemma 5.3, (~θ, c, v) ∈ IH(D). ut

Lemma 5.7. Let Cσ1 and Cσ2 be two state classes such that IH(Cσ1) 4 IH(Cσ2).
If a transition sequence σ is NP-firable fromCσ1 it is also NP-firable fromCσ2 and costN(Cσ1.σ) ≥

costN(Cσ2.σ).

Proof:
Let Cσ1 = (m1, D1) and Cσ2 = (m2, D2). From Definition 4.4, for any point (~θ, c1, v) ∈ IH(D1),
there exists a point (~θ, c2, v) ∈ IH(D2) such that c2 ≤ c1. With Lemma 5.4 and Lemma 5.5, this im-
plies that: (i) costN(Cσ1) ≥ costN(Cσ2); (ii) if transition t is NP-firable fromCσ1 , then it is NP-firable
from Cσ2 and Next(Cσ1 , t) 4 Next(Cσ2 , t). And, as before, the result follows by a straightforward
induction. ut
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Algorithm 4 Restriction of (semi-)Algorithm 2 to integer parameter valuations.
1: PolyRes← ∅
2: PASSED ← ∅
3: WAITING ← {(m0, D0)}
4: while WAITING 6= ∅ do
5: select Cσ = (m,D) from WAITING

6: if m ∈ Goal then
7: PolyRes← PolyRes ∪

(
IH(D) ∩ (c ≤ cmax)

)
|P

8: end if
9: if for all C ′ ∈ PASSED, IH(Cσ) 64 IH(C ′) then

10: add Cσ to PASSED

11: for all t ∈ firable(IH(Cσ)), add Cσ.t to WAITING

12: end if
13: end while
14: return PolyRes

Example 5.8. Let us compute the integer hulls of some of the state classes of the net in Figure 1. D0

and D1 already have integer vertices, but starting from n > 1, we have in Cn that a ≤ 5
n , and so D2

does not have integer vertices. The integer hull ofD2 is {t0 = a, 0 ≤ t1, 2−a ≤ t1 ≤ 5−a, c = 2(2+
3a), 0 ≤ a ≤ 2}. For n ∈ {3, 4, 5}, we have IH(Dn) = {t0 = a, 0 ≤ t1, 2− 2a ≤ t1 ≤ 5− na, c =
n(2 + 3a), 0 ≤ a ≤ 1}. And finally, for n ≥ 6, IH(Dn) = {t0 = 0, 2 ≤ t1 ≤ 5, c = 2n, a = 0}. So
C7 4 C6 because D7 = D6 and, for the costs, 14 ≥ 12. Note that we actually already had C2 4 C1

because D2 ⊂ D1 and on D2, i.e., here for all a ≤ 2, we have 2(2 + 3a) ≥ 2 + 3a.

Using Lemma 5.6 instead of Lemma 4.1, and Lemma 5.7 instead of Lemma 4.5 in the proof of
Proposition 4.8, we get the following proposition, stating the completeness and soundness of Algo-
rithm 4.

Proposition 5.9. After any iteration of the while loop in Algorithm 4:

1. if v ∈ PolyRes and v is an integer parameter valuation then there exists a run ρ in v(N ) such
that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal.

2. if WAITING = ∅ then for all integer parameter valuations v such that there exists a run ρ in
v(N ) such that cost(ρ) ≤ cmax and lastm(ρ) ∈ Goal, we have v ∈ PolyRes.

Similarly, we can prove the completeness and soundness of Algorithm 5:

Proposition 5.10. After any iteration of the while loop in Algorithm 5:

1. if v ∈ PolyRes and v is an integer valuation, then there exists a run ρ in v(N ) such that
cost(ρ) = COST and lastm(ρ) ∈ Goal.

2. if WAITING = ∅ then if some marking in Goal is reachable for some integer parameter valuation
then COST = minρ∈Runs(N ),lastm(ρ)∈Goal cost(ρ) otherwise COST = +∞.
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Algorithm 5 Restriction of (semi-)Algorithm 3 to integer parameter valuations.
1: COST ←∞
2: PolyRes← ∅
3: PASSED ← ∅
4: WAITING ← {(m0, D0)}
5: while WAITING 6= ∅ do
6: select Cσ = (m,D) from WAITING

7: if m ∈ Goal then
8: if cost(IH(Cσ)) < COST then
9: COST ← cost(IH(Cσ))

10: PolyRes←
(
IH(D) ∩ (c = COST)

)
|P

11: else if cost(IH(Cσ)) = COST then
12: PolyRes← PolyRes ∪

(
IH(D) ∩ (c = COST)

)
|P

13: end if
14: end if
15: if for all C ′ ∈ PASSED, IH(Cσ) 64 IH(C ′) then
16: add Cσ to PASSED

17: for all t ∈ firable(IH(Cσ)), add Cσ.t to WAITING

18: end if
19: end while
20: return (COST,PolyRes)

3. if WAITING = ∅ then for all integer parameter valuations v such that there exists a run ρ in
v(N ) such that cost(ρ) = COST and lastm(ρ) ∈ Goal, we have v ∈ PolyRes;

In Algorithms 4 and 5, we compute state classes as usual then handle them via their integer hulls.
We can actually simply integrate integer hulls at the end of Algorithm 1 and use Algorithm 2 with this
updated successor computation as proved by Lemma 5.11.

Lemma 5.11. Let (m,D) be a state class of a pcTPN N , and t a transition firable from C. Let
(m′, D′) = Next((m,D), t) and (m′′, D′′) = Next((m, IH(D)), t). Then m′′ = m′ and IH(D′′) =
IH(D′).

Proof:
The equality of markings is trivial so we focus on firing domains.

By definition of the integer hull, we have IH(D) ⊆ D. Since the computation of the next class
domain is non-decreasing with respect to inclusion, we then have D′′ ⊆ D′. Taking the integer hull is
also non-decreasing wrt. inclusion, so IH(D′′) ⊆ IH(D′).

Consider now an integer point (~θ′, c′, v) in D′. Then (~θ′, c′) ∈ v(D′). Consider state class com-
putations in the (non-parametric) cost TPN v(N ): there exists some point (~θ, c) in v(D) such that
(m′, ~θ′, c′) ∈ Next((m, {(~θ, c)}), t). Since (~θ, c, v) thus belongs to D and since v is an integer param-
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eter valuation, by Lemma 5.3, we have that (~θ, c, v) ∈ IH(D). Thus (~θ′, c′, v) ∈ D′′ and since it is an
integer point, it is in IH(D′′). ut

6. Termination of Algorithms 4 and 5

We now consider that parameter valuations are bounded by some value M1 ∈ N (and that they still
have integer values). We also assume that, for all integer parameter valuations, there exists M2 ∈ Z
such that for all runs ρ in v(N ), cost(ρ) ≥ M2: this allows us, as in [11, 9], to keep Algorithms 4
and 5 simple by doing away with negative cost loop-checking. Finally, we assume the net itself is
bounded: there exists M3 ∈ N such that for all reachable markings m, for all places p, m(p) ≤M3.

To prove the termination of Algorithm 4 and 5 under these assumptions, we consider < the sym-
metric relation to 4, such that x < y iff y 4 x. We prove that it is a well quasi-order (wqo), i.e.,
that for every infinite sequence of state classes, there exist C and C ′ in the sequence, with C strictly
preceding C ′ such that C < C ′. This implies that the exploration of children in Algorithm 4 and 5
will always eventually stop.

Proposition 6.1. LetN be a bounded pcTPN, with bounded integer parameters and such that the cost
of all runs is uniformly lower-bounded for all integer parameter valuations.

Relation < is well-quasiorder on the set of state classes of N .

Proof:
Consider an infinite sequence C0, C1, C2, . . . of state classes. Let Ci = (mi, Di).

From [11], we know that < is a wqo for the state classes of bounded (non parametric) cost TPNs.
So for each integer parameter valuation v, and using a classical property of wqo we can extract a
subsequence of v(C0), v(C1), . . . that is completely ordered by <. And since, we have a finite number
of such parameter valuations, we can extract an infinite subsequence Ci0 , Ci1 , . . . such that for all
integer parameter valuations v, v(Ci0) < v(Ci1) < · · · .

Let us consider two of those: Cir and Cis , with r < s.
Since IH(Dis) has integer vertices, and for any integer parameter valuation, v(Cir) < v(Cis),

which implies that v(Dis) ⊆ v(Dir), then all the vertices of Dis are also in Dir . Now assume that
some extremal ray ~r of Dis is not in Dir . Then starting from some vertex ~x of Dir , there must be
some λ ≤ 0 such that ~x+λr 6∈ Dis and the same holds for any λ′ ≥ λ (by convexity). But since r has
rational coordinates for some value of λ′, λ′r is an integer vector and so is ~x+ λ′r, which contradicts
the fact that v(Dis) ⊆ v(Dir), for all integer parameter valuations v, and in particular (~x+ λ′r)|P.
We can therefore conclude that Dir ⊆ Dis and we now proceed to proving that Dis is also “cheaper”
than Dir .

We use another property of the vertices of convex polyhedra: vertices of a convex polyhedron of
dimension n defined by m inequalities

∑n
k=1 aklxk ≤ bl, for j ∈ [1..m] are solutions of a system of

n linearly independent equations
∑n

k=1 aklxk = bl, with l in a subset of size n of [1..m].
Now consider the polyhedron D obtained from IH(Dir), with its cost variable c, by adding one

variable c′ constrained by the cost inequalities of IH(Dis). Clearly, since c and c′ are not constrained
together, the vertices of D are those of IH(Dir), extended with the corresponding minimal and maxi-
mal values of c′, and symmetrically those of IH(Dis), extended with the corresponding minimal and
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maximal values of c′. Since the inequalities constraining c and c′ have integer coefficients, and IH(Dis)
and IH(Dir) have integer vertices, D also has integer vertices.

For the i-th lower-bound inequality on c, and the j-th lower-bound inequality on c′, we define Eij
as D in which we transform both constraints into equalities. Clearly, from the property above, this
does not add any new vertex, but it may remove some. Second, by construction, we have

⋃
ij Eij =

{(~θ,min
(~θ,c,v)∈IH(Dir )

c,min
(~θ,c,v)∈IH(Dis )

c)|~θ ∈ IH(Dr)|Θ}. If we minimize c−c′ overEi, we know
from the theory of linear programming that the minimum is obtained at a vertex of Eij , and therefore,
in particular, for an integer valuation v of the parameters, and an integer vector ~θ ofDir . Since we have
v(Cir) < v(Cis), we then know that for these values of the theta variables and parameters, c ≤ c′.
This means that this holds for the whole of Eij , and finally that Cir < Cis . ut

7. Case study

We now consider a scheduling problem where some tasks include runnables, a key concept of the AU-
Tomotive Open System ARchitecture (AUTOSAR), the open standard for designing the architecture
of vehicle software [22]. Runnables represent the functional view of the system and are executed by
the runtime of the software component [23]. For their execution they are mapped to tasks and a given
runnable can be split across different tasks to introduce parallelism, for instance. In industrial practice,
runnables that interact a lot are mapped to the same task, in particular when they perform functions
with the same period.

In this example, we consider 3 non-preemptive, periodic tasks T1, T2 and T3, on which have
already been mapped some runnables that interact together; we add another independent runnable
whose code must be split between tasks T1 and T2:

• the period of task T1 is 100 time units; T1 includes a “fixed part”, independent from the new
runnable and whose execution lasts 22 t.u.;

• the period of T2 is 200 t.u.; T2 also has a fixed part lasting 28 t.u.;

• the period of T3 is 400 t.u.; its execution lasts 11 t.u.;

• the period of the runnable is 200 t.u.; its execution lasts 76 t.u.; parameter a denotes the duration
of the section that is executed in T12.

The processing unit consists of 2 cores C0 and C1; T3 can only execute on C0 whereas both T1
and T2 can execute on either core. When both cores are idle, the cost is null; when only one core is
busy, the cost is equal to 2/t.u.; when both cores are busy, the cost is equal to 3/t.u. Any optimised
strategy to divide the runnable over T1 and T2 and to allocate these tasks to C0 or C1 must therefore
favour the cases where both cores are in the same state.

2Every 200 t.u., since T1 is executed twice as often as T2, T1 is running during (22 + a) ∗ 2 = 44 + 2a t.u. whereas T2 is
running during 28 + (76− 2a) = 104− 2a t.u.
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Figure 4. Offline non preemptive scheduling problem

Figure 4 presents the model for this problem3. The associated cost function is: 2 ∗ (C0 6= C1) + 3 ∗
C0 ∗C1 + 1000 ∗

(
W1 ∗ (R1C0 +R1C1) +W2 ∗ (R2C0 +R2C1) +W3 ∗R3C0

)
, where the name of a

place (e.g. R1C0) represents its marking4.
We limit the study of the system to the first 400 t.u., at the end of which T1 has been executed

4 times, T2 twice and T3 once. This will be the marking to reach.
We start by computing the optimal cost with the corresponding parameter values. This is done

with Romeo using formula mincost (four==4 and two==2 and one==1). We obtain minimum
cost 466 and a ∈ [13, 17].

We can run a consistency check with the following bounded cost reachability property: EF four==4

and two==2 and one==1 and cost≤466. As expected this holds iff a ∈ [13, 17].
We then try to relax the constraint on the cost a bit and for instance we find that property EF

four==4 and two==2 and one==1 and cost≤470 holds iff a ∈ [12, 18]. Similarly, the cost can
be made less or equal to 500 iff a ∈ [4, 26].

Back to the optimal case, we set a to 17; Romeo provides the following timed trace, in which the
notation T1@t1 means that transition T1 is fired at date t1: T1C0@61, T2C1@69, T1@100, end1 C0@100, T1C0@100,

end1 C0@139, end2 C1@139, T1@200, T2@200, T2C0@261, T1C1@261, T1@300, end1 C1@300, T1C1@303, end2 C0@331, T3C0@331,

end3 C0@342, end1 C1@342

From this trace, we obtain the Gantt chart in Figure 5 (above). Setting a to 13 yields another timed
trace, resulting in the Gantt chart in Figure 5 (below). In both cases, we can see that both cores are
busy during 148 t.u. (and for 11 t.u., only one is idle), which confirms our analysis on the optimised
strategy above.

3To ensure a correct access to the cores, we could have added one place for each core and some arcs on each task to capture
and release them but the resulting net would have been quite unreadable. Instead, we chose to add 2 integer variables C0
and C1 (both initialised to 0); a variable equal to 0 (resp. 1) obviously means the corresponding core is idle (resp. busy).
4The last term ensures that such cases where an instance of a task is activated while a previous one is running are heavily
penalised.
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t
0 40 80 120 160 200 240 280 320 360 400

Figure 5. Gantt charts for a = 17 (above) and a = 13 (below)

8. Conclusion

We have proposed a new Petri net-based formalism with parametric timing and cost features, thus
merging two classical lines of work. For this formalism, we define an existential problem and two
synthesis problems for parametric reachability with cost constraints. We prove that the existential
problem is undecidable but we nonetheless give and prove symbolic semi-algorithms for the synthesis
problems. We finally propose variants of those synthesis semi-algorithms suitable for integer param-
eter valuations and prove their termination when those parameter valuations are bounded a priori, and
with some other classical assumptions. These symbolic algorithms avoid the explicit enumeration of
all possible parameter valuations. They are implemented in our tool Romeo and we have demonstrated
their use on a case-study addressing a scheduling problem, and inspired by the AUTOSAR standard.

Further work includes computing the optimal cost as a function of parameters and investigating
the case of costs (discrete and rates) as parameters.
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