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Abstract. In order to speed up the synthesis of Petri nets from labelled transition systems, a

divide and conquer strategy consists in defining decompositions of labelled transition systems,

such that each component is synthesisable iff so is the original system. Then corresponding Petri

Net composition operators are searched to combine the solutions of the various components into a

solution of the original system. The paper presents two such techniques, which may be combined:

products and articulations. They may also be used to structure transition systems, and to analyse

the performance of synthesis techniques when applied to such structures.
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1. Introduction

Instead of analysing a given system to check if it satisfies a set of desired properties, the synthesis

approach tries to build a system “correct by construction” directly from those properties. In particular,

more or less efficient algorithms have been developed to build a bounded Petri net (possibly of some

subclass, called a PN-solution) with a reachability graph isomorphic to (or close to) a given finite

labelled transition system [1, 2, 3, 4, 5].
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The synthesis problem is usually polynomial in terms of the size of the LTS, with a degree between

2 and 7 depending on the subclass of Petri nets one searches for [1, 6, 4, 2], but can also be NP-

complete [7]. Hence the interest to apply a “divide and conquer” synthesis strategy when possible.

The general idea is to decompose the given LTS into components, to synthesise each component

separately and then to recombine the results in such a way to obtain a solution to the global problem.

We thus have to find a pair of operators, one acting on transition systems and a corresponding one

acting on Petri nets, such that a composed LTS has a PN-solution if and only if so are its components,

and a possible solution is given by the application of the Petri net operator applied to solutions of the

components. It is also necessary to be able to rapidly decompose a given LTS, or to state it is not

possible. This is summarised in Figure 1.

TS = TS 1 opTS TS 2

TS PN-solvable ⇐⇒ TS 1 and TS 2 PN-solvable

sol(TS ) = sol(TS 1) opPN sol(TS 2)

TS ⇒ discovering of TS 1 and TS 2

Figure 1. Divide and conquer strategy for synthesis

We shall here present two such strategies, which have been introduced recently and may be com-

bined efficiently. The first one is given by the disjoint products of LTS, which correspond to disjoint

sums of Petri nets [8, 9], and the second one is given by articulations on a state of a transition system

and on a non-dominated reachable marking of a Petri net [10], which may occur in various forms

(choice, sequence, loop).

An example of their mixed usage is illustrated in Figure 2, where articulations are instantiated in

their sequence form, and one of the components has a product form which was not apparent initially.

Not only this allows to simplify the Petri net synthesis, if needed, but also this allows to exhibit an

interesting internal structure for complex systems which could otherwise be considered as “spaghetti-

like”.

TS (x)

ι fx

TS = TS (start); (TS (a)⊗ TS (b));TS (end)

ι
s1start

s2

s3

s4a

b

b

a
f

end

Figure 2. Combination of sequence operators with a product.

The structure of the paper is as follows. First, we shall recall the bases of labelled transition

systems and Petri nets. Then, products of transition systems and sums of Petri nets are examined,

followed by articulations around states and markings, as well as the combination of both techniques.
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Performance issues are detailed in section 6 and, as usual, the last section concludes. With respect

to previous papers on the subject, sections 5 and 6 are new, as well as some results and proofs (for

instance Propositions 3.10, 4.9, 4.12 and Theorem 3.12); some small improvements are also scattered

all over the rest of the presentation.

2. Labelled transition systems and Petri nets

A classic way for representing the possible (sequential) evolutions of a dynamic system is through a

(labelled) transition system [11].

Definition 2.1. LABELLED TRANSITION SYSTEMS

A labelled transition system (LTS for short) with initial state is a tuple TS = (S,→, T, ι) with node

(or state) set S, edge label set T , edges→ ⊆ (S × T × S), and an initial state ι ∈ S. We shall denote

s[t〉 for t ∈ T if there is an arc labelled t from s, [t〉s if there is an arc labelled t to s, and s[α〉s′ if

there is a path labelled α ∈ T ∗ from s to s′. Such a path will also be called an evolution of the LTS

(from s to s′); s′ is then said reachable from s and the set of states reachable from s is denoted [s〉.

In some proofs, we shall need the following extension of the reachability notion: for each label

t ∈ T we shall denote by −t the corresponding reverse label, i.e., s[−t〉s′ if s′[t〉s (this may also be

denoted s〈t]s′). We shall assume that −T = {−t | t ∈ T} is disjoint from T , and that −−t = t; then

±T = T ∪ −T is the set of all forward and reverse labels. The general paths s[α〉s′ for α ∈ (±T )∗

are then defined like the forward ones, and we shall denote by 〈s〉 the set of states reachable from s
through a general path. If T ′ ⊆ T , we shall denote by 〈ι〉T

′

the set of states reachable from ι with

general paths only using labels from T ′: 〈ι〉T
′

= {s′ ∈ S |ι[σ〉s′ for some σ ∈ (±T ′)∗}, as well as

the restriction of TS to this set (the context will indicate which one is used); similarly, [ι〉T
′

will be

the same but with directed paths only.

If σ ∈ (±T )∗, we shall denote by Ψ(σ) the T -indexed vector in ZT such that ∀t ∈ T : Ψ(σ)(t) =
the number of occurrences of t in σ minus the number of occurrences of −t in σ, i.e., the generalised

Parikh vector of σ. We shall also denote by s[−σ〉s′ the path s′[σ〉s ran backwards.

In the following we shall only consider finite transition systems, i.e., such that S and T (hence

also→) are finite.

Two transition systems TS 1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with the same label set

T are (state-)isomorphic, denoted TS 1 ≡T TS 2 (or simply TS 1 ≡ TS 2 if T is clear from the context),

if there is a bijection ζ : S1 → S2 with ζ(ι1) = ι2 and (s, t, s′) ∈ →1 ⇔ (ζ(s), t, ζ(s′)) ∈ →2, for all

s, s′ ∈ S1 and t ∈ T . We shall usually consider LTSs up to isomorphism.

A transition system TS is said totally reachable if each state is reachable from the initial one:

[ι〉 = S.

It is reversible if ∀s ∈ [ι〉 : ι ∈ [s〉, i.e., it is always possible to return to the initial state.

It is deterministic if ∀s, s′, s′′ ∈ S ∀t ∈ T : s[t〉s′ ∧ s[t〉s′′ ⇒ s′ = s′′ and s′[t〉s ∧ s′′[t〉s⇒ s′ = s′′.
It is weakly periodic if, for every α ∈ T ∗ and infinite path s1[α〉s2[α〉s3 · · · , either for every i, j ∈
N : si = sj or for every i, j ∈ N : i 6= j ⇒ si 6= sj (the second case is of course excluded for finite

transition systems). ⊓⊔
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A non-trivial LTS is illustrated on of Figure 3.

TS1: s0ι1

s1
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s3

s4

s5s6s7

s8

s9 s10

s11

s12

s13

s14 s15

s16
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s22
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Figure 3. A reversible LTS, with a possible Petri net solution.
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Definition 2.2. WEIGHTED P/T NETS

A (finite, place-transition, arc-weighted) Petri net is a triple PN =(P, T, F ) such that P is a finite set

of places, T is a finite set of transitions, with P∩T = ∅, F is a flow function F : ((P×T )∪(T×P ))→
N. The incidence matrix C of PN is the member of ZP×T such that ∀p ∈ P, t ∈ T : C(p, t) =
F (t, p) − F (p, t). The predecessors of a node x form the set •x = {y|F (y, x) > 0}. Symmetrically

its successor set is x• = {y|F (x, y) > 0}.

A marking is a mapping M : P → N, indicating the number of (black) tokens in each place. Let

M1 and M2 be two markings, we shall say that M1 is dominated by M2 if M1 � M2, i.e., M1 is

distinct from M2 and componentwise not greater. A Petri net system is a net provided with an initial

marking (P, T, F,M0). A transition t ∈ T is enabled by a marking M , denoted by M
t
−→ or M [t〉,

if for all places p ∈ P , M(p) ≥ F (p, t). If t is enabled at M , then t can occur (or fire) in M , leading

to the marking M ′ defined by M ′(p) = M(p) − F (p, t) + F (t, p) and denoted by M
t
−→ M ′ or

M [t〉M ′; as usual, [M〉 denotes the set of markings reachable from M . A Petri net system is bounded

if, for some integer k, ∀M ∈ [M0〉∀p ∈ P : M [p] ≤ k. It is safe if ∀M ∈ [M0〉∀p ∈ P : M [p] ≤ 1
(i.e., no place will ever receive more than 1 token). It is k-safe, for some known bound k, if ∀M ∈
[M0〉∀p ∈ P : M [p] ≤ k.

Two Petri net systems N1 = (P1, T, F1,M
1
0 ) and N2 = (P2, T, F2,M

2
0 ) with the same transition

set T are isomorphic, denoted N1 ≡T N2 (or simply N1 ≡ N2 if T is clear from the context), if there is

a bijection ζ : P1 → P2 such that, ∀p1 ∈ P1, t ∈ T : M1
0 (p1) = M2

0 (ζ(p1)), F1(p1, t) = F2(ζ(p1), t)
and F1(t, p1) = F2(t, ζ(p1)).

The reachability graph of a Petri net system is the labelled transition system whose initial state

is M0, whose vertices are the reachable markings, and whose edges are {(M, t,M ′) | M
t
−→ M ′}.

It is finite iff the system is bounded. Two isomorphic Petri net systems have isomorphic reachability

graphs, hence we shall usually consider Petri nets up to isomorphism. In examples, when it is clear that

we have an initial marking, we shall often use the shorter terminology “Petri net” instead of the longer

“Petri net system”. A labelled transition system is PN-solvable if it is isomorphic to the reachablility

graph of a Petri net system (called a possible solution). ⊓⊔

A classical property of reachability graphs of Petri net systems is the following:

Proposition 2.3. (State equation)

In the reachability graph of a Petri net system (P, T, F,M0), if σ ∈ (±T )∗ and M [σ〉M ′, then

M ′ = M + C ·Ψ(σ).

An immediate observation is that the reachability graph of any Petri net system is totally reachable

and deterministic; it is also weakly periodic (see the state equation), and finite when bounded. Hence,

if a transition system is not totally reachable or not deterministic, it may not be PN-solvable. The

bottom of Figure 3 illustrates a Petri net system, which is a possible PN-solution of the transition

system given on top of the same figure. It may happen that a transition system has no PN-solution, but

if it has one, it has many ones, sometimes with very different structures.

When linking transition systems and Petri nets, it is useful to introduce regions.



6 R. Devillers / Articulations and Products of Transition Systems and their Applications to Petri Net Synthesis

Definition 2.4. REGIONS

A region (ρ,B,F) of a transition system TS = (S,→, T, ι) is a triple of functions ρ (from states to

N), and B,F (both from labels to N), satisfying the property that for any states s, s′ and label a:

(s, a, s′) is an edge of TS ⇒ ρ(s) ≥ B(a) ∧ ρ(s′)− ρ(s) = F(a)− B(a)

since this is the typical behaviour of a place p with token count ρ during the firing of a with backward

and forward connections B,F to p (anywhere in TS ). To solve an SSP(s1, s2) (for State Separation

Problem, where s1 6= s2), we need to find an appropriate region (ρ,B,F) satisfying ρ(s1) 6= ρ(s2),
i.e., separating states s1 and s2. For an ESSP(s, a) (for Event-State Separation Problem, where a
is not enabled at s), we need to find a region (ρ,B,F) with ρ(s) < B(a). This can be done by

solving suitable systems of linear inequalities which arise from these two requirements, and from the

requirement that regions are not too restrictive. ⊓⊔

A classical result [12] is that a transition system is PN-solvable if and only if all its SSP and ESSP

problems may be solved, and the corresponding places yield a possible solution.

3. Products and sums

A product of two disjoint LTS is again an LTS. Its states are pairs of states of the two LTS and an edge

exists if one of the underlying states can do the transition. An example is shown in Figure 4.

Definition 3.1. PRODUCT OF TWO DISJOINT LTS

Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) be two LTS with disjoint label sets (T1 ∩
T2 = ∅). The (disjoint) product TS 1 ⊗ TS 2 is the LTS

(
S1 × S2,→, T1 ⊎ T2, (ι1, ι2)

)
, where→ =

{
(
(s1, s2), t1, (s

′
1, s2)

)
| (s1, t1, s

′
1) ∈ →1} ∪ {

(
(s1, s2), t2, (s1, s

′
2)
)
| (s2, t2, s

′
2) ∈ →2}. ⊓⊔

TS2 0 1a
TS3

ι

s1

s2

b

b

TS4
(0, ι)

(0, s1)

(0, s2)

(1, ι)

(1, s1)

(1, s2)

b

b

b

b

a

a

a

Figure 4. Example for a disjoint product. We have TS2 ⊗ TS3 = TS4.

When a product is given and the individual label sets T1 and T2 are known, the factors can be

computed by only following edges with labels in T1, resp. T2, from the initial state:

Proposition 3.2. (Factors of a product [8])

When TS = (S,→, T1 ⊎ T2, ι) ≡T TS 1 ⊗ TS 2, TS is totally reachable (resp. deterministic) iff so

are the factors TS 1 and TS 2.

Moreover, (s1, s2)[σ〉(s
′
1, s

′
2) in TS iff s1[σ1〉s2 in TS 1 and s2[σ2〉s

′
2 in TS 2, where σ1 is the

projection of σ on T ∗
1 and similarly for σ2.
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Then, TS 1 ≡T (S1,→1, T1, ι) with S1 = {s ∈ S | ∃α1 ∈ T ∗
1 : ι[α〉s} and→1 = {(s1, t1, s2) ∈

→ such that s1, s2 ∈ S1, t1 ∈ T1}, and similarly for TS 2.

Up to isomorphism1, the disjoint product of LTS is commutative, associative and has a neutral (the

LTS with a single state and no label). Each LTS has itself and the neutral system as (trivial) factors.

An LTS is prime if it has exactly two factors (up to isomorphism). If TS = (S,→, T, ι) is

connected and finite, there is a finite set I of indices and a unique set of connected prime LTS’s

{TS i|i ∈ I} such that TS ≡T
⊗

i∈I TS i.

There is an interesting relation between LTS products and Petri nets: if two nets are disjoint,

putting them side by side yields a new net whose reachability graph is (up to isomorphism) the disjoint

product of the reachability graphs of the two original nets. This may be generalised up to Petri net

isomorphism:

Definition 3.3. (DISJOINT) SUM OF PETRI NETS

Let N1 = (P1, T1, F1,M
1
0 ) and N2 = (P2, T2, F2,M

2
0 ) be two Petri net systems with disjoint tran-

sition sets (T1 ∩ T2 = ∅). The disjoint sum N1 ⊕ N2 is defined (up to isomorphism) as the system

N = (P, T1 ∪ T2, F,M0) where P = ζ1(P1) ∪ ζ2(P2); F (ζ1(p1), t1) = F1(p1, t1), F (t1, ζ1(p1)) =
F1(t1, p1), F (ζ2(p2), t2) = F2(p2, t2), F (t2, ζ2(p2)) = F2(t2, p2), M0(ζ1(p1)) = M1

0 (p1) and

M0(ζ2(p2)) = M2
0 (p2), for t1 ∈ T1, t2 ∈ T2, p1 ∈ P1, p2 ∈ P2. In these formulas, ζ1 is a bijec-

tion between P1 and ζ1(P1) and ζ2 is a bijection between P2 and ζ2(P2) such that ζ1(P1)∩ (ζ2(P2)∪
T1 ∪ T2) = ∅ and ζ2(P2) ∩ (ζ1(P1) ∪ T1 ∪ T2) = ∅. ⊓⊔

It may be observed that the resulting system is not uniquely defined since it depends on the choice

of the two bijections ζ1 and ζ2 used to separate the place sets from the rest, but this is irrelevant since

we want to work up to isomorphism. Again, up to isomorphism, the disjoint sum of Petri net systems

is commutative, associative and has a neutral (the empty net).

An additional remark that may be precious for applications is that many subclasses of Petri nets

found in the literature (plain, free-choice, choice-free, join-free, fork-attribution, homogeneous, . . . ,

not defined here) are compatible with the presented (de)composition, in the sense that a disjoint sum

of nets belongs to such a subclass if and only if each component belongs to the same subclass. In

particular, we have

Corollary 3.4. (Bound preservation)

N1 ⊕N2 is safe iff so are N1 and N2. If N1 ⊕N2 is k-safe, so are N1 and N2.

Finally, if N1 is k1-safe and N2 is k2-safe, then N1 ⊕N2 is max(k1, k2)-safe.

Proposition 3.5. (Reachability graph of a sum of nets)

The reachability graph of a disjoint sum of net systems is isomorphic to the disjoint product of the

reachability graphs of the composing nets.

There is a kind of reverse of this property [13, 8].

1Those properties could be expressed in terms of categories, but we shall refrain from doing this here.
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Proposition 3.6. (Petri net solution of a disjoint product of LTS)

A disjoint product of LTS has a Petri net solution iff each composing LTS has a Petri net solution, and

a possible solution is the disjoint sum of the latter.

Let us now examine when and how an LTS may be decomposed into (non-trivial) disjoint factors.

From Proposition 3.2, it is enough to discover an adequate decomposition of the label set T = T1 ⊎
T2. A general characterisation of such adequate decompositions is presented in [13], but it may be

simplified in the context of Petri net synthesis.

Definition 3.7. GENERAL DIAMOND PROPERTY

An LTS TS = (S,→, T, ι) presents the general diamond property for two distinct labels a, b ∈ T
if, whenever there are two adjacent edges in a diamond like in Fig. 5, the other two are also present

(in other words, ∀s, s1, s2 ∈ S, ∀u ∈ {a,−a},∀v ∈ {b,−b} : s[u〉s1 ∧ s[v〉s2 ⇒ (∃s′ ∈ S :
s1[v〉s

′ ∧ s2[u〉s
′)). If T1, T2 ⊆ T with T1 ∩ T2 = ∅, TS will be said {T1, T2}-gdiam if it presents the

general diamond property for each pair of labels a ∈ T1, b ∈ T2 (note that any LTS TS = (S,→, T, ι)
is {∅, T}-gdiam). ⊓⊔

s1

s2

s3

s4

a

b

b

a

s1[a〉s2 ∧ s1[b〉s3 ⇒ ∃s4 : s3[a〉s4 ∧ s2[b〉s4

s3[a〉s4 ∧ s2[b〉s4 ⇒ ∃s1 : s1[a〉s2 ∧ s1[b〉s3

s1[a〉s2 ∧ s2[b〉s4 ⇒ ∃s3 : s1[b〉s3 ∧ s3[a〉s4

s1[b〉s3 ∧ s3[a〉s4 ⇒ ∃s2 : s1[a〉s2 ∧ s2[b〉s4

(forward persistence)

(backward persistence)

(permutation)

(permutation)

Figure 5. General diamond property.

Note that the four configurations in Figure 5 are condensed in a single formula in Definition 3.7,

using both direct and reverse arcs. Among the many properties implied by general diamonds, we may

cite:

Proposition 3.8. (Projections and permutation [9])

Let TS = (S,→, T, ι) be a {T1, T2}-gdiam LTS with T1 ∩ T2 = ∅. If s[α〉s′ for some s, s′ ∈ S and

general path α ∈ (±T1 ∪ ±T2)
∗, let α1 be the projection of α on ±T1 (i.e., α where all the elements

in ±T2 are dropped) and α2 be the projection of α on ±T2 (thus dropping the elements in ±T1). Then

there are s1, s2 ∈ S such that s[α1〉s1[α2〉s
′ and s[α2〉s2[α1〉s

′.

This also implies a variant of the well-known Keller’s theorem [14], meaning that the general

diamonds property is local, but implies a global variant.

Proposition 3.9. (General diamonds imply big general diamonds [9])

Let TS = (S,→, T, ι) be a {T1, T2}-gdiam LTS with T1 ∩ T2 = ∅. If s[α1〉s1 and s[α2〉s2 for some

s, s1, s2 ∈ S, α1 ∈ (±T1)
∗ and α2 ∈ (±T2)

∗, then for some s′ ∈ S, s1[α2〉s
′ and s2[α1〉s

′.
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This may be interpreted as the fact that big general diamonds are filled with small ones.

Proposition 3.10. (Sequences generated by big general diamonds)

Let TS = (S,→, T1 ⊎ T2, ι) be a {T1, T2}-gdiam LTS. If s0[α1〉s1 and s0[α2〉s1 for some s0, s1 ∈ S,

α1 ∈ (±T1)
∗ and α2 ∈ (±T2)

∗,

1. then for any i ∈ Z, there is some si ∈ S such that si[α1〉si+1 and si[α2〉si+1;

2. if S is finite, for some h 6= k ∈ Z, sh = sk;

3. if the various si’s belong to [ι〉T1 which is Petri net solvable, then sh = sk for any h, k ∈ Z.

Proof:

The first point results from successive applications of Proposition 3.9 to si[α1〉si+1 and si[α2〉si+1, as

well as to si+1[−α1〉si and si+1[−α2〉si.

The case where S is finite is then immediate.

The last point results from the fact that, in any Petri net solution of [ι〉T1 , if Ms is the marking

corresponding to state s (if reachable), then from Proposition 2.3, ∀i ∈ Z : Msi+1
−Msi = C ·Ψ(α1),

hence is constant. As a consequence, ∀i, j ∈ Z : Msj −Msi = (j − i) · C ·Ψ(α1). When S is finite,

from the previous point, C ·Ψ(α1) = 0, the markings corresponding to all si’s are the same, hence the

si’s are also the same. But this remains true if TS is infinite, because all the markings are nonnegative

(if for some p ∈ P we have C · Ψ(α1) 6= 0, then either Msi(p) becomes negative for i large enough,

or for i small enough in Z). ⊓⊔

Now, the interest of the notion of general diamonds in our context arises from the following ob-

servation:

Proposition 3.11. (Product implies general diamonds [9])

Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) be two LTS with disjoint label sets, then

TS 1 ⊗ TS 2 presents the general diamond property for each a ∈ T1 and b ∈ T2.

TS5

ι s1

s2

a

a

b

b

b

TS6

ι

s2

s3
s4

s5

a

b

b

a

a b

Figure 6. General diamond property does not imply product.
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Unfortunately, the reverse property does not hold in all generality, as shown by the counterexam-

ples in Fig. 6. Indeed, in both cases, a and b form general diamonds. However, from Proposition 3.2,

with T1 = {a} and T2 = {b}, TS5 should be isomorphic to the product of ι
a
−→ s1 and ι

b
←→ s2, since

{ι, s1} are the only states directly reachable with a and {ι, s2} are the only states directly reachable

with b; however, this is not the case since we would then have four states in the product. Similarly,

TS6 should be isomorphic to the product of {ι
a
−→ s2, ι

a
−→ s5} and of a single arrow ι

b
−→ s3, which is

not the case since then we would have six states in the product.

But note that both counterexample are non-deterministic, hence cannot have Petri net solutions.

And indeed, an essential result is that the local general diamond property suffices in the context of

synthesis:

Theorem 3.12. [General diamonds and Petri net synthesis imply product]

If a (finite) totally reachable LTS TS = (S,→, T1 ⊎ T2, ι) is deterministic and satisfies the general

diamond property for each pair of labels a ∈ T1 and b ∈ T2, then it is Petri net synthesisable iff so are

[ι〉T1 and [ι〉T2 ; moreover, we then have TS ≡T [ι〉T1 ⊗ [ι〉T2 and therefore a possible solution of the

synthesis problem for TS is the disjoint sum of a solution of [ι〉T1 and a solution of [ι〉T2 .

Proof:

First, we may observe that if TS is Petri net synthesisable, (it is deterministic, totally reachable and)

by dropping the transitions in T2 in such a solution we shall get a solution to [ι〉T1 , and by dropping

the transitions in T1 we shall get a solution to [ι〉T2 .

Let us now assume that TS is totally reachable, deterministic and satisfies the general diamond

property for each pair of labels a ∈ T1 and b ∈ T2; let us also assume that [ι〉T1 and [ι〉T2 are Petri net

synthesisable.

For each state s ∈ S, from the total reachability we have ι[σ〉s and, from Proposition 3.8,

ι[α〉s1[β〉s and ι[β〉s2[α〉s for some s1, s2 ∈ S, α ∈ T ∗
1 and β ∈ T ∗

2 (α1 being the projection of

σ on T ∗
1 , and β being the projection of σ on T ∗

2 ), so that s1 ∈ [ι〉T1 and s2 ∈ [ι〉T2 .

Conversely, if s1 ∈ [ι〉T1 and s2 ∈ [ι〉T2 , i.e., there is ι[α〉s1 in [ι〉T1 and ι[β〉s2 in [ι〉T2 , then from

Proposition 3.9 we also have ι[α〉s1[β〉s and ι[β〉s2[α〉s for some s ∈ S.

It remains to show that the correspondence between s and the pair (s1, s2) is unique to derive that

TS ≡T [ι〉T1 ⊗ [ι〉T2 (the compatibility of the transition rules again results from the projections and

antiprojections in Propositions 3.8 and 3.9), so that TS is solved by the sum of a solution of [ι〉T1 and

a solution of [ι〉T2 .

For the direction (s1, s2) → s, if ι[α′
1〉s1 for some α′

1 ∈ T ∗
1 , from Proposition 3.9 we have

ι[α′
1〉s1[α2〉s

′ and ι[α2〉s2[α
′
1〉s

′ for some s′ ∈ S. But from the determinism, s′ = s. And similarly if

ι[α′
2〉s2 with α′

2 ∈ T ∗
2 .

For the other direction, let us assume that ι[σ〉s for σ ∈ (T1∪T2)
∗ and s ∈ S, and that ι[α1〉s1[α2〉s

as well as ι[α′
1〉s

′
1[α

′
2〉s with α1, α

′
1 ∈ T ∗

1 , α2, α
′
2 ∈ T ∗

2 and s ∈ S. We need to show that s1 = s′1 (the

case based on T2 will be obtained symmetrically).

Since we have both s′1[(−α
′
1)α1〉s1 and s′1[α

′
2(−α2)〉s1 , with (−α′

1)α1 ∈ (±T1)
∗ and α′

2(−α2) ∈
(±T2)

∗, from Proposition 3.10(1) we may construct a series of configurations, forward and backward,
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ι
s1

s′1 s

α1

α2α′
1

α′
2

σ

s2ss2

sss2

α2

α′
2

α1

α′
1

s′2

ss′2

sss′2

α′
2

α2α′
1

α1

. . .

. . .

is
β

α

Figure 7. Proof of Theorem 3.12.

as also illustrated in Figure 7, with the same paths (−α′
1)α1 and α′

2(−α2), leading to states s2, s3, . . .
and s′2, s

′
3, . . .

Since TS is totally reachable and satisfies the general diamond property for T1 and T2, from

Proposition 3.8 we also have a path ι[β〉is[α〉ss2 with β ∈ T ∗
2 and α ∈ T ∗

1 . Since ι[β〉is and

ι[α1(−α
′
1)(−α)〉is with α1(−α

′
1)(−α) ∈ (±T )∗, we may again apply Proposition 3.10(1) (we shall

only need it forwardly here), constructing paths of increasing length βn. Since TS is finite, [ι〉T2 is

Petri net solvable and those paths ι[βn〉 belong to [ι〉T2 , by weak periodicity (see also the proof of

Proposition 3.10(3)) we have that is = ι. Hence ss2 belongs to [ι〉T1 , and we may perform the same

reasoning for ss3, ss4, . . . (with increasing paths in (±T1)
∗), as well as for ss′2, ss

′
3, . . .

As a consequence, all the states s1, ss2, s3, ss3, . . . , ss
′
2, s

′
2, ss

′
3, s

′
3, . . . belong to [ι〉T1 . Since

[ι〉T1 is by hypothesis Petri net solvable, we may then apply Proposition 3.10(3) and we get s1 = s′1,

as expected. ⊓⊔

It remains to find adequate subsets of labels T1 and T2, partitioning T and satisfying the general

diamond property. To do that, one may rely on the following, which is again a local property.

Definition 3.13. CONNECTED LABELS

Let TS = (S,→, T, ι) be an LTS and a, b ∈ T be two distinct labels.

We shall denote by a ↔ b the fact that they do not form general diamonds, i.e., there are states

which do not satisfy one of the constraints in Figure 5.

We shall also note 6♦= ↔∗, i.e., the reflexive and transitive closure of↔, meaning in some sense

that the labels are ‘non-diamondisable’. ⊓⊔

These relations mean that in any decomposition, if a↔ b they must belong to the same component,

i.e., a ∈ T1 ⇒ [a] ⊆ T1, where [a] = {b ∈ T | a 6♦ b}. But from Theorem 3.12, we know this is
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enough: for each equivalence class, either the synthesis works and we have a global solution by taking

the disjoint sum of all the solutions, or one (or more) of the subproblems fails, and we know there is

no global solution for the whole system (and we may spot the culprits).

Our proposed factorisation algorithm now works as follows: First, iterate over all states of the

given lts, and for each state check if the adjacent edges form general diamonds. If not, their labels

must be in the same equivalence class. Then, for each equivalence class [a] try Petri net synthesis

on [ι〉[a]. If it works, the result is the disjoint sum of the computed Petri nets. This constructs the

equivalence relation by repeatedly joining classes, but it also allows to stop the iteration early when

only one equivalence class remains (in which case no non-trivial factorisation is possible).

4. Articulations

Let us consider two disjoint transition systems TS 1 and TS 2 and a state s in the first of them (s ∈ S1);

the general idea of their articulation around s is to ‘plug’ the second one on the chosen state, as

schematised in Figure 8.

T1

ι1

s

TS 1

T2

ι2

TS 2

T1 ∩ T2 = ∅

s

ι

TS 1 ⊳ s ⊲ TS 2⇒

Figure 8. General idea of articulations.

Definition 4.1. ARTICULATION OF TWO DISJOINT LTS

Let TS 1 = (S1,→1, T1, ι1) and TS 2 = (S2,→2, T2, ι2) be two (totally reachable and deterministic)

LTSs with T1 ∩ T2 = ∅ and s ∈ S1. Thanks to isomorphisms we may assume that S1 ∩ S2 = {s} and

ι2 = s. We shall then denote by TS 1 ⊳ s ⊲ TS 2 = (S1 ∪ S2, T1 ∪ T2,→1 ∪ →2, ι1) the articulation

of TS 1 and TS 2 around s.

Conversely, let TS = (S,→, T, ι) be a (totally reachable and deterministic) LTS. We shall say

that a label t is useful if ∃s, s′ ∈ S : s[t〉s′. Let ∅ ⊆ T1 ⊆ T ; we shall then denote by adj (T1) =
{s ∈ S|∃t ∈ T1 : s[t〉 or [t〉s} if there are useful labels in T1, {ι} otherwise. This is the adjacency set

of T1, i.e., the set of states connected to T1 (with the convention that, if T1 is empty or only contains

useless labels, the result is the singleton initial state). Let T2 = T \T1 and s ∈ S. We shall say that TS

is articulated 2 by T1 and T2 around s if adj (T1)∩adj (T2) = {s}, ∀s1 ∈ adj (T1)∃α1 ∈ T ∗
1 : ι[α1〉s1

and ∀s2 ∈ adj (T2)∃α2 ∈ T ∗
2 : s[α2〉s2. ⊓⊔

2This notion has some similarity with the cut vertices (or articulation points) introduced for connected unlabelled undirected

graphs, whose removal disconnects the graph. They have been used for instance to decompose such graphs into biconnected

components [15, 16]. Note however that here we have labelled graphs.
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This operator is only defined up to isomorphism since we may need to rename the state sets

(usually the right one, but we may also rename the left one, or both). The only constraint is that,

after the relabellings, s is the unique common state of TS 1 and TS 2, and is the state where the two

systems are to be articulated. Figure 9 illustrates this operator. It also shows that the articulation

highly relates on the state around which the articulation takes part. It may also be observed that, if

TS 0 = ({ι}, ∅, ∅, ι) is the trivial empty LTS, we have that, for any state s of TS , TS ⊳s ⊲TS 0 ≡ TS ,

i.e., we have a kind of right neutral trivial articulation. Similarly, TS 0 ⊳ ι ⊲ TS ≡ TS , i.e., we have

a kind of left neutral trivial articulation. However, these neutrals will play no role in the following of

this paper, so that we shall exclude them from our considerations (and assume the edge label sets to

be non-empty, and only composed of useful labels).

TS1

ι sc
a

b

TS2

ι sf

d

e

TS3 ≡ TS1 ⊳ s ⊲ TS2

ι s s′
c

a

b

f
d

e

TS4 ≡ TS1 ⊳ ι ⊲ TS2

ι ss′
c

a

b

f

d

e

Figure 9. Some articulations.

Several easy but interesting properties may be derived for this articulation operator [10].

Proposition 4.2. (Both forms of articulation are equivalent)

If TS = (S,→, T, ι) is articulated by T1 and T2 around s, then with→1=→ ∩adj (T1)×T1×adj (T1)
(i.e., the restriction of→ to T1) and similarly for→2, the structures TS 1 = (adj (T1),→1, T1, ι) and

TS 2 = (adj (T2),→2, T2, s) are totally reachable LTSs and TS ≡T1⊎T2
TS 1 ⊳ s ⊲ TS 2 (in that case

we do not need to apply a relabelling to TS 1 and TS 2).

Conversely, TS 1 ⊳ s ⊲ TS 2 is articulated by the label sets of TS 1 and TS 2 around s.

Proposition 4.3. (Evolutions of an articulation)

If TS ≡ TS 1 ⊳ s ⊲ TS 2, ι[α〉s′ is an evolution of TS iff it is an alternation of evolutions of TS 1 and

TS 2 separated by occurrences of s, i.e., either α ∈ T ∗
1 or α = α1α2 . . . αn such that αi ∈ T ∗

1 if i is

odd, αi ∈ T ∗
2 if i is even, ι[α1〉s and ∀i ∈ {1, 2, . . . , n− 1} : [αi〉s[αi+1〉.

For instance, for TS3 in Figure 9, a possible evolution is ι[abc〉s[fede〉s[b〉ι, but also equivalently

ι[a〉s[ε〉s[bc〉s[fe〉s[ε〉s[de〉s[b〉ι (where ε is the empty sequence).

Proposition 4.4. (Associativity of articulations)

Let us assume that TS 1, TS 2 and TS 3 are three LTSs with label sets T1, T2 and T3 respectively,

pairwise disjoint. Let s1 be a state of TS 1 and s2 be a state of TS 2. Then, TS 1 ⊳ s1 ⊲ (TS 2 ⊳ s2 ⊲
TS 3) ≡T1∪T2∪T3

(TS 1 ⊳ s1 ⊲TS 2) ⊳ s
′
2 ⊲TS 3, where s′2 corresponds in TS 1 ⊳ s1 ⊲TS 2 to s2 in TS 2

(let us recall that the articulation operator may rename the states of the second operand).

This is illustrated by Figure 10.
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TS5

ι s
g

h

(TS1 ⊳ s ⊲ TS2) ⊳ s
′ ⊲ TS5 ≡ TS1 ⊳ s ⊲ (TS2 ⊳ s ⊲ TS5)

ι s s′ s′′
c

a

b

f

d

e

g

h

Figure 10. Associativity of articulations.

Proposition 4.5. (Commutative articulations)

If TS 1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with disjoint label sets (i.e., T1 ∩ T2 = ∅), then

TS 1 ⊳ ι1 ⊲ TS 2 ≡T1∪T2
TS 2 ⊳ ι2 ⊲ TS 1.

Note that, in the left member of the equivalence, we must rename ι2 into ι1, and in the right

member we must rename ι1 into ι2, in order to apply Definition 4.1 (defined up to isomorphisms). For

instance, in Figure 9, TS4 ≡ TS1 ⊳ ι ⊲ TS2 ≡ TS2 ⊳ ι ⊲ TS1.

Proposition 4.6. (Commutative associativity of articulations)

Let us assume that TS 1, TS 2 and TS 3 are three LTSs with label sets T1, T2 and T3 respectively,

pairwise disjoint. Let s2 and s3 be two states of TS 1 (s2 = s3 is allowed). Then, (TS 1 ⊳ s2 ⊲ TS 2) ⊳
s3 ⊲ TS 3 ≡T1∪T2∪T3

(TS 1 ⊳ s3 ⊲ TS 3) ⊳ s2 ⊲ TS 2.

(TS1 ⊳ s ⊲ TS2) ⊳ ι ⊲ TS5 ≡ (TS1 ⊳ ι ⊲ TS5) ⊳ s ⊲ TS2

ι s s′
c

a

b

f

d

e

s′′

g

h

Figure 11. Commutative associativity of articulations.

Proposition 4.7. (Sequence articulations)

If TS 1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) with disjoint label sets (i.e., T1 ∩ T2 = ∅), if

∀s1 ∈ S1∃α1 ∈ T ∗
1 : s1[α1〉s (s is a home state in TS 1) and ∄t1 ∈ T1 : s[t1〉 (s is a dead end in TS 1),

then TS 1 ⊳ s ⊲TS 2 behaves like a sequence, i.e., once TS 2 has started it is no longer possible to

execute T1.

The same occurs when ι2 does not occur in a non-trivial cycle, i.e., ι2[α2〉ι2∧α2 ∈ T ∗
2 ⇒ α2 = ε:

once TS 2 has started it is no longer possible to execute T1.

TS6

ι sc

TS7

ι sf

TS6 ⊳ s ⊲ TS2

ι s s′
c f

d

e

TS1 ⊳ ι ⊲ TS7

ι ss′
c

a

b
f

Figure 12. Sequential articulations.
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This is illustrated in Figure 12. It may be observed that sequences in [17] (and in Figure 2)

correspond to the intersection of both cases.

Let us now examine the connection between articulations and Petri net synthesis.

Proposition 4.8. (Synthesis of components of an articulation)

If TS = (S,→, T1 ⊎ T2, ι) is articulated by T1 and T2 around s, so that TS ≡ TS 1 ⊳ s ⊲ TS 2 with

TS 1 = (adj (T1),→1, T1, ι) and TS 2 = (adj (T2),→2, s) (see Proposition 4.2), and is PN-solvable,

component TS 1 and TS 2 are also PN-solvable. Moreover, in the corresponding solution for TS 1,

if the decomposition is not trivial, the marking corresponding to s is not dominated by any other

reachable marking.

Proof:

Let N = (P, T, F,M0) be a solution for TS . It is immediate that N1 = (P, T1, F1,M0), where F1 is

the restriction of F to T1, is a solution for TS 1 (but there may be many other ones).

Similarly, if M is the marking of N (and N1) corresponding to s, it may be seen that N2 =
(P, T2, F2,M), where F2 is the restriction of F to T2, is a solution for TS 2 (but there may be many

other ones).

Moreover, if the decomposition is not trivial, T2 6= ∅. Let us thus assume that s[t2〉 for some label

t2 ∈ T2 and M ′ is a marking of N1 corresponding to some state s′ in TS 1 with M ′ 	 M , then s 6= s′,
s′[t2〉 and s is not the unique articulation between T1 and T2. ⊓⊔

Note that there may also be solutions to TS 1 (other than N1) such that the marking M correspond-

ing to s is dominated. This is illustrated in Figure 13.

The other way round, let us now assume that TS = TS 1 ⊳ s ⊲ TS 2 is an articulated LTS and that

it is possible to solve TS 1 and TS 2. Is it possible from that to build a solution of TS?

To do that, we shall add the constraint already observed in Proposition 4.8 that, in the solution

of TS 1, the marking corresponding to s is not dominated by another reachable marking. If this is

satisfied we shall say that the solution is adequate with respect to s. Hence, in the treatment of the

system in Figure 13, we want to avoid considering the solution N ′
1 of TS 1; on the contrary, N1 or N ′′

1

will be acceptable.

If TS 1 is reversible and PN-solvable, any solution is adequate. Indeed, for any pair of distinct

states s, s′ ∈ S1 we then have a path s[α〉s′ with α ∈ T ∗
1 . In the solution PN 1 of TS 1, if M is the

marking corresponding to s and M ′ is the one corresponding to s′, we have M 6= M ′ and M [α〉M ′

and if M � M ′ we also have an infinite path M ′[α∞〉. Since PN 1 is a solution of TS 1, we also

have s[αn〉si for an infinite series of different states si for n ∈ N, and TS 2 as well as TS may not be

finite as we assumed in this paper. Note that, from a similar argument, since TS 2 is finite, no marking

reachable in PN 2 dominates the initial one, corresponding to ι2 = s.

However, if TS 1 is solvable, it is always possible to get a solution adequate at s, as for any state

in fact.

Proposition 4.9. (Adequate solutions)

Let TS 1 be a (finite) solvable LTS and s any of its states. Then there is a solution of TS 1 adequate

at s.
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ι
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s3

s4

a

a
b

b

TS = TS 1 ⊳ s2 ⊲ TS 2

ι1

s1

s2

a

a

TS1

ι2

s3

s4

b

b

TS2

a b

2
2

N

a

N1

b

2
2

N2

a

N ′
1

a

N ′′
1

b

N ′
2

Figure 13. The lts TS is articulated around s2, with T1 = {a} and T2 = {b}, hence leading to TS 1 and TS 2.

It is solved by N , and the corresponding solutions for TS 1 and TS 2 are N1 and N2, respectively. TS 1 also has

the solution N ′

1 but the marking corresponding to s2 is then empty, hence it is dominated by the initial marking

(as well as by the intermediate one). This is not the case for the other solution N ′′

1
(obtained from N1 by erasing

the useless isolated place: we never claimed that N1 is a minimal solution). TS 2 also has the solution N ′

2
.

Proof:

Let PN 1 be any solution. For any place p ∈ P1, we may construct a complement or mirror place p̃
such that ∀t ∈ T1 : F (t, p̃) = F (p, t)∧F (p̃, t) = F (t, p) so that, for any reachable marking M̃ of the

new net, M̃(p) + M̃(p̃) is constant. It remains to chose the initial marking of this place in order not

to exclude some evolutions available in PN 1. Since TS 1 is finite, the marking of p is bounded (as for

any other place). Let k be that bound and let us chose M̃0(p) = k −M0(p) + maxt∈T1
F (t, p). That

way, for any reachable marking, M̃(p̃) ≥ maxt∈T1
F (t, p) = maxt∈T1

F (p̃, t), so that place p̃ does
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not block any transition that would be enabled by place p. We may thus conclude that the introduction

of p̃ does not change the reachability graph and the new net is still a PN-solution of TS 1. As a

consequence, for each reachable marking M of PN 1, if M(p) > Ms(p) (where Ms is the marking

corresponding to s), M̃(p̃) < M̃s(p̃). Hence, if we introduce a complement place for each place of

PN 1, in the new net no reachable marking may dominate another one and the constraint mentioned

above is always satisfied. ⊓⊔

However there is a simpler way to get an adequate solution (since we know there is one), in the

following way:

Proposition 4.10. (Forcing an adequate solution for TS 1)

Let us add to TS 1 an arc s[u〉s where u is a new fresh label. Let TS ′
1 be the LTS so obtained. If TS ′

1

is not solvable, there is no (adequate) solution. Otherwise, solve TS ′
1 and erase u from the solution.

Let N1 be the net obtained with the procedure just described: it is a solution of TS 1 with the adequate

property that the marking corresponding to s is not dominated by another one.

Proof:

If there is an adequate solution N1 of TS 1 (and from the reasoning above there is one iff there is

a solution), with a marking M corresponding to s, let us add a new transition u to it with, for each

place p of N1, W (p, u) = M(p) = W (u, p): the reachability graph of this new net is (isomorphic to)

TS ′
1 since u is enabled by marking M (or any larger one, but there is none) and does not modify the

marking. Hence, if there is no (adequate) solution of TS 1, there is no solution of TS ′
1.

Let us now assume there is a solution N ′
1 of TS ′

1. The marking M corresponding to s is not

dominated otherwise there would be a loop M ′[s〉M ′ elsewhere in the reachability graph of N ′
1, hence

also in TS ′
1. Hence, dropping u in N ′

1 will lead to an adequate solution of TS 1. ⊓⊔

For instance, when applied to TS 1 in Figure 13, this will lead to N ′′
1 , and not N ′

1 (N1 could also

be produced, but it is likely that a ‘normal’ synthesis tool will not construct the additional isolated

place).

Now, to understand how one may generate a solution for TS from the ones obtained for TS 1

and TS 2, we may first carefully examine the example illustrated in Figure 14: some side conditions

(i.e., pairs of place-transition with arcs going both ways, with identical weights) occur in the global

solution. This leads to the following construction.

Definition 4.11. ARTICULATION OF PETRI NETS

Let PN 1 = (P1, T1, F1,M
1
0 ) and PN 2 = (P2, T2, F2,M

2
0 ) be two disjoint bounded Petri net systems

and M a reachable marking of PN 1 not dominated by another one. PN 1 ⊳ M ⊲ PN 2 is the Petri net

built first by putting side by side PN 1 and PN 2.

Then, for each transition t1 enabled at M in PN 1, and each place p2 ∈ P2 such that M2
0 (p2) > 0,

create a side condition F (t1, p2) = F (p2, t1) = M(p2). For each transition t2 initially enabled in

PN 2, and each place p1 ∈ P1 such that M(p1) > 0, create a side condition F (t2, p1) = F (p1, t2) =
M(p1).

No other modification is afforded. ⊓⊔
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ι

s

s2

ab

cd

TS = TS 1 ⊳ s ⊲ TS 2

ι1

s

ab

TS1

ι2

s2

cd

TS2

a b

N1

c d

N2

a

b

c

d

N

Figure 14. The lts TS is articulated around s, with T1 = {a, b} and T2 = {c, d}, hence leading to TS 1 and

TS 2. It is solved by N , and the corresponding solutions for TS 1 and TS 2 are N1 and N2, respectively. In N ,

we may recognise N1 and N2, connected by two kinds of side conditions: the first one connects the label b out

of s in TS 1 to the initial marking of N2, the other one connects the label c out of ι2 in TS 2 to the marking of

N1 corresponding to s.

Proposition 4.12. (Synthesis of articulation)

Let TS = TS 1 ⊳ s ⊲ TS 2. If TS 1 or TS 2 are not solvable, so is TS .

Otherwise, let PN 1 be a solution of TS 1 adequate at s, i.e., such that the marking Ms corresponding

to s is not dominated by another reachable marking, and let PN 2 be a disjoint solution of TS 2. Then

the net PN 1 ⊳Ms ⊲ PN 2 is a solution of TS .

Proof:

The property arises from Proposition 4.8 and the observation that PN 1 with the additional side con-

ditions behaves like the original PN 1 if PN 2 is in M2
0 and PN 2 with the additional side conditions

behaves like the original PN 2 if PN 1 is in Ms. When PN 1 is not in Ms, (modified) PN 2 may not

leave M2
0 since Ms is not dominated in PN 1. When PN 1 reaches Ms, (modified) PN 2 may start

its job but then (modified) PN 1 may not leave Ms until PN 2 returns to M2
0 since the latter is not

dominated in PN 2. When PN 2 is in M2
0 , (modified) PN 1 may leave Ms but then (modified) PN 2

may not leave M2
0 since Ms is not dominated in PN 1. The evolutions of the constructed net thus

correspond exactly to what is described by TS . ⊓⊔
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Note that we do not claim this is the only solution, but the goal is to find a solution when there is one.

It remains to show when and how an LTS may be decomposed by a non-trivial articulation (or

several ones). Let us thus consider some LTS TS = (S,→, T, ι). We may assume it is finite, totally

reachable, deterministic and weakly live (there is no useless label).

First, we may observe that, for any two distinct labels t, t′ ∈ T , if |adj ({t}) ∩ adj ({t′})| > 1, t
and t′ must belong to the same subset for defining an articulation. Let us extend the function adj to

non-empty subsets of labels by stating adj (T ′) = ∪t∈T ′adj (t) when ∅ ⊂ T ′ ⊂ T . We then have that,

if ∅ ⊂ T1, T2 ⊂ T and we know that all the labels in T1 must belong to the same subset for defining

an articulation, and similarly for T2, |adj (T1) ∩ adj (T2)| > 1 implies that T1 ∪ T2 must belong to

the same subset of labels defining an articulation. If we get the full set T , that means that there is no

possible articulation (but the trivial one).

Hence, starting from any partition T of T (initially, if T = {t1, t2, . . . , tn}, we shall start from the

finest partition T = {{t1}, {t2}, . . . , {tn}}), we shall construct the finest partition compatible with

the previous rule:

while there is T1, T2 ∈ T such that T1 6= T2 and |adj (T1) ∩ adj (T2)| > 1, replace T1 and T2 in T
by T1 ∪ T2.

At the end, if T = {T}, we may stop with the result: there is no non-trivial articulation.

Otherwise, we may define a finite bipartite undirected graph whose nodes are the members of the

partition T and some states of S, such that if Ti, Tj ∈ T , Ti 6= Tj and adj (Ti)∩ adj (Tj) = {s}, there

is a node s in the graph, connected to Ti and Tj (and this is the only reason to have a state as a node

of the graph). Since TS is weakly live and totally reachable, this graph is connected, and each state

occurring in it has at least two neighbours (on the contrary, a subset of labels may be connected to a

single state). Indeed, since TS is weakly live, ∪T ′∈T adj (T
′) = S. Each state s occurring as a node

in the graph is connected to at least two members of the T , by the definition of the introduction of s
in the graph. Let T1 be the member of T such that ι ∈ adj (T1), let Ti be any other member of T ,

and let us consider a path ι[α〉 ending with some t ∈ Ti (we may restrict our attention to a short such

path, but this is not necessary): each time there is a sequence t′t′′ in α such that t′ and t′′ belong to

two different members T ′ and T ′′ of T , we have [t′〉s[t′′〉, where s is the only state-node connected to

T ′ and T ′′, hence in the graph we have T ′ → s→ T ′′. This will yield a path in the constructed graph

going from T1 to Ti, hence the connectivity.

If there is a cycle in this graph, that means that there is no way to group the members of T in

this cycle in two subsets such that the corresponding adjacency sets only have a single common state.

Hence we need to fuse all these members, for each such cycle, leading to a new partition, and we also

need to go back to the refinement of the partition in order to be compatible with the intersection rule,

and to the construction of the graph.

Finally, we shall get an acyclic graph G, with at least three nodes (otherwise we stopped the

articulation algorithm with the information that there is no non-trivial decomposition).

We shall now define a procedure articul(SG) that builds an LTS expression based on articula-

tions from a subgraph SG of G with a chosen state-node root. We shall then apply it recursively to

G, leading finally to an articulation-based (possibly complex) expression equivalent to the original

LTS TS .
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TS ≡ TS 1 ⊳ s1 ⊲ (((TS 2 ⊳ s3 ⊲ TS 3) ⊳ s2 ⊲ TS 4) ⊳ s2 ⊲ (TS 5 ⊳ s7 ⊲ TS 6))

Figure 15. The lts TS leads to the graph G. The corresponding components are TS 1 to TS 6, which may

easily be synthesised; note that, from the total reachability of TS , they are all totally reachable themselves.

This leads to the articulated expression below.
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The basic case will be that, if SG is a graph composed of a state s connected to a subset node Ti,

articul(SG) will be the LTS TS i = (adj (Ti), Ti,→i, s) (as usual →i is the projection of→ on Ti;

by construction, it will always be the case that s ∈ adj (Ti)).

First, if ι is a state-node of the graph, G then has the form of a star with root ι and a set of satellite

subgraphs G1, G2, ..., Gn (n is at least 2). Let us denote by SGi the subgraph with root ι connected to

Gi: the result will then be the (commutative, see Proposition 4.5) articulation around ι of all the LTSs

articul(SGi).

Otherwise, let T1 be the (unique) label subset in the graph such that ι ∈ adj (T1). G may then

be considered as a star with T1 at the center, surrounded by subgraphs SG1, SG2, ..., SGn (here n
may be 1), each one with a root si connected to T1 (we have here that si ∈ adj (T1), and we allow

si = sj): the result is then ((. . . ((adj (T1), T1,→1, ι)⊳s1 ⊲articul (SG1))⊳s2 ⊲articul (SG2)) . . .)⊳
sn ⊲ articul(SGn)). Note that, if n > 1, the order in which we consider the subgraphs is irrelevant

from Proposition 4.6.

Finally, if a subgraph starts from a state s′, followed by a subset T ′, itself followed by subgraphs

SG1, SG2, ..., SGn (n ≥ 1; if it is 0 we have the base case), each one with a root si connected to

T ′ (we have here that s′ ∈ adj (T ′), and we allow si = sj): the result is then ((. . . ((adj (T ′), T ′,→′

, s′) ⊳ s1 ⊲ articul (SG1)) ⊳ s2 ⊲ articul(SG2)) . . .) ⊳ sn ⊲ articul(SGn)). Again, if n > 1, the order

in which we consider the subgraphs is irrelevant from Proposition 4.6.

This procedure is illustrated in Figure 15.

Contrary to what happened for the product of nets, articulations do not preserve many Petri net

subclasses. For instance, if PN 1 and PN 2 are plain (no arc weight greater than 1), PN 1 ⊳ M ⊲ PN 2

is not plain (unless M and M2
0 do not have more than one token in any place); however, since we

may have many solutions to a synthesis problem, it may happen that PN 1 ⊳ M ⊲ PN 2 is not safe

but that another solution of the same problem is safe. On the contrary, an immediate consequence of

Definition 4.11 is that

Corollary 4.13. (Bound preservation)

PN 1 ⊳M ⊲PN 2 is safe iff so are PN 1 and PN 2. If PN 1 ⊳M ⊲PN 2 is k-safe, so are PN 1 and PN 2;

finally, if PN 1 is k1-safe and PN 2 is k2-safe, then PN 1 ⊳M ⊲ PN 2 is max(k1, k2)-safe.

5. Mixed decomposition

In the previous sections we have introduced two pairs of (families of) operators acting on transition

systems and Petri net systems: TS 1 ⊗ TS 2 - PN 1 ⊕ PN 2 and TS 1 ⊳ s ⊲ TS 2 - PN 1 ⊳ M ⊲ PN 2.

They may be intermixed, as exemplified in Figure 2, where TS = TS (start); (TS (a)⊗TS (b));
TS (end) may be rewritten TS = TS (start) ⊳ s1 ⊲ ((TS (a)⊗ TS (b)) ⊳ s4 ⊲ TS (end)).

We may wonder however if there are cases where a transition system may be decomposed both as

a (non-trivial) product and as an (non-trivial) articulation. In the following, we shall assume there is

no useless label (i.e., each label occurs at least once in a transition), and that the transition systems are

totally reachable (otherwise there is no Petri net solution). If T is a set of labels, we shall also denote
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by ιT the transition system with a single state ι and, for each t ∈ T , a loop ι[t〉ι (up to isomorphism,

it is the only transition system with only one state and label set T , without useless label).

First, we may have TS ≡ TS 1⊗TS2 ≡ TS 1 ⊳ s1 ⊲TS 2, but only if TS ,TS 1,TS 2 have a single

state, as illustrated by Figure 16.

a

ι1

TS 1

b

ι2

TS 2

a b

ι

TS 1 ⊗ TS 2 ≡{a,b} TS 1 ⊳ ι1 ⊲ TS2

Figure 16. Singleton case.

Proposition 5.1. (Equivalent decompositions (first case))

TS ≡ TS 1 ⊗ TS 2 ≡ TS 1 ⊳ s1 ⊲ TS 2, with |T1| > 0 < |T2|, iff |S1| = 1 = |S2| (hence also |S| = 1
and s1 = ι1).

Proof:

If {T1, T2} is a partition of T , we have that ιT ≡ ιT1
⊗ ιT2

≡ ιT1
⊳ ι ⊲ ιT2

.

Let us now assume that TS ≡ TS 1 ⊗ TS 2 ≡ TS 1 ⊳ s1 ⊲ TS 2. We must have |S| = |S1| · |S2| =
|S1|+ |S2|−1, so that (|S1|−1) ·(|S2|−1) = 0 and |S1| = 1 or |S2| = 1. Let us assume that |S2| > 1
(the case |S1| > 1 is symmetrical): there must be s 6= s′ ∈ S2 and t ∈ T2 such that (s, t, s′) ∈→2.

Since |S1| = 1 and it is assumed there is no useless label, TS 1 ≡ ιT1
for some partition {T1, T2} of

T . In TS 1 ⊗ TS 2, we have (ι, s)[t〉(ι, s′), (ι, s)[a〉(ι, s) and (ι, s′)[a〉(ι, s′) for any a ∈ T1. Hence

(ι, s) 6= (ι, s′) ∈ adj (t) ∩ adj (a) and t, a ∈ T2 in TS 1 ⊳ ι ⊲ TS 2, contradicting the fact that {T1, T2}
is a partition of T . Hence, we must have |S1| = |S2| = 1. ⊓⊔

In terms of synthesis, the gain of decomposing TS is not very high in this case, since there is an

easy solution (composed of isolated transitions).
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1 ⊲ TS 2
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2

Figure 17. Ambiguous case.
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There are special cases, however, where we have a choice between a product and an articula-

tion decomposition with non-singleton state spaces, but with different partitions of the label set, as

illustrated by Figure 17. This only occurs however when one of the components is a singleton system.

Proposition 5.2. (Equivalent decompositions (second case))

If TS ≡ TS 1 ⊗ TS 2 ≡ TS ′
1 ⊳ s

′ ⊲ TS ′
2, then |S1| = 1 or |S2| = 1 as well as |S′

1| = 1 or |S′
2| = 1.

Proof:

Let us first assume that |S1| > 1 < |S2|. In TS 1, there are s1 6= s′1 ∈ S1 and a1 ∈ T1 with

(s1, a1, s
′
1) ∈→1. For any a2 ∈ T2, since there is no useless label, we have (s2, a2, s

′
2) ∈→2

(here we allow s2 = s′2). In TS 1 ⊗ TS 2, we then have that (s1, s2)[a1〉(s
′
1, s2), (s1, s

′
2)[a1〉(s

′
1, s

′
2)

(s1, s2)[a2〉(s1, s
′
2) and (s′1, s2)[a2〉(s

′
1, s

′
2), so that |adj (a1) ∩ adj (a2)| > 1 and, in any articulation

decomposition of TS , a1 must belong to the same component as any a2 ∈ T2. Symmetrically, some a2
in T2 must belong to the same component as any a1 ∈ T1 in any articulation of TS . As a consequence,

any articulation of TS must be trivial (all the labels belong to the same component).

Let us now assume that |S′
1| > 1 < |S′

2|. From the previous point, we may not have |S1| > 1 <
|S2|; without loss of generality, we shall assume |S1| = 1 < |S2| = |S|. Let a1 ∈ T1 (there must be

one, since we assumed T1 6= ∅); then a1 must occur as a loop around each state of TS ≡ TS 1⊗TS 2.

Hence a1 is adjacent to any state and we may only have TS ≡ TS ′
1 ⊳ s′ ⊲ TS ′

2 if there is a single

component in the articulation, contradicting |S′
1| > 1 < |S′

2|. ⊓⊔

Corollary 5.3. (General ambiguous form)

The only cases where we have a choice between a product and an articulation of transition systems

have the form (up to a permutation of the roles of the three components)

(TS 1 ⊗ ιT2
) ⊳ (s1, ι) ⊲ ιT3

≡ (TS 1 ⊳ s1 ⊲ ιT3
)⊗ ιT2

where T2, T3 and the label set of TS 1, are pairwise disjoint and s1 is a state of TS 1.

It is Petri net solvable iff so is TS 1 and a possible solution is a solution of TS 1 adequate for s1, plus

one transition for each label of T3 connected by a side condition to the places marked by the marking

corresponding to s1 (with weights given by this marking), plus one isolated transition for each label

of T2.

When we have a choice between a factorisation and an articulation, the former should probably

be preferred since a synthesis may then be put in the form of a sum of nets. But anyway, since at

least one of the components of the product and at least one of the components of the articulation have

only one state, the gain for the synthesis is low. Let us recall however that another interest of these

decompositions is to exhibit an internal structure for the examined transition system.

For components with at least two states (hence not only composed of loops), there is no ambiguity

in the decomposition, but we may alternate products and articulations, using the procedures detailed

at the end of Sections 3 and 4. At the end, we shall obtain non decomposable components, but also

possibly a choice between a product and an articulation if we get singleton components as in the

examples in Figures 16 and 17.



24 R. Devillers / Articulations and Products of Transition Systems and their Applications to Petri Net Synthesis

6. Experiments

Let us now examine more closely the gain in efficiency the decompositions explored in this paper

afford for the Petri net synthesis. Several remarks may be done before we start true experiments.

First, it is better to distinguish positive cases (where there is a solution) from negative ones. Indeed,

in a negative case, we may stop when a necessary condition is not satisfied or when a SSP or ESSP

problem may not be solved. In each case, the performance highly relies on the order in which sub-

problems are considered. And even if we pursue in order to find all the obstacles, it may happen

that finding that a problem has no solution has not the same complexity than finding a solution when

there is one. Hence, in the following, we shall only consider positive examples. In the same spirit we

shall not try to find an optimal solution (for instance with a minimal number of places, or with small

weights, etc.).

Next, there is |S| · (|S| − 1)/2 SSP problems and |S| · |T | − | → | (=
∑

s∈S(|T | − outdegree(s))
ESSP problems (where the outdegree of a state is the number of arcs originated from it), possibly after

some pre-synthesis checks.

The pre-synthesis checks allow to quickly reject inadequate transition systems, without needing

expensive solutions to SSP and ESSP problems. This includes the checks for total reachability and

determinism, but also other ones if we search for solutions in a specific subclass of net systems.

For instance, if we search for choice-free solutions (i.e., nets where each place has at most one output

transition), many necessary structural conditions have been developed for a pre-synthesis phase [4, 18].

For positive cases, the pre-synthesis phase is usually negligible with respect to the time and memory

requested by the solution of ESSP and SSP problems, but may provide interesting informations and

data-structures for solving those separation problems.

In large reachability graphs, the number of states is usually much larger than the number of transi-

tions. For instance, if we increase the number of initial tokens, the size of the graph may increase in a

dramatic manner, while the number of transitions does not change. This leads to consider complexities

in terms of the number of states |S| for the positive synthesis of large transition systems, and to neglect

the impact of the number of labels |T |.

To solve a separation problem, we have to find an adequate region (ρ,B,F). The number of

unknowns is |S| + 2 · |T | and for each arc s[t〉s′ ∈→ we have two linear constraints: ρ(s) ≥ B(t)
and ρ(s′) = ρ(s) + F(a) − B(a). For a SSP(s, s′), we have to add the constraint ρ(s) 6= ρ(s′), and

for an ESSP(s, t) we have to add the constraint ρ(s) < B(a). Hence, we have to solve systems of

homogeneous linear constraints of the same size, and the complexity CS of all the separation problems

is about the same. This leads to a positive synthesis complexity of the kind A · |S|2 ·CS+E · |S| ·CS
for some coefficients A and B.

However, this is not correct in general. First, for the synthesis of some subclasses of Petri nets, it is

known that SSPs are irrelevant: the regions (or places) built to solve the ESSPs also solve all the SSPs.

This is the case for the choice-free nets [4], hence also for all their subclasses. But even for general

Petri net syntheses, this leads to the idea to first solve the ESSP problems and, for each SSP problem,

check first if there is no region built previously which already solves it, which is very quick since there

are generally few needed regions and the check is easy. This has been used for instance in the tool

APT [3], and the experience shows that most of the time, no new system of linear constraints has to be
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solved for SSP problems, and otherwise only a very small number of them is needed. The same is true

for ESSP problems: instead of systematically building and solving the corresponding system of linear

constraints, we may first check if one of the regions built previously does not already solve the new

separation problem (the efficiency of the procedure then relies on the order in which ESSP problems

are considered). This may be interpreted in the following way: the global complexity is of the kind

(A · |S|2 +E · |S|) ·CS; in many cases A = 0; if this is not true, it may happen that A · |S|2 does not

grow faster than E · |S|; and if it does, most of the time A is so small that the dominance of A · |S|2

only occurs for synthesis problems that are so huge that, anyway, the problem is out of practical reach,

due to memory and/or execution time overflow problems. Note that E · |S| also may grow much less

than linearly. This is difficult to evaluate theoretically beforehand and experiments may be useful for

that.

For the synthesis of weighted Petri nets, each system of linear constraints to be solved is ho-

mogeneous3 and we may use the Karmarkar algorithm [19] for that, which has a known worse case

complexity polynomial in the size of the system (here linear in |S|). The exact polynomial exponent

is difficult to determine, but it is usually expected to be around 5, hence the degree 7 mentioned in

the introduction section, to solve a quadratic number of SSP problems, but we know now that we

should expect a much smaller number of separation problems to be solved in the form of a system

of linear constraints of linear size. Moreover, it is known that, in practice, the Karmarkar algorithm

is outperformed by the simplex algorithm [20], which however is exponential in principle [21]. The

same arises with classical SMT solvers (APT uses SMTInterpol [22, 23]). This seems to be due to the

fact that the families of problems leading to an exponential growth are too artificial and are not met

in true applications. So again, experiments would be welcome to clarify the complexity of tools like

APT.

If we now add decomposition algorithms, like the two ones described in this paper, in the pre-

synthesis phase, we may expect some more improvements. The decomposition algorithms are very

quick with respect to the proper synthesis (see for instance [9]) so that, even if no non-trivial compo-

nents are detected, the loss due to the addition of new work in the preliminary phase is negligible. If

non-trivial components are found, a post-processing phase must be added to recompose the various

synthesised Petri net systems, but this is again very quick and negligible with respect to the various

intermediate syntheses. The improvement will be more noticeable if the components are approxima-

tively of the same size.

Proposition 6.1. (Improvement due to decomposition techniques)

Let us assume that, for a family of transition systems with increasing size |S|, the complexity of a

positive synthesis is approximately proportional to |S|h for some h ∈ R>0.

If the transition systems may be factorised in k factors of approximately the same size, the gain is

about

|S|h(1−1/k)

k

3i.e., there is no independent terms; in that case, finding a solution in the integer domain is equivalent to finding one in the

rational domain, since it is always possible to multiply a rational solution by an adequate factor to get an integer one.
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If the transition systems may be articulated in k components of approximately the same size, the gain

is about

kh−1

Proof:

In the first case, each factor has an approximate size of k
√
|S|, and there are k of them, so that the gain

is
|S|h

k · |S|h/k

which leads to the first formula.

In the second case, each factor has an approximate size of |S|/k, and there are k of them, so that

the gain is

|S|h

k · (|S|/k)h

which leads to the second formula. ⊓⊔

Hence, we shall consider families of examples with an increasing number of copies of the same

transition system as components. In a product of n copies of systems with |S| states, the state space

grows (exponentially) as |S|n (the number of labels grows linearly: |T | · n). In an articulation of n
copies of systems with |S| states, the state space grows (linearly) as |S| · n − n + 1 (the number of

labels still grows linearly). Contrary to the product cases where there is no variant possible in the

way the components are combined, this is not true for the articulations, where we can chose various

ways of plugging a new component on the previous member of the family, and it could happen that

the performance of the chosen tool (here APT) behaves differently on the different families. We shall

here consider three ways of performing the plugging: the star-shape, the daisy-flower shape and the

caterpillar shape, schematised in Figure 18 with 4 components each. The first one articulates all the

components around the initial state. The second one articulates the components around different states

of the first component. The last one plugs each component but the first one on a non-initial state of

the previous component. In each case the time used by the synthesis of the n components is linear and

takes n times the time to synthesise one of them.

T2 T1

T3 T4

ι

star-shape

ι
T1

T2

T3 T4

daisy-shape

ι
T1 T2 T3 T4

caterpilar-shape

Figure 18. Three families of articulations.
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Note however that it may happen that the performances are better than so expected. Indeed, when

decomposing a complex transition system, it may happen that some (or all) components belong to a

special case, to which the original system does not belong and for which a special implementation

may speed up the synthesis. For instance, when decomposing a system into factors, if we get systems

with a PN-solution which is a connected marked graph (i.e., each place has one input and one output

transition, with weight 1), we may use the very effective synthesis described in [2]; the original system

then also has a marked graph solution (an addition of marked graphs is a marked graph), but it is not

connected and the speed up may not be applied. When decomposing a system with articulations, it

may happen that some (or all) components have a choice-free solution, for which we know how to

reduce the number and size [4] of ESSP problems to be solved (the SSP problems are then irrelevant).

We shall not create such situations in our experiments however.

For the articulations, we shall use the system TS 1 in Figure 3, which has 23 states and no choice-

free solution. We compared the obtained CPU time4 for the three families mentioned above, up to 100

components. The results are schematised in Figure 19, where round dots are used for the star-shape

n

time(m)

tn

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

110

120

130

⇒star-family
⇒daisy-family
⇒caterpillar-family

Figure 19. CPUtime for articulated families.

4The machine we used is based on processors Intel Xeon Gold 2.6 GHz
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family, square dots for the daisy-shape family, and triangle dots for the caterpillar-shape family. It may

be observed that the three families behave differently, while the systems have the same size for the

same number of components. In particular, the star-shape family takes much more time, and beyond

50 components, APT crashed for memory exhaustion. From 50 components, the daisy-shape family

takes more time than the caterpillar-shape one. Anyway, from n = 30 components, the performance

is worse than synthesising n separate components (and recombining them, indicated by the line tn;

note however that if we use a computer system with several CPUs and/or cores, it is possible to launch

several individual component syntheses in parallel, reducing seriously that indicator). Since the plot

is crushed for the small numbers of components, we present in Figure 20 a zoom on the first results

(here the time is given in seconds, instead of minutes). Curiously, up to 10 components (221 states) it

is more effective to synthesise the articulated system than to desarticulate it and solve the components

separately; and for the daisy and caterpillar families, this is still true up to 20 components (441 states).
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Figure 20. Zoom on CPUtime for articulated families.

We also performed a regression analysis to determine how the CPU time of the PN-synthesis

grows in term of the number of components in an articulation. As already observed, the results are

different for the different families of transition systems we considered, and it seems difficult to find

growth rules compatible with all the figures we obtained. We then considered several subranges for

the number of components.
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First, up to 10 components, the three families behave about the same. The best fit corresponds to an

exponential growth of the kind 0.9 · 1.01|S|, thus with a base very close to 1; a power regression also

gives a rather good fit with a formula of the kind 0.07 · x0.77, lower than linear.

From n = 10 up to 50, the star-shape family becomes worse than the other two, which remain very

similar. For the first one, the power regression gives rather good results, with a degree of 4.25, while

for the next two families we get a lower degree around 2.6.

Beyond n = 50, the star-family disappears (as explained before) and the next two behave differently

(with a strange, reproducible, hop for the daisy-flower family around 80 components, maybe due to

a change in the usage of the cache memory) . For the daisy-family, we get a good power regression

with a degree of 4.6; and for the caterpillar-family the power is 4.1. We thus have a polynomial-like

behaviour by chunks, with an increasing power of |S|.
For the factorisation decomposition, where the size of the products grows very rapidly (|S|n states

for a product of n components of the same size |S|), the performance is rapidly better when applying

synthesis to the various components, as detailed in [9].

The previous analysis assumed that we consider synthesis problems where the target is the class

of bounded weighted Petri nets. Thus all the nets we consider are bounded, but we do not fix these

bounds beforehand. If we do, i.e., if we search for safe of k-safe solutions (with fixed k), then suddenly

the problem becomes NP-complete (in the worst case, see for instance [7, 24]) instead of polynomial5 .

Corollaries 3.4 and 4.13 show that factorisations and articulations may be used to solve k-safe syn-

thesis problems. That means that the synthesis algorithms we know for generating safe or k-safe

solutions are exponential in the worst cases. If it occurs that P=NP, that means that we will be able to

derive polynomial algorithms, but probably with a high polynomial degree. Then the gain obtained by

a divide and conquer strategy (when it works) may be much larger than the ones we mention above.

7. Concluding remarks

We have developed a theory, algorithms and experiments around two (families of) pairs of operators

acting on labelled transition systems and Petri nets. This allows both for structuring large transition

systems and improving the efficiency of Petri net syntheses.

We may of course wonder if it will often be the case that transition systems needing a PN-synthesis

present such structures. In fact, it depends where these systems come from. For instance, if they come

from the organiser of a tool competition, needing a set of large positive examples: it may happen that

they were obtained by combining smaller components (especially if the organiser does not know the

decomposition algorithms developed in the present paper).

Other possible issues are to examine how this may be specialised for some subclasses of Petri

nets and how these structures behave in the context of approximate solutions, devised when an exact

synthesis is not possible, in the spirit of the notions and procedures developed in [5].

Finally, other kinds of operator pairs could be searched for, having interesting decomposition and

recomposition procedures, allowing again to speed up synthesis problems.

5note that in this case we have to add constraints of the kind ∀s ∈ S : Ms(p) ≤ k to solve the various separation sub-

problems, rendering the linear systems non-homogeneous; hence we may not rely to a rational solution to derive one in the

integer domain.
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