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Abstract. We provide new insights on the determinization and minimization of tree automata

using congruences on trees. From this perspective, we study a Brzozowski’s style minimization

algorithm for tree automata. First, we prove correct this method relying on the following fact:

when the automata-based and the language-based congruences coincide, determinizing the auto-

maton yields the minimal one. Such automata-based congruences, in the case of word automata,

are defined using pre and post operators. Now we extend these operators to tree automata, a task

that is particularly challenging due to the reduced expressive power of deterministic top-down (or

equivalently co-deterministic bottom-up) automata. We leverage further our framework to offer

an extension of the original result by Brzozowski for word automata.

1. Introduction

Finite tree automata are a well-studied [1, 2, 3] automata model processing tree structures, as opposed

to the classical finite-state automata, which process words, i.e., trees where every node has at most

one child. Examples of applications of tree automata include model checking [4, 5], natural language

processing [6] and representing the nested structured of tree-based metalanguages, such as XML [7].

There exist two classes of tree automata, which differ in the way they process the input tree:

bottom-up tree automata (BTAs) and top-down tree automata (TTAs). In their non-deterministic fla-

vor, both types of tree automata have the same expressive power: they are both finite representations

of the regular tree languages.
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Like word automata, tree automata (both BTAs and TTAs) can be deterministic (DBTAs and DT-

TAs) or non-deterministic, offering the classical trade-off, where deterministic automata are easier to

reason about while non-deterministic ones are more concise. This situation has motivated the study of

techniques to reduce the number of states of deterministic automata [8, 9, 10] as well as methods for

building deterministic automata that are minimal in the number of states [11, 12, 13]. For both word

and tree automata the minimal deterministic automaton is unique (up to isomorphisms).

Unlike word automata, where every regular language is definable by a deterministic automaton,

there exist regular tree languages that cannot be defined by a deterministic TTA (equivalently, they

cannot be defined by a co-deterministic BTA). It turns out that DTTAs and co-deterministic BTAs

(co-DBTAs) define a subclass of regular tree languages called path-closed languages [14].

In this paper, we address a Brzozowski’s style algorithm for minimizing TAs [12]. That is, given

a BTA or a TTA defining the language L, the algorithm combines a co-determinization and a deter-

minization operation to build the minimal DBTA or DTTA for L. In this sense, the algorithm works

in the same fashion as the classical Brzozowski’s algorithm [15] (also known as the double-reversal

method) for finding the minimal deterministic word automaton for a given regular language. Note that

in the tree case, the method only applies to tree automata generating path-closed tree languages since

it requires the construction of a co-DBTA or a DTTA for the given language.

Brzozowski’s algorithm relies on the fact that determinizing a co-deterministic word automaton

returns the minimal deterministic automaton. The reason why this method is also coined as the double-

reversal method is that it builds a co-deterministic automaton for the input language by combining a

reverse, determinization and reverse operation.

1.1. Contributions

We study Brzozowski’s minimization algorithm for tree automata from the perspective of congruences

on trees. In this sense, we build on work by Ganty et al. [16] who applied congruences on words to

the study of word automata minimization techniques. In this work, we use congruences of finite index

on trees and contexts. The latter are trees for which exactly one node is labeled by a distinguished

symbol of arity 0.

Concretely, we use so-called upward congruences [17, 1] over trees, which are equivalences on

trees that behave well w.r.t. the concatenation of symbols on top of the tree; and downward congru-

ences [13], i.e., equivalences on contexts that behave well when concatenating contexts on the leaves.

Given a tree language L and a congruence satisfying some required properties, we show how to build

deterministic and co-deterministic automata defining L.

We leverage two kinds of congruences: language-based congruences, defined in terms of a regular

tree language, and automaton-based congruences, relative to an automaton. Hence we show how to

use upward automata-based congruences to construct DBTAs and DTTAs, which are isomorphic to

those obtained with the standard subset constructions, while using the upward language-based con-

gruences results in minimal DBTAs and DTTAs. We also show that a similar reasoning holds for

downward congruences and (minimal) co-DBTAs and co-DTTAs.

While upward congruences allows us to build deterministic BTAs, we observe that downward con-

gruences must satisfy an extra condition to guarantee that they yield BTAs that are co-deterministic.
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Our first contribution is to identify the class of congruences satisfying this condition, which we coin

strongly downward congruences (Definition 3.8). Roughly speaking, since not every tree language

has a finite representation in the form of a co-DBTA (recall that only path-closed languages do), the

so-called strongly downward congruences attempt to capture the notion of path-closedness in their

definition.

Secondly, unlike the language-based upward [17, 1] and downward congruences [13], which have

been studied previously in the context of TA minimization; to the best of our knowledge, our automata-

based congruences are novel. For this purpose, we define an operator post(·) for TAs (Definition 4.5),

in the same fashion to the existing one for word automata, and we use it to define the automata-based

upward congruence (Definition 4.12). Analogously, we introduce an operator pre(·) (Definition 4.5)

which allows us to define its downward counterpart. While the definition of post(·) is a straightfor-

ward generalization of the word case, that is not the case of pre(·). One more time, our pre(·) operator

aims to capture the notion of path-closedness that is imposed by our goal of providing co-deterministic

BTA constructions.

Then, by chaining together the right constructions we obtain a simple proof of correctness of a

Brzozowski’s style algorithm (Corollary 5.2) producing the minimal DBTA for a given tree language.

This algorithm was first proposed by Björklund and Cleophas [12]. However, they did not include a

proof, which, far from being conceptually new, could have resulted in several lines of technical details.

We believe that our proof does bring new insights in form of new non-trivial notions adapted from the

classical word automata.

Finally, we generalize Brzozowski’s algorithm similarly to what Brzozowski and Tamm [18] have

done for the case of automata over words. More precisely, we give a sufficient and necessary condition

on BTAs such that their determinization produces the minimal DBTA (Theorem 5.3). This condition

lifts the limitation to path-closed languages all the way up to regular tree languages.

In the main part of the document we only consider BTAs. In Appendix A.1 we adapt our results

to TTAs enabled by a “reversal” operation on tree automata.

2. Preliminaries

We write N for the natural numbers and N+ for N \ {0}. A tree domain is a finite set of sequences

over N+ describing a tree structure. Formally, a tree domain D is a finite non-empty set D ⊆ (N+)
∗

such that for each v ∈ (N+)
∗, n ∈ N+:

(i) if v·n ∈ D then v ∈ D, i.e., D is prefix-closed, and

(ii) if v·n ∈ D and n > 1 then v·(n−1) ∈ D.

The elements of D are called nodes and every tree domain contains a node ε called the root. For

example, D = {ε, 1, 2, 3, 3·1, 3·2} is a tree domain, while D′ = {ε, 1, 2, 3, 1·2, 1·3} is not. Note that

D′ does not satisfy condition (ii) since 1·1 /∈ D′.

Given an alphabet, i.e., a finite non-empty set of symbols, a tree is a total function that maps nodes

onto symbols. Formally, given an alphabet A and a tree domain D ⊆ (N+)
∗, an A-labeled tree is a
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function t : D → A. We use dom(t) to denote the tree domain of a tree t, and t(v) to denote the label

of a node v ∈ dom(t).
The rank of a node is the number of its children. Formally, given a tree t, the rank of v ∈ dom(t),

denoted 〈v〉t, is |{k ∈ N+ | v·k ∈ dom(t)}|. Nodes of rank 0 are leaves, and ℓ(t) is the set of leaves

of t. We say that a tree is monadic iff ∀v ∈ dom(t) : 〈v〉t ≤ 1. Note that, in the context of word

automata, monadic trees over an alphabet A can be interpreted as words over A.

The height of a tree t is defined as h(t)
def
= 1+max{|v| | v ∈ dom(t)}, where |v| denotes the

length of node v when interpreted as a sequence in (N+)
∗.

Given a tree t with root v ∈ dom(t) the subtree t′ rooted at v is such that dom(t′) = {u ∈ (N+)
∗ |

v·u ∈ dom(t)} and t′(u) = t(vu), for every u ∈ dom(t′). Let t(v) = f for some v ∈ dom(t) and let

ti, with i = 1..〈v〉t, be the subtree of t at node v·i. Then we denote the subtree t′ rooted at node v as

f [t1, . . . , t〈v〉t ]. Given a symbol a, we often write a, instead of a[ ], to describe the tree t = a[ ]. For

instance, we write f [a, b] instead of f [a[ ], b[ ]].

Example 2.1. We describe our running example for the next definitions. Let t̃ : D → A be the tree

shown below, defined as t̃
def
= f [a, b, g[a, c]]. In this case, A = {a, b, c, g, f} and dom(t̃) = D =

{ε, 1, 2, 3, 3·1, 3·2} with t̃(ε) = f , t̃(1) = t̃(3·1) = a, t̃(2) = b, t̃(3) = g and t̃(3·2) = c. Thus,

〈1〉t̃ = 〈2〉t̃ = 〈3·1〉t̃ = 〈3·2〉t̃ = 0, and ℓ(t̃) = {1, 2, 3·1, 3·2}. On the other hand, 〈ε〉t̃ = 3 and

〈3〉t̃ = 2. Finally, the height of t̃ is h(t̃) = 3. Figure 1 shows a depiction of the tree t̃.

f

g

ca

1 2

ba

1
2

3

Figure 1. Depiction of the tree t̃ from Example 2.1.

Next we introduce ranked trees building upon ranked alphabets. A ranked alphabet A is an

alphabet partitioned into pairwise disjoint subsets A =
⋃

k∈NAk where Ak are the symbols of rank k.

Given f ∈ A, the unique index k such that f ∈ Ak is the rank of f and we denote it by 〈f〉. The rank

of a ranked alphabet A is the greatest index k such Ak 6= ∅.

Given a ranked alphabet A, let TA denote the set of all A-labeled ranked trees such that, in ev-

ery tree t ∈ TA, the rank of every node v ∈ dom(t) coincides with the rank of t(v), i.e., ∀v ∈
dom(t) : 〈v〉t = 〈t(v)〉. For an unranked alphabet A, let TA denote the set of all A-labeled (unranked)

trees. In Example 2.1, t̃ ∈ TA is a ranked tree with A = A0 ∪ A1 ∪ A2 ∪ A3 where A0 = {a, b, c},

A1 = ∅, A2 = {g} and A3 = {f}.

A tree language over an alphabet A is a subset L ⊆ TA. Define the path language of a tree t ∈ TA,

denoted by π(t), as the subset of A(N+A)
∗ given by:

π(t)
def
=

{
{f} if t = f [ ]
⋃〈f〉

i=1{f ·i·w | w ∈ π(ti)} if t = f [t1, . . . , t〈f〉]
.
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The path language of a tree language L is defined as π(L)
def
=

⋃
t∈L π(t). A tree language L ⊆

TA is path-closed iff {t ∈ TA | π(t) ⊆ π(L)} = L. For example, the path language of tree t̃
is π(t̃) = {f1a, f2b, f3g1a, f3g2c}. On the other hand, the path language of the tree language

L1
def
= {f [a, b], f [b, a]} is π(L1) = {f1a, f2b, f1b, f2a} and it is not path-closed since f [a, a] /∈ L1

and π(f [a, a]) = {f1a, f2a} ⊆ π(L1); while L2
def
= {f [a, b], f [b, a], f [a, a], f [b, b]} satisfies that

π(L2) = π(L1) and it is path-closed.

2.1. Contexts and substitution

Let A be a ranked alphabet and let � /∈ A be a special symbol with 〈�〉 = 0. A context over A is a

tree t ∈ TA∪{�} such that t(v) = � for exactly one node v ∈ dom(t) that we call the pivot of t and

that we denote piv(t). Note that if A is a ranked alphabet, so is A ∪ {�}. We define the �-height of a

context x ∈ CA, denoted h�(x) as follows h�(x)
def
= 1 + |piv(x)|.

The set of all contexts over an alphabet A is denoted by CA. Since contexts are trees defined over a

special alphabet, all notions defined for trees, including the ones we introduce next, apply to contexts.

For clarity, we typically use t, r to denote trees and x, y for contexts when the distinction is important.

We define a substitution operator for trees as follows. Let t, t′ ∈ TA and let v ∈ dom(t). The

tree substitution t[[t′]]v is the result of replacing the subtree rooted at node v in t with t′. Formally,

t[[t′]]v(u) = t(u) for all u ∈ dom(t) \ v·(N+)
∗ and t[[t′]]v(v·u) = t′(u), for all u ∈ dom(t′). We

omit the subindex v from t[[t′]]v when t is a context and v = piv(t). For instance, recall the tree

t̃ = f [a, b, g[a, c]] from Example 2.1 and let r̃ = h[a, b, c]. We have t̃[[�]]2 = f [a,�, g[a, c]] and

t̃[[r̃ ]]31 = f [a, b, g[h[a, b, c], c]]. Note that �[ ] satisfies �[[t]] = t, for every t ∈ TA, and thus it is called

the identity context. For monadic trees, tree substitution coincides with word concatenation, where

contexts correspond to prefixes of words. In particular, �[ ] corresponds to ε, the empty word.

Definition 2.2. (Upward and Downward Quotients)

Given a tree language L ⊆ TA, a tree t ∈ TA, we define the upward quotient of L w.r.t. t as L t−1 def
=

{x ∈ CA | x[[t]] ∈ L}. Similarly, we define the downward quotient of L w.r.t. a context x ∈ CA as

x−1L
def
= {t ∈ TA | x[[t]] ∈ L}.

Observe that t ∈ x−1L ⇔ x ∈ Lt−1. It is worth remarking that, in the monadic case, Lt−1 and x−1L
correspond to the so-called right quotient of L by t and left quotient of L by x, respectively, where t
and x are words over A.

2.2. Bottom-up tree automata

Definition 2.3. (Bottom-up tree automaton)

A bottom-up tree automaton (BTA) is a tuple A = 〈Q,Σ, δ, F 〉 where Q is a finite set of states; Σ is

a ranked alphabet of rank n; δ :
⋃n

i=0Σi × Qi → ℘(Q) is the partial transition function, where Qi

denotes the set of i-tuples of elements in Q and ℘(Q) denotes the powerset of Q; and F ⊆ Q is the

set of final states.
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We denote a tuple (f, q1, . . . , q〈f〉) ∈ Σ〈f〉 ×Q〈f〉 as f [q1, . . . , q〈f〉]. Note that if 〈f〉 = 0, we denote

the singleton tuple (f) ∈ Σ0 × Q0 as f [ ]. We extend δ to sets S of tuples as δ(S)
def
=

⋃
t∈S δ(t) and

define the set of initial states of a BTA A as i(A)
def
= {q ∈ Q | ∃a ∈ Σ0 : q ∈ δ(a[ ])}.

A BTA is deterministic (DBTA for short) iff every set of states in the image of δ is a singleton or

is empty. Similarly, a BTA is co-deterministic (co-DBTA for short) iff F is a singleton and for each

q ∈ Q and f ∈ Σn, with n ≥ 1, we have: if q ∈ δ(f [q1, . . . , q〈f〉]) and q ∈ δ(f [q′1, . . . , q
′
〈f〉]) then

qi = q′i for each i = 1..〈f〉.

We define the move relation on a BTA, denoted by −→A∈ TΣ∪Q × TΣ∪Q as follows. Let t =
x[[f [t1, . . . , t〈f〉]]] and t′ = x[[q[t1, . . . , t〈f〉]]] for some x ∈ CΣ∪Q, f ∈ Σ and t1, . . . , t〈f〉∈TQ. Then,

t →A t′
def
⇔ q ∈ δ(f [t1(ε), . . . , t〈f〉(ε)]). We use −→∗

A to denote the reflexive and transitive closure of

−→A. The language defined by A is L(A)
def
= {t ∈ TΣ | ∃t′ ∈ TQ : t′(ε) ∈ F ∧ t →∗

A t′}. Intuitively, a

run of a BTA on a tree t ∈ TΣ relabels the nodes of the t starting with its leaves and makes its way up

towards the root of t as prescribed by the move relation. The run accepts when the root of t is labelled

with an accepting state of the BTA.

Remark 2.4. BTAs and DBTAs define the class of regular tree languages, while co-DBTAs (which

are equivalent to deterministic top-down automata, in the sense that they accept the same class of tree

languages, as we shall see in Appendix A.1.2) define the subclass of path-closed tree languages [14].

It is decidable whether the language of a BTA is path-closed [1].

Example 2.5. Let A = 〈Q,Σ0 ∪ Σ2, δ, F 〉 be a BTA with Q = {q0, q1}, Σ0 = {T,F}, Σ2 = {∧,∨},

{q0} = δ(∧[q0, q1]) = δ(∧[q0, q0]) = δ(∧[q1, q0]) = δ(∨[q0, q0]) = δ(F[ ]), {q1} = δ(∧[q1, q1]) =
δ(∨[q1, q0]) = δ(∨[q0, q1]) = δ(∨[q1, q1]) = δ(T[ ]) and F = {q1}.

Note that L(A) is defined as the set of all trees of the form t ∈ TΣ0∪Σ2 which yield to propositional

formulas, over the binary connectives ∧ and ∨ and the constants T (true) and F (false), that evaluate

to T. For instance, the following is a sequence of moves from a tree t ∈ TΣ0∪Σ2 such that t ∈ L(A).

∧

T∨

FT

→A . . . →A

∧

q1∨

q0q1

→A

∧

q1q1

q0q1

→A

q1

q1q1

q0q1
·

Note that ∧[�, q1][[∨[q1, q0]]] →A ∧[�, q1][[q1[q1, q0]]] as q1 ∈ δ(∨[q1, q0]). Observe that A is

deterministic but not co-deterministic, since {q0} = δ(∧[q0, q1]) = δ(∧[q1, q0]), for instance. Finally,

the language L(A) is not path-closed since ∨[F,F] /∈ L(A) but

π(∨[F,F]) = {∨1F,∨2F} ⊆ π(L(A)). ♦

For each q ∈ Q and S ⊆ Q, define the upward and downward language of q w.r.t. S, denoted by

LA
↑ (q, S) and LA

↓ (q, S), respectively, as follows:

LA
↑ (q, S)

def
= {c ∈ CΣ | ∃t′ ∈ TQ : c[[q]] →∗

A t′, t′(ε) ∈ S}

LA
↓ (q, S)

def
= {t ∈ TΣ | ∃t′ ∈ TQ : t →∗

A t′, t′(ε) = q, ℓ(t′) ⊆ S} .



P. Ganty et al. / A Congruence-Based Perspective on Finite Tree Automata 7

We will simplify the notation and write LA
↑ (q) when S = F , and LA

↓ (q) when S = i(A). Also, we

will drop the superscript A when the BTA A is clear from the context. Note that, in the monadic

case, LA
↑ (q) corresponds to the so-called right language of state q, i.e., the set of words that can be

read from q to a final state of the corresponding word automaton; while LA
↓ (q) corresponds to the left

language of q, i.e., the set of words that can be read from an initial state of the corresponding word

automaton to state q. When generalizing to trees we have that L↑(q) is the set of contexts such that

the result of being processed by A (starting from state q instead of �) have their root labelled with a

final/accepting state. Similarly, L↓(q, S) is the set of trees such that their processing by A return trees

with q as root and leaves labelled by S. Finally, it is easy to see that L(A) =
⋃

q∈F L↓(q) for every

BTA A.

Given a ranked alphabet Σ, f ∈ Σ and T1, . . . , T〈f〉 ⊆ TΣ, let f [T1, . . . , T〈f〉]
def
= {f [t1, . . . , t〈f〉] |

ti ∈ Ti, i = 1..〈f〉}. This notation allows us to give an inductive characterization of downward

languages of a BTA (which will be useful in the proofs of Lemmas 3.3 and 3.7).

Lemma 2.6. Let A = 〈Q,Σ, δ, F 〉 be a BTA. For every q ∈ Q:

L↓(q) = {f [L↓(q1), . . . ,L↓(q〈f〉)] | ∃f ∈Σ: q∈δ(f [q1, . . . , q〈f〉])} .

Proof:

Let A = 〈Q,Σ, δ, F 〉 be a BTA and let f ∈ Σ and q, q1, . . . , q〈f〉 ∈ Q be such that q ∈ δ(f [q1, . . . , q〈f〉]).
Then,

∀i ∈ {1..〈f〉} : ti ∈ L↓(qi) ⇔

∀i ∈ {1..〈f〉} : ∃t′i ∈ TQ : t′i(ε) = qi, ti →
∗
A t′i ⇔

∃t′ ∈ TQ : t′(ε) = q, f [t1, . . . , t〈f〉] →
∗
A t′ ⇔

f [t1, . . . , t〈f〉] ∈ L↓(q) .

Note that the first and last double-implication hold by definition of downward language of a state w.r.t.

i(A). The second implication holds since, by H.I., q ∈ δ(f [q1, . . . , q〈f〉]). ⊓⊔

Example 2.7. In Example 2.5, L↑(q0) 6= L↑(q1). In fact, �[ ] ∈ L↑(q1), since q1 ∈ F while

�[ ] /∈ L↑(q0), since q0 /∈ F .

On the other hand, F[ ] ∈ L↓(q0) and T[ ] ∈ L↓(q1). Finally, consider the set of trees ∧[L↓(q1),
L↓(q1)]. The reader may check that ∧[L↓(q1),L↓(q1)] ⊆ L↓(q1) and ∧[L↓(q1),L↓(q1)] * L↓(q0). In

fact, L↓(q0) ∩ L↓(q1) = ∅ as A is deterministic. ♦

A state q ∈ Q of a BTA is unreachable (resp. empty) iff its downward (resp. upward) language is

empty. The minimal DBTA for a regular tree language is the DBTA with the least number of states

which is unique modulo isomorphism. Let A ≡ A′ denote that two BTAs A and A′ are isomorphic.

Given a BTA A = 〈Q,Σ, δ, F 〉, the bottom-up determinization builds a DBTA D
def
= 〈℘(Q),Σ,

δ′, F ′〉 where δ′(f [R1, . . . , R〈f〉])
def
= {q | ∃q1∈R1, . . . , q〈f〉 ∈R〈f〉 : q∈ δ(f [q1, . . . , q〈f〉])} for each

f ∈ Σ, Ri ∈ ℘(Q) and i = 1..〈f〉, and F ′ def
= {R ∈ ℘(Q) | R∩F 6= ∅}, such that L(D) = L(A) [19].
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We denote AD the result of applying the bottom-up determinization to A and removing unreachable

states.

Given a BTA A = 〈Q,Σ, δ, F 〉, the bottom-up co-determinization builds a co-DBTA E
def
= 〈℘(Q),

Σ, δ′, F ′〉, where F ′ def
= {F} and δ′ is defined as follows. Given f ∈ Σ \ Σ0 and R ∈ ℘(Q),

R ∈ δ′(f [R1, . . . , R〈f〉]), where Ri
def
= {qi ∈ Q | ∃q ∈ R, q1, . . . , qi−1, qi+1, . . . , q〈f〉 ∈ Q : q ∈

δ(f [q1, . . . , qi, . . . , q〈f〉])}. Moreover, for every a ∈ Σ0 and R ∈ ℘(Q) such that ∃q ∈ R : q ∈ δ(a[ ]),
we have that R ∈ δ′(a[ ]). Note that if L(A) is a path-closed language and A has no unreachable states

then L(E) = L(A) [19]. We denote AcD the result of applying the bottom-up co-determinization to

A and removing empty states.

Example 2.8. Let us give an example of the bottom-up co-determinization by removing the symbol

∧ from Example 2.5. Let A = 〈Q,Σ0 ∪ Σ2, δ, F 〉 be a BTA with Q = {q0, q1}, Σ0 = {T,F}, Σ2 =
{∧}, {q0} = δ(∧[q0, q1]) = δ(∧[q0, q0]) = δ(∧[q1, q0]) = δ(F[ ]), {q1} = δ(∧[q1, q1]) = δ(T[ ]) and

F = {q1}.

Note that L(A) is defined as the set of all trees of the form t ∈ TΣ0∪Σ2 which yield to propositional

formulas over the binary connective ∧ and the constants T and F that evaluate to T. It is routine to

check that L(A) is path-closed, hence there exists a co-DBTA defining L(A).

Since A has no unreachable states, we use the bottom-up co-determinization to build a co-DBTA

E such that L(E) = L(A). We obtain E = 〈℘(Q),Σ0 ∪ Σ2, δ
′, F ′〉 where δ′ is defined as {q1} ∈

δ′(∧[{q1}, {q1}]) and {q0}, {q0, q1} ∈ δ′(∧[{q0, q1}, {q0, q1}]). On the other hand, {q1}, {q0, q1} ∈
δ′(T[ ]) and {q0}, {q0, q1} ∈ δ′(F[ ]). Finally, let F ′ = {{q1}}.

Note that states {q0} and {q0, q1} are empty. Thus, we would remove them (and the corresponding

entries of the transition function δ′) to build AcD. ♦

Remark 2.9. Note that if L(A) is path-closed but A has unreachable states then we cannot guarantee

that E , the BTA that results from applying the bottom-up co-determinization operation, is such that

L(A) = L(E).

For instance, consider the BTA A = 〈Q,Σ0 ∪ Σ2, δ, F 〉 from Example 2.8 and define A′〈Q′,

Σ0 ∪ Σ′
2, δ

′, F ′〉 by setting Q′ def
= Q ∪ {q2}, Σ′

2
def
= Σ2 ∪ {⋆} and F ′ def

= F ∪ {q2}. Finally, define

δ′ as the union of δ and the following entries: {q2} = δ′(⋆[q1, q2]) = δ′(⋆[q2, q1]) = δ′(⋆[q2, q2]).
Note that q2 is an unreachable state and thus, L(A′) = L(A). However, L(A′) ⊂ L(E ′). In fact,

let E ′ = 〈℘(Q′),Σ0 ∪ Σ′
2, δE ′ , FE ′〉. Then, the reader may check that, since {q1, q2} ∈ δE ′(T[ ]),

{q1, q2} ∈ δE ′(⋆[{q1, q2}, {q1, q2}]) and FE ′ = {q1, q2}, the tree ⋆[T,T] ∈ L(E ′), while ⋆[T,T] /∈
L(A).

2.3. Equivalences and congruences

Given a set X, an equivalence relation ∼ ⊆ X ×X induces a partition P∼ of X given by a family

P∼ = {Bi}i∈I , with I ⊆ N, of pairwise disjoint subsets of X (called blocks or equivalence classes)

the union of which is X. The partition P∼ is said to be finite when ∼ has finite index, i.e., ∼ consists

of finitely many equivalence classes.
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Given t ∈ X, let P∼(t)
def
= {r ∈ X | t ∼ r} be the unique block containing t. This definition can

be extended in a natural way to a set S ⊆ X as P∼(S) =
⋃

t∈S P∼(t). Unless stated otherwise, we

consider equivalence relations of finite index.

Given two equivalence relations ∼1,∼2, we say that ∼1 is finer than or equal to ∼2 when ∼1 ⊆
∼2. Sometimes we also say that ∼2 is coarser than or equal to ∼1. Observe that ∼1 ⊆ ∼2 is

equivalent to write ∀t, r ∈ X : t ∼1 r ⇒ t ∼2 r.

Analogously to the notion of left and right congruences on words [16], we introduce upward and

downward congruences on trees and contexts, respectively. Intuitively, upward congruences are equiv-

alences on trees that behave well when substituting trees into contexts, while downward congruences

are equivalences on contexts that behave well when substituting pivots for trees.

Definition 2.10. (Upward and Downward congruences)

Given a ranked alphabet Σ, an equivalence ∼u on TΣ is an upward congruence iff for every t, r ∈ TΣ
and context c ∈ CΣ: t ∼u r ⇒ c[[t]] ∼u c[[r]].
Similarly, an equivalence ∼d on CΣ is a downward congruence iff for every x, y, c ∈ CΣ : x ∼d y ⇒
x[[c]] ∼d y[[c]].

In the sequel, we follow the convention that upward congruences are denoted with a u superscript

while downward congruences are denoted with a d superscript. Note that similar definitions of up-

ward [17, 1] and downward [13] congruences have been previously proposed in the literature. In the

monadic case, an upward congruence means that two congruent words remain so after prefixing the

same word to their left, formally, u ∼ v implies wu ∼ wv for all w. Similarly, a downward congru-

ence in the monadic case means that two congruent words remain so after appending the same word

to their right, formally, u ∼ v implies uw ∼ vw for all w.

Example 2.11. Given a tree language L ⊆ TΣ, the congruence defined as t ∼ r
def
⇔ Lt−1 = Lr−1,

for every t, r ∈ TΣ, is an upward congruence. Let us prove this fact by contradiction.

Suppose that t ∼ r, for every t, r ∈ TΣ, but c[[t]] 6∼ c[[r]], for some c ∈ CΣ. In other words,

Lt−1 = {x ∈ CΣ | x[[t]] ∈ L} = {x ∈ CΣ | x[[r]] ∈ L} = Lr−1, but there exists y ∈ CΣ such that

y[[c[[t]]]] ∈ L and y[[c[[r]]]] /∈ L. It follows that, by defining x = y[[c]], we have: x[[t]] ∈ L and x[[r]] /∈ L,

which contradicts the fact Lt−1 = Lr−1.

This upward congruence is also known as the Myhill-Nerode relation for tree languages [17].

Similarly, the congruence defined as x ∼ y
def
⇔ x−1L = y−1L, for every x, y ∈ CΣ, is a downward

congruence. Lemma 4.2 proves this result. ♦

3. Tree automata constructions from congruences

In this section we present two tree automata constructions that are built upon a given tree language

and a congruence. Generally speaking, upward congruences yield deterministic constructions while

downward congruences yield co-deterministic ones.

First we introduce the deterministic construction. Given a regular tree language L and an upward

congruence ∼u that preserves the equivalence between upward quotients, i.e., t ∼u r ⇒ Lt−1 = Lr−1

for every t, r ∈ TΣ, the following construction yields a DBTA defining exactly L.



10 P. Ganty et al. / A Congruence-Based Perspective on Finite Tree Automata

Definition 3.1. (Automata construction H
u(∼u, L))

Let ∼u be an upward congruence and let L ⊆ TΣ. Define the BTA H
u(∼u, L)

def
= 〈Q,Σ, δ, F 〉 where

Q = {P∼u(t) | t ∈ TΣ}, F = {P∼u(t) | t ∈ L} and the transition function δ is defined as follows:

(i) for every a ∈ Σ0, δ(a[ ]) = {P∼u(a[ ])}, and

(ii) for every f ∈ Σn, with n≥1, and trees t1, ..., t〈f〉, t∈ TΣ: P∼u(t)∈ δ(f [P∼u(t1), ..., P∼u (t〈f〉)])
iff f [P∼u(t1), ..., P∼u (t〈f〉)] ⊆ P∼u(t).

Remark 3.2. Note that Hu(∼u, L) is well-defined since we assume that ∼u has finite index and is

an upward congruence. Moreover, Hu(∼u, L) is a deterministic BTA since for every f ∈ Σ and

t1, . . . , t〈f〉, t ∈ TΣ there exists exactly one block P∼u(t) ∈ Q such that f [P∼u(t1), . . . , P∼u(t〈f〉)]
⊆ P∼u(t). Finally, observe that Hu(∼u, L) might contain empty states but every state is reachable.

Lemma 3.3. Let L ⊆ TΣ be a tree language and let ∼u be an upward congruence such that t ∼u r ⇒
L t−1 = Lr−1 for every t, r ∈ TΣ. Then L(Hu(∼u, L)) = L.

Proof:

To simplify the notation, we denote P∼u , the partition induced by ∼u, simply by P . Let H =
H
u(∼u, L). First, we prove that:

LH

↓ (P (r)) = P (r), for each r ∈ TΣ . (1)

(⊆). We show that, for all t ∈ TΣ, t ∈ LH

↓ (P (r)) ⇒ t ∈ P (r). We proceed by induction in the

height of the tree t.

• Base case: Let t be of height 0, i.e. ∃a ∈ Σ0 such that t = a[ ]. Then,

a[ ] ∈ LH

↓ (P (r)) ⇔ [Def. of LH

↓ (P (r))]

∃t ∈ TQ : a[ ] −→∗
H t ∧ t(ε) = P (r) ⇔

P (r) ∈ δ(a[ ]) ⇔ [Def. 3.1]

a[ ] ∈ P (r) .

• Inductive step: Now we assume by hypothesis of induction that t ∈ LH

↓ (P (r)) ⇒ t ∈ P (r) for

all trees of height up to n. Let t be a tree of height n+1, i.e. t = f [t1, t2] for some f ∈ Σ and

t1, t2 ∈ TΣ height up n. Note that, w.l.o.g., we assume 〈f〉 = 2 for the sake of clarity. Then,

t ∈ LH

↓ (P (r)) ⇔

∃t′ ∈ TQ : t −→∗
H t′ ∧ t′(ε) = P (r) ⇔

∃r1, r2 ∈ TΣ : t1 ∈ LH

↓ (P (r1)), t2 ∈ LH

↓ (P (r2)) and

P (r) ∈ δ(f [P (r1), P (r2)]) ,

where the second double-implication holds by Lemma 2.6, since t = f [t1, t2].

By Definition 3.1, the fact that P (r) ∈ δ(f [P (r1), P (r2)]) is equivalent to f [P (r1), P (r2)] ⊆
P (r). Since t = f [t1, t2] and, by I.H., ti ∈ P (ri) with i ∈ {1, 2}, we conclude that t ∈
f [P (r1), P (t2)].



P. Ganty et al. / A Congruence-Based Perspective on Finite Tree Automata 11

(⊇). We show that, for all t ∈ TΣ, t ∈ P (r) ⇒ t ∈ LH

↓ (P (r)). We proceed by induction in the

height of the tree t.

• Base case: Let t be of height 0, i.e. ∃a ∈ Σ0 such that t = a[ ]. Then,

a[ ] ∈ P (r) ⇒ [Def. 3.1]

P (r) ∈ δ(a[ ]) ⇒ [Def. of LH

↓ (P (r))]

a[ ] ∈ LH

↓ (P (r)) .

• Inductive step: Now we assume by hypothesis of induction that t ∈ P (r) ⇒ t ∈ LH

↓ (P (r))
holds for all trees t of height up to n. Let t be a tree of height n+1, i.e. t = f [t1, t2] for some

f ∈ Σ and t1, t2 ∈ TΣ have height up to n. Note that, w.l.o.g., we assume 〈f〉 = 2. Then,

t ∈ P (r) ⇒ [t = f [t1, t2]]

f [t1, t2] ∈ P (r) ⇒ [∼u is an upward cong.]

f [P (t1), P (t2)] ⊆ P (r) ⇒ [Def. 3.1]

P (r) ∈ δ(f [P (t1), P (t2)]) ⇒

t ∈ LH

↓ (P (r)) ,

where the last implication holds by Lemma 2.6 and the fact that, by I.H, ti ∈ LH

↓ (P (ti)), with

i ∈ {1, 2}.

We conclude this proof by showing that L(H) = L. To do that, we first prove that P (L) = L.

On the one hand, L ⊆ P (L) by reflexivity of ∼u. Now we show that P (L) ⊆ L. Let t ∈ TΣ such

that t ∈ P (L). Then, there exists r ∈ L with t ∼u r. On the other hand, t ∼u r implies Lt−1 = Lr−1.

Then, we conclude that r ∈ L ⇒ � ∈ Lr−1 ⇒ � ∈ Lt−1 ⇒ t ∈ L.

Finally,

L(H) = [Def. of L(H)]
⋃

q∈F

LH

↓ (q) = [Def. 3.1]

⋃

t∈L

LH

↓ (P (t)) = [Equation (1)]

⋃

t∈L

P (t) = [P (L) = L]

L . ⊓⊔

Example 3.4. Let us give an example of the DBTA construction of Definition 3.1. Consider L =
L(A) where A is the BTA defined in Example 2.5. Namely, A = 〈Q,Σ, δ, F 〉 with Q = {q0, q1}; Σ =
Σ0 ∪ Σ2 with Σ0 = {T,F} and Σ2 = {∧,∨}; {q0} = δ(∧[q0, q1]) = δ(∧[q0, q0]) = δ(∧[q1, q0]) =
δ(∨[q0, q0]) = δ(F[ ]), {q1} = δ(∧[q1, q1]) = δ(∨[q1, q0]) = δ(∨[q0, q1]) = δ(∨[q1, q1]) = δ(T[ ])
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and F = {q1}. Thus, L is the set of all trees t ∈ TΣ that yield to propositional formulas, over the

binary connectives ∧ and ∨ and the constants T and F, that evaluate to T.

On the other hand, consider the upward congruence from Example 2.11, i.e., t ∼u r
def
⇔ Lt−1 =

Lr−1, for every t, r ∈ TΣ. Note that, ∼u defines two equivalence classes:

• P∼u(T[ ]) = L and

• P∼u(F[ ]) = L∁, where L∁ is the complement of L, i.e., the set TΣ \ L.

Specifically, {∨[F,T],∨[T,F],∨[T,T],∧[T,T]} ⊆ P∼u(T[ ]) and

{∧[F,T],∧[T,F],∧[F,F], ∨[F,F]} ⊆ P∼u(F[ ]).
Thus, Hu(∼u, L) = 〈Q′,Σ0 ∪ Σ2, δ

′, F ′〉 where Q′ = {L,L∁}, F ′ = {L} and δ′ is defined as

{L} = δ′(T[ ]) = δ′(∧([L,L])) = δ′(∨([L∁, L])) = δ′(∨([L,L∁])) = δ′(∨([L,L])) and {L∁} =
δ′(F[ ]) = δ′(∧([L∁, L])) = δ′(∧([L,L∁])) = δ′(∧([L∁, L∁])) = δ′(∨([L∁, L∁])). ♦

Similarly, given a regular tree language L that is path-closed and a downward congruence ∼d,

that preserves the equivalence between downward quotients, i.e., x ∼d y ⇒ x−1L = y−1L for every

x, y ∈ CΣ, we give a tree automata construction that yields a BTA that defines exactly L. To this aim,

we first recall an alternative characterization of path-closed languages due to Nivat and Podelski [13].

For simplicity, we state the characterization for symbols f ∈ Σ with 〈f〉 ≤ 2, although it holds for

alphabets of rank greater than 2. Let L ⊆ TΣ be a regular tree language, then L is path-closed iff:

∀x ∈ CΣ,∀f ∈ Σ:

x[[f [t1, t2]]], x[[f [r1, r2]]] ∈ L ⇒ x[[f [t′1, t
′
2]]] ∈ L where t′1 ∈ {t1, r1}, t

′
2 ∈ {t2, r2} . (2)

We recall that the definition of being path-closed is given at the end of Section 2.

Before turning to the construction using downward congruences we introduce a notation. Given

C ⊆ CΣ and c ∈ CΣ, let C[[c]]
def
= {c′[[c]] | c′ ∈ C}.

Definition 3.5. (Automata construction H
d(∼d, L))

Let ∼d be a downward congruence and let L ⊆ TΣ. Define the BTA H
d(∼d, L)

def
= 〈Q,Σ, δ, F 〉

where Q = {P∼d(x) | x ∈ CΣ, x
−1L 6= ∅}, F = {P∼d(�)} and the transition function δ is defined

as follows:

(i) for every a ∈ Σ0, P∼d(x) ∈ Q : P∼d(x) ∈ δ(a[ ]) iff P∼d(x)[[a]] ⊆ L, and

(ii) for every f ∈ Σn with n ≥ 1, P∼d(x), P∼d(xi) ∈ Q with i = 1..〈f〉: P∼d(x)
∈ δ(f [P∼d(x1), ..., P∼d (x〈f〉)]) iff ∃t1, ..., t〈f〉 ∈ TΣ : P∼d(x)[[f [t1, ..., t〈f〉][[�]]i]] ⊆ P∼d(xi),

for every i = 1..〈f〉.

Remark 3.6. Note that Hd(∼d, L) is well-defined since we assume that ∼d has finite index and is a

downward congruence. On the other hand, by definition, Hd(∼d, L) does not contain empty states and

the final set of states is a singleton. Furthermore, Hd(∼d, L) does not contain unreachable states either.

This is also a consequence of its definition, since Q only includes those blocks P∼d(x) s.t. x−1L 6= ∅.

However, Hd(∼d, L) is not necessarily co-deterministic since it might be the case that, for some f ∈
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Σn, P∼d(x), P∼d(xi), P∼d(yi) ∈ Q with i = 1..〈f〉, there exists t1, . . . , t〈f〉, r1, . . . , r〈f〉 ∈ TΣ such

that P∼d(x)[[f [t1, . . . , t〈f〉][[�]]i]] ⊆ P∼d(xi), P∼d(x)[[f [r1, . . . , r〈f〉][[�]]i]] ⊆ P∼d(yi) with xi 6∼
d yi.

Now we prove that if L, the language used to construct H
d(∼d, L), is path-closed then

L(Hd(∼d, L)) = L. Notice that if L is not path-closed then only L ⊆ L(Hd(∼d, L)) is guaranteed

(the reader may check this fact by looking at the proof of the lemma).

Lemma 3.7. Let L ⊆ TΣ and ∼d be a downward congruence such that x ∼d y ⇒ x−1L = y−1L
for every x, y ∈ CΣ. Then, L(Hd(∼d, L)) ⊇ L holds and, if, incidentally, L is path-closed then

L(Hd(∼d, L)) ⊆ L.

Proof:

To simplify the notation, we denote P∼d , the partition induced by ∼d, simply by P . Let H =
H
d(∼d, L) = (Q,Σ, δ, F ). First, we prove that for every P (x) ∈ Q:

LH

↓ (P (x)) ⊆ x−1L, if L is path-closed, and (3)

LH

↓ (P (x)) ⊇ x−1L . (4)

(⊆). We show that, if L is path-closed, then for all t ∈ TΣ, t ∈ LH

↓ (P (x)) ⇒ t ∈ x−1L. We

proceed by induction in the height of the tree t.

• Base case: Let t be of height 0, i.e. ∃a ∈ Σ0 such that t = a[ ]. Then.

a[ ] ∈ LH

↓ (P (x)) ⇒ [Def. of LH

↓ (P (x))]

P (x) ∈ δ(a[ ]) ⇒ [Def. 3.5]

P (x)[[a]] ⊆ L ⇒ [P (x) ⊇ {x}]

x[[a]] ∈ L ⇒ [Def. of downward quotient]

a[ ] ∈ x−1L .

• Inductive step: Now we assume by hypothesis of induction that t ∈ LH

↓ (P (x)) ⇒ t ∈ x−1L
for all trees of height up to n. Let t be a tree of height n+1, i.e. t = f [t1, t2] for some f ∈ Σ
and t1, t2 ∈ TΣ have height up to n ≥ 0. Note that, w.l.o.g., we assume 〈f〉 = 2 for the sake of

clarity. Then,

t ∈ LH

↓ (P (x)) ⇔

∃t′ ∈ TQ : t′(ε) = P (x), t →∗
H t′ ⇔

∃P (x1), P (x2) ∈ Q : t1 ∈ LH

↓ (P (x1)), t2 ∈ LH

↓ (P (x2)) and

P (x) ∈ δ(f [P (x1), P (x2)]), (5)

where the first double-implication holds by definition of LH

↓ (P (x)) and the second one holds by

Lemma 2.6, since t = f [t1, t2]. By Definition 3.5, Equation (5) is equivalent to:

∃r1, r2 ∈ TΣ : P (x)[[f [r1, r2][[�]]1]] ⊆ P (x1),

P (x)[[f [r1, r2][[�]]2]] ⊆ P (x2) .
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By definition of P , we have that:

∃r1, r2 ∈ TΣ : x1 ∼
d x[[f [r1, r2][[�]]1]],

x2 ∼
d x[[f [r1, r2][[�]]2]] . (6)

Note that, by H.I., t1 ∈ LH

↓ (P (x1)), t2 ∈ LH

↓ (P (x2)) ⇒ t1 ∈ x−1
1 L, t2 ∈ x−1

2 L. Moreover,

x ∼d y implies that x−1L = y−1L. Therefore, it follows from Equations (5) and (6) that

∃r1, r2 ∈ TΣ : t1 ∈ x[[f [r1, r2][[�]]1]]
−1L and t2 ∈ x[[f [r1, r2][[�]]2]]

−1L, which can be rewritten

as ∃r1, r2 ∈ TΣ : x[[f [t1, r2]]] ∈ L and x[[f [r1, t2]]] ∈ L. Finally, since L is path-closed and

t = f [t1, t2], we conclude that x[[t]] ∈ L, i.e., t ∈ x−1L.

(⊇). We next show that, for all t ∈ TΣ, t ∈ x−1L ⇒ t ∈ LH

↓ (P (x)). We proceed by induction on

the height of t.

• Base case: Let t be of height 0, i.e. ∃a ∈ Σ0 such that t = a[ ]. Then,

a[ ] ∈ x−1L ⇒ [Def. of downward quotient]

x[[a]] ∈ L ⇒ [∼d is a downward cong.]

P (x)[[a]] ⊆ L ⇒ [Def. 3.5]

P (x) ∈ δ(a[ ]) ⇒ [Def. of LH

↓ (P (x))]

a[ ] ∈ LH

↓ (P (x)) .

• Inductive step: Now we assume by hypothesis of induction that t ∈ x−1L ⇒ t ∈ LH

↓ (P (x))
holds for all trees t of height up to n. Let t be a tree of height n+1, i.e. t = f [t1, t2] for some

f ∈ Σ and t1, t2 ∈ TΣ with height up to n. Note that, w.l.o.g., we assume 〈f〉 = 2 for the sake

of clarity. Let x1 = x[[f [�, t2]]] and x2 = x[[f [t1,�]]]. Since ∼d is a downward congruence, we

have that P (x)[[f [�, t2]]] ⊆ P (x1) and P (x)[[f [t1,�]]] ⊆ P (x2). Therefore, by Definition 3.5,

P (x) ∈ δ(f [P (x1), P (x2)]).

On the other hand, note that t1 ∈ x1
−1L and t2 ∈ x2

−1L. By I.H., t1 ∈ LH

↓ (P (x1)) and

t2 ∈ LH

↓ (P (x2)). Relying on Lemma 2.6, we conclude that t ∈ LH

↓ (P (x)).

We finish by proving the two statements of the Lemma.

L(H) = [Def. of L(H)] L(H) = [Def. of L(H)]
⋃

q∈FL
H

↓ (q) = [Def. 3.5]
⋃

q∈FL
H

↓ (q) = [Def. 3.5]

LH

↓ (P (�)) ⊇ [Equation (4)] LH

↓ (P (�)) ⊆ [Equation (3), L path-closed]

(�)−1L = L (�)−1L = L .

⊓⊔
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Next we introduce the notion of strongly downward congruence which defines an extra condition

on a downward congruence ∼d that guarantees that Hd(∼d, L) is a co-DBTA. This condition is an

ad-hoc design so as to avoid the issue raised at Remark 3.6. Intuitively, strongly downward means

that every congruent pair x and y of contexts remains congruent after plugging the context t[[�]]i in x
and the context r[[�]]i in y where t and r are chosen such that x[[t]], y[[r]] ∈ L. Recall that given a tree

t ∈ T , t[[�]]i ∈ C denotes the context obtained by replacing the subtree rooted at i with �.

Definition 3.8. (Strongly downward congruence)

Let ∼d be a downward congruence and let L ⊆ TΣ. We say ∼d is strongly downward w.r.t. L iff for

every x, y ∈ CΣ with x ∼d y, t ∈ x−1L, r ∈ y−1L and t(ε) = r(ε) where t, r ∈ TΣ, we have that

x[[t[[�]]i]] ∼
d y[[r[[�]]i]],∀i ∈ {1..〈t(ε)〉}.

Finally, we obtain the following lemma.

Lemma 3.9. Let ∼d be a strongly downward congruence w.r.t. L such that x ∼d y ⇒ x−1L = y−1L
for every x, y ∈ CΣ. Then H

d(∼d, L) is a co-DBTA.

Proof:

We prove that Hd(∼d, L) = (Q,Σ, δ, F ) is a co-DBTA by contradiction.

If Hd(∼d, L) is not co-deterministic, then either |F | > 1, which is not possible by Definition 3.5;

or ∃f ∈ Σ,∃x1, . . . , x〈f〉, y1, . . . , y〈f〉, x ∈ CΣ such that P∼d(x) ∈ δ(f [P∼d(x1), . . . , P∼d(x〈f〉)])

and P∼d(x) ∈ δ(f [P∼d(y1), . . . , P∼d(y〈f〉)]) and ∃i0 ∈ 1..〈f〉 for which xi0 6∼d yi0 .

Then, by Definition 3.5, ∃t1, . . . , t〈f〉, r1, . . . , r〈f〉∈TΣ :[[P∼d(x)]]f [t1, . . . , t〈f〉][[�]]i0
⊆ P∼d(xi0),

and P∼d(x)[[f [r1, . . . , r〈f〉][[�]]i0
]] ⊆ P∼d(yi0) with xi0 6∼d yi0 . Thus, x[[f [t1, . . . , t〈f〉][[�]]i0

]] ∼d xi0
and x[[f [r1, . . . , r〈f〉][[�]]i0

]] ∼d yi0 .

On the other hand, since P∼d(xi0) and P∼d(yi0) are states of Hd, we have that x−1
i0

L 6= ∅ and

y−1
i0

L 6= ∅. Since x[[f [t1, . . . , t〈f〉][[�]]i0
]] ∼d xi0 and x[[f [r1, . . . , r〈f〉][[�]]i0

]] ∼d yi0 , we also have

that x[[f [t1, . . . , t〈f〉][[�]]i0
]]−1L 6= ∅ and x[[f [r1, . . . , r〈f〉][[�]]i0

]]−1L 6= ∅. Thus, for some ti0 , ri0 ∈

TΣ, t = f [t1, . . . , ti0 , . . . , t〈f〉] ∈ x−1L and r = f [r1, . . . , ri0 , . . . , r〈f〉] ∈ x−1L.

Finally, since ∼d is a strongly downward congruence w.r.t. L, x ∼d x (trivially), t, r ∈ x−1L and

t(ε) = r(ε), we have that x[[f [t1, . . . , t〈f〉][[�]]i0
]] ∼d x[[f [r1, . . . , r〈f〉][[�]]i0

]]. By transitivity of ∼d,

we have that xi0 ∼d yi0 , which is a contradiction.

Thus, we conclude that Hd(∼d, L) is co-deterministic. ⊓⊔

Example 3.10. Now we give an example of the construction of Definition 3.5. Consider the BTA A
defined in Example 2.8, i.e., A = 〈Q,Σ, δ, F 〉 with Q = {q0, q1}; Σ = Σ0 ∪ Σ2 with Σ0 = {T,F}
and Σ2 = {∧}; {q0} = δ(∧[q0, q1]) = δ(∧[q0, q0]) = δ(∧[q1, q0]) = δ(F[ ]), {q1} = δ(∧[q1, q1]) =
δ(T[ ]) and F = {q1}. Recall that L = L(A) is the set of all trees t ∈ TΣ that yield to propositional

formulas, over the binary connective ∧ and the constants T and F, that evaluate to T. Hence, L(A) is

path-closed.
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On the other hand, consider the downward congruence from Example 2.11, i.e., x ∼d y
def
⇔

x−1L = y−1L, for every x, y ∈ CΣ. As we shall see in Lemma 4.2, since L is path-closed, ∼d

is a strongly downward congruence w.r.t. L. It turns out that ∼d defines two equivalence classes:

• P∼d(∧[T,�]), with (∧[T,�])−1L = L, and

• P∼d(∧[F,�]), with (∧[F,�])−1L = ∅.

Intuitively, P∼d(∧[T,�]) is composed of those contexts x such that x[[T[ ]]] corresponds to a proposi-

tional formula that evaluates to T. For instance, {∧[�,T],�[ ]} ⊆ P∼d(∧[T,�]). On the other hand,

P∼d(∧[F,�]) is composed of those such that x[[T[ ]]] is a formula that evaluates to F. For example,

∧[�,F] ∈ P∼d(∧[F,�]).
Thus, Hd(∼u, L) = 〈Q′,Σ, δ′, F ′〉 with Q′ = {P∼d(∧[T,�])} and F ′ = {P∼d(∧[T,�])} since

P∼d(�) = P∼d(∧[T,�]). Note that P∼d(∧[F,�]) /∈ Q′ since (∧[F,�])−1L = ∅. In fact, including

P∼d(∧[F,�]) in Q′ would result in an unreachable state since:

(i) for every a ∈ {F,T}, P∼d(∧[F,�])[[a]] ∩ L = ∅, and

(ii) (trivially) ∄t ∈ (∧[F,�])−1L : t(ε) = ∧ and P∼d(∧[F,�])[[t[[�]]i]] ⊆ P∼d(xi), with xi ∈ CΣ
and i ∈ {1, 2}.

Finally, P∼d(∧[1,�]) ∈ δ′(∧[P∼d(∧[T,�]), P∼d(∧[T,�])]) (set t = ∧[T,T] in Definition 3.5). ♦

It is worth noting that the DBTA H
u built in Example 3.4 and the co-DBTA H

d from Example 3.10

are indeed the minimal DBTA and co-DBTA for their corresponding languages, respectively. This

is due to the fact that we used the Myhill-Nerode relation for tree languages (and its counterpart

downward congruence). We will recall the main properties of these congruences and introduce their

approximation using BTAs in the following section.

4. Language-based equivalences and their approximation using BTAs

In this section, we instantiate the automata constructions from the previous section using two classes

of congruences: language-based congruences, whose definition relies on a regular tree language; and

BTA-based congruences, whose definition relies on a BTA.

Definition 4.1. (Language-based equivalences)

Let L ⊆ TΣ be a tree language and let t, r ∈ TΣ and x, y ∈ CΣ. The upward and downward language-

based equivalences are, respectively:

t ∼u

L r
def
⇔ L t−1 = Lr−1

x ∼d

L y
def
⇔ x−1L = y−1L .

These equivalence relations are always congruences. The upward language-based equivalence is

also known as the Myhill-Nerode relation for tree languages. As shown by Kozen [17], given a tree

language L ⊆ TΣ, the Myhill-Nerode relation is an upward congruence of finite index iff L is regular.
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Note that this congruence is the coarsest upward congruence enabling Lemma 3.3 (set ∼u to be ∼u

L).

Similarly, Nivat and Podelski [13] showed that the downward language-based equivalence has finite

index iff L is regular and it is the coarsest downward congruence that enables Lemma 3.7. Next we

prove that ∼d

L is a strongly downward congruence w.r.t. L when L is path-closed, hence it is the

coarsest downward congruence enabling Lemma 3.9 (set ∼d to ∼d

L).

Lemma 4.2. Let L ⊆ TΣ be a path-closed language. Then, ∼d

L is a strongly downward congruence

w.r.t. L.

Proof:

First, we show that ∼d

L is a downward congruence by contradiction. Let x, y, c ∈ CΣ be such that

x ∼d

L y and x[[c]] 6∼d

L y[[c]]. Then, w.l.o.g, ∃t ∈ TΣ such that x[[c[[t]]]] ∈ L and y[[c[[t]]]] /∈ L, hence

c[[t]] ∈ x−1L while c[[t]] /∈ y−1L, which contradicts the fact that x ∼d

L y.

Now we show that ∼d

L is strongly downward w.r.t. L. Consider x, y ∈ CΣ s.t. x ∼d

L y and

t, r ∈ TΣ with t ∈ x−1L, r ∈ y−1L and t(ε) = r(ε). Assume that ∼d

L is not a strongly downward

congruence, i.e. there exists i0 ∈ 1..〈f〉 such that x[[t[[�]]i0 ]] 6∼
d

L y[[r[[�]]i0 ]]. Then, there exists s ∈ TΣ
such that x[[t[[s]]i0 ]] ∈ L, while y[[r[[s]]i0 ]] /∈ L.

On the one hand, since r ∈ y−1L, there exists s′ ∈ TΣ such that y[[r[[s′]]i0 ]] ∈ L. Since x ∼d

L y,

i.e., x−1L = y−1L, we have that x[[r[[s′]]i0 ]] ∈ L. Therefore, since x[[t[[s]]i0 ]] ∈ L, x[[r[[s′]]i0 ]] ∈ L and

L is path-closed, by definition (see (2) in Section 3), we have that x[[r[[s]]i0 ]] ∈ L. Since x ∼d

L y, it

follows that y[[r[[s]]i0 ]] ∈ L as well, which is a contradiction.

We conclude that ∼d

L is a strongly downward congruence w.r.t. L. ⊓⊔

Now, we propose congruences based on the states of a given BTA. These BTA-based congruences

are finer than (or equal to) the corresponding language-based ones and are thus said to approximate

the language-based congruences.

In order to define the downward BTA-based congruences, we first introduce the notion of root-to-

pivot equivalence between two contexts w.r.t. a BTA A = 〈Q,Σ, δ, F 〉 and a subset of states S ⊆ Q.

Intuitively, two contexts x, y ∈ CΣ are root-to-pivot equivalent w.r.t. S iff

(i) their pivots (the nodes with the label �) coincide and so do the paths from their roots to their

pivots, and

(ii) either x and y belong to the upward language of some state (w.r.t. S), or none of them does.

Definition 4.3. (Root-to-pivot equivalence)

Let A = 〈Q,Σ, δ, F 〉 be a BTA and S ⊆ Q. We say that x, y ∈ CΣ are root-to-pivot equivalent w.r.t.

S, denoted by x ∼S y, iff

(i) piv(x) = piv(y) and ∀p, p′ ∈ (N+)
∗ if p·p′ = piv(x) then x(p) = y(p), and

(ii) x ∈ L↑(q, S) for some q ∈ Q if and only if y ∈ L↑(q
′, S) for some q′ ∈ Q.

The root-to-pivot equivalence need not have finite index.

We will simply write x ∼  y when S = F . Let us fix intuitions with the following example.
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Example 4.4. Consider the BTA A given in Example 2.5, i.e., A = 〈Q,Σ0 ∪ Σ2, δ, F 〉 with Q =
{q0, q1}, Σ0 = {T,F}, Σ2 = {∧,∨}, {q0} = δ(∧[q0, q1]) = δ(∧[q0, q0]) = δ(∧[q1, q0]) =
δ(∨[q0, q0]) = δ(F[ ]), {q1} = δ(∧[q1, q1]) = δ(∨[q1, q0]) = δ(∨[q0, q1]) = δ(∨[q1, q1]) = δ(T[ ])
and F = {q1}. Thus, L(A) is defined as the set of all trees of the form t ∈ TΣ0∪Σ2 which yield to

propositional formulas, over the binary connectives ∧ and ∨ and the constants T and F, that evaluate

to T.

Let S = F , then we have that x = ∨[∨[T,F],�] and y = ∨[∨[T,T],�]] are root-to-pivot equiva-

lent w.r.t. S, i.e., x ∼  y. In fact, piv(x) = piv(y) = 2 and for all p, p′ ∈ (N+)
∗ if p·p′ = piv(x) then

x(p) = y(p). Moreover, q1 ∈ Q is s.t. x ∈ L↑(q1, S) and y ∈ L↑(q1, S).
On the other hand, we have that x′ = ∧[∧[T,T],�] and y′ = ∧[∧[T,F],�] are not root-to-pivot

equivalent w.r.t. S. Note that, despite of having that piv(x′) = piv(y′) = 2 and for all p, p′ ∈ (N+)
∗ if

p·p′ = piv(x) then x(p) = y(p), ∄q ∈ Q : y′ ∈ L↑(q, S), while x′ ∈ L↑(q1, S). In fact, (y′)−1L = ∅
while (x′)−1L 6= ∅. Intuitively, in the absence of unreachable states, the second condition in the

definition of root-to-pivot equivalence prevents from defining two equivalent contexts when one of

them defines an empty downward quotient and the other does not. ♦

Now we define the post(·) and pre(·) operators for trees. Given a BTA A, a tree t ∈ TΣ and a

set S ⊆ Q, postAt (S) is the set of states appearing at the root after A is done processing the tree

t provided that this processing labelled the leaves of t with states in S. On the other hand, given a

context x ∈ CΣ and S ⊆ Q, preAx (S) contains the states q such that the result of A processing x[[q]]
has its root labelled with a state in S. Furthermore, preAx (S) contains the states q obtained as above

this time starting from y[[q]] where y ∈ CΣ is root-to-pivot equivalent to x.

Definition 4.5. (Post and pre operators)

Let A = 〈Q,Σ, δ, F 〉 be a BTA and let t ∈ TΣ, x ∈ CΣ and S ⊆ Q. Define:

postAt (S)
def
= {q ∈ Q | t ∈ LA

↓ (q, S)}

preAx (S)
def
= {q ∈ Q | x ∈ P∼S (L

A
↑ (q, S))} .

As usual, we will omit the superscript A when it is clear from the context. Note that, for every

x ∈ CΣ, S ⊆ Q : prex(S) = ∅ ⇔ ∄q ∈ Q : x ∈ L↑(q, S).
Let us illustrate these definitions with an example.

Example 4.6. As in the previous example, consider the BTA A from Example 2.5. Given the tree

t = ∧[∨[T,F],∧[T,T]], we have that postt({q0, q1}) = {q1}, while postt({q0}) = ∅.

On the other hand, given the context x = ∨[∧[T,F],�], we have that x ∈ P∼  (L↑(q1)) since

x ∈ L↑(q1). Thus, q1 ∈ prex(F ). Moreover, x ∈ P∼  (L↑(q0)) since y = ∨[∧[T,T],�] is s.t. y ∼  x

and y ∈ L↑(q0). Hence, prex(F ) = {q0, q1}.

Finally, given the context x′ = ∧[∨[F,F],�], prex′(F ) = ∅ since ∄q ∈ Q : x′ ∈ L↑(q). ♦

Note that the notion of root-to-pivot equivalence in the definition of preAx (S) allows us to prove

that the downward BTA-based equivalence (see Definition 4.12) is

(i) strongly downward w.r.t. L(A) (see Lemma 4.13(b)) and
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(ii) mimics the construction of each set Ri, from the definition of bottom-up co-determinization

given in Section 2, i.e., we produce the same set of states as that of AcD by constructing the sets

preAx (F ), with x ∈ CΣ.

The reader is referred to Example 4.14 for fixing these intuitions.

Our next step is to establish basic properties of the post(·) and pre(·) operator, the upward and

downward languages they induce and their relationships with upward and downward quotients. Before

to establish those properties, we need three technical lemmas.

Lemma 4.7. Let A = 〈Q,Σ, δ, F 〉 be a BTA without unreachable states and such that L = L(A) is a

path-closed language. Then, x ∼  y ⇒ x−1L = y−1L, for every x, y ∈ CΣ.

Proof:

Recall that ∼  shortly denotes ∼F . By definition, x ∼  y iff:

(i) piv(x) = piv(y) and ∀p, p′ ∈ (N+)
∗ if p·p′ = piv(x) then x(p) = y(p), and

(ii) ∃q ∈ Q : x ∈ L↑(q) ⇔ ∃q′ ∈ Q : y ∈ L↑(q
′).

Note that if x ∼  y then the �-height of x and y coincide. The proof goes by induction on the

�-height of x and y.

• Base case: Let h�(x) = h�(y) = 1. Then x = y = �[ ] and x−1L = y−1L = L.

• Inductive step: Assume that the hypothesis holds for all contexts up to�-height n. Let x, y ∈ CΣ
be such that x ∼  y and h�(x) = h�(y) = n+1.

First, assume that ∄q ∈ Q : x ∈ L↑(q) and ∄q′ ∈ Q : y ∈ L↑(q
′). Then, since A has no

unreachable states we have that x−1L = y−1L = ∅.

On the other hand, assume that ∃q ∈ Q : x ∈ L↑(q) and ∃q′ ∈ Q : y ∈ L↑(q
′). Since A has no

unreachable states, we have that ∃t, r ∈ TΣ : x[[t]], y[[r]] ∈ L.

It is easy to check that ∃x′, x′′, y′, y′′ ∈ CΣ : h�(x
′) = h�(y

′) = n−1, h�(x
′′) = h�(y

′′) = 2,

x′[[x′′]] = x and y′[[y′′]] = y. On the other hand, since ∃q ∈ Q : x ∈ L↑(q) and ∃q′ ∈ Q : y ∈
L↑(q

′) then ∃q̃ ∈ Q : x′ ∈ L↑(q̃) and ∃q̃′ ∈ Q : y′ ∈ L↑(q̃
′). Thus, we have that x′ ∼  y′.

W.l.o.g. and for the sake of clarity, let us consider f ∈ Σ with 〈f〉 = 2 such that x′′ = f [�, t2]
and y′′ = f [�, r2] with t2, r2 ∈ TΣ. Then:

x[[t]] ∈ L, y[[r]] ∈ L ⇔

x′[[x′′[[t]]]] ∈ L, y′[[y′′[[r]]]] ∈ L ⇒†

y′[[x′′[[t]]]] ∈ L, y′[[y′′[[r]]]] ∈ L ⇔

y′[[f [t, t2]]] ∈ L, y′[[f [r, r2]]] ∈ L ⇒††

y′[[f [t, r2]]] ∈ L ⇔

y′[[y′′[[t]]]] ∈ L ⇔

y[[t]] ∈ L .
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Note that implication † holds since, by H.I., (y′)−1L = (x′)−1L. On the other hand, implication

†† holds since L is path-closed.

We conclude that x−1L ⊆ y−1L. The proof for the reverse inclusion is symmetric. Therefore,

x−1L = y−1L. ⊓⊔

Lemma 4.8. Let A = 〈Q,Σ, δ, F 〉 be a BTA without unreachable states and such that L = L(A) is

path-closed then, for every x, y ∈ CΣ:

∃q ∈ Q : x[[y]] ∈ L↑(q) iff ∃q1 ∈ Q : y ∈ L↑(q1,prex(F )) .

Proof:

Recall that L↑(q) denotes L↑(q, F ).

(⇒). We assume that ∃q ∈ Q : x[[y]] ∈ L↑(q), i.e., ∃q ∈ Q,∃t, s ∈ TQ : y[[q]] →∗
A t and

x[[t(ε)]] →∗
A s, s(ε) ∈ F . By setting q1 = q, we have that y[[q1]] →

∗
A t, where t(ε) ∈ prex(F ), since

∃z ∈ CΣ : z ∼F x s.t. z ∈ L↑(t(ε)) by setting z = x. Thus, ∃q1 ∈ Q : y ∈ L↑(q1,prex(F )).

(⇐). Assume now that ∃q1 ∈ Q : y ∈ L↑(q1,prex(F )), i.e., ∃t ∈ TQ : y[[q1]] →∗
A t, t(ε) ∈

prex(F ). We will show that ∃q ∈ Q : y[[q]] →∗
A t′ and x[[t′(ε)]] →∗

A s′, s′(ε) ∈ F .

By hypothesis, t(ε) ∈ prex(F ). In the case that x ∈ L↑(t(ε)), then indeed, ∃q ∈ Q : y[[q]] →∗
A t′

and x[[t′(ε)]] →∗
A s′, s′(ε) ∈ F , by setting q = q1 and t′(ε) = t(ε). Now, let us assume that

t(ε) ∈ prex(F ) but x /∈ L↑(t(ε)). By definition of t(ε) ∈ prex(F ), we have that ∃x̃ ∈ CΣ : x̃ ∼F x

s.t. x̃ ∈ L↑(t(ε)), where x̃ 6= x. Since A has no unreachable states, y[[q1]] →
∗
A t and x̃ ∈ L↑(t(ε)),

we have that ∃t̃ ∈ TΣ : y[[t̃]] ∈ x̃−1L. Since x̃ ∼F x and L is path-closed, by Lemma 4.7, we have

that x̃−1L = x−1L. Thus, y[[t̃]] ∈ x−1L. We conclude that, since A has no unreachable states,

∃q ∈ Q : x[[y]] ∈ L↑(q). ⊓⊔

Lemma 4.9. Let A = 〈Q,Σ, δ, F 〉 be a BTA without unreachable states and such that L(A) is path-

closed. Then, for every x1, x2, y1, y2 ∈ CΣ with h�(x1) = h�(x2), x1[[y1]] ∈ L↑(q) and x2[[y2]] ∈
L↑(q

′) for some q, q′ ∈ Q:

x1[[y1]] ∼  x2[[y2]] ⇔ x1 ∼  x2 and y1 ∼
prex1(F )

 y2 .

Proof:

Recall that x, y are root-to-pivot equivalent w.r.t. S ⊆ Q, denoted by x ∼S y, iff:

(i) piv(x) = piv(y) and ∀p, p′ ∈ (N+)
∗ if p·p′ = piv(x) then x(p) = y(p), and

(ii) ∃q ∈ Q : x ∈ L↑(q, S) ⇔ ∃q′ ∈ Q : y ∈ L↑(q
′, S).

The reader can easily check that the double implication in the statement: x1[[y1]] ∼  x2[[y2]] ⇔ x1 ∼  

x2 and y1 ∼
prex1 (F )

 y2 holds w.r.t. condition (i). In particular, the left-to-right implication holds as

h�(x1) = h�(x2).
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We now focus on proving that the double implication holds w.r.t. condition (ii) in the above

definition. Recall that L↑(q) denotes L↑(q, F ).
(⇒). By hypothesis, ∃q ∈ Q : x1[[y1]] ∈ L↑(q) and ∃q′ ∈ Q : x2[[y2]] ∈ L↑(q

′). Then, clearly,

∃q1 ∈ Q : x1 ∈ L↑(q1) and ∃q2 ∈ Q : x2 ∈ L↑(q2). Therefore, x1 ∼  x2. Also, by hypothesis and

Lemma 4.8, ∃q′1 ∈ Q : y1 ∈ L↑(q
′
1,prex1

(F )) and ∃q′2 ∈ Q : y2 ∈ L↑(q
′
2,prex2

(F )). Since x1 ∼  x2

implies that prex1
(F ) = prex2

(F ), we have that y1 ∼
prex1(F )

 y2.

(⇐). Finally we show the right-to-left implication:

∃q ∈ Q : x1[[y1]] ∈ L↑(q) ⇔

∃q1 ∈ Q : y1 ∈ L↑(q1,prex1
(F )) ⇔

∃q2 ∈ Q : y2 ∈ L↑(q2,prex2
(F )) ⇔

∃q′ ∈ Q : x2[[y2]] ∈ L↑(q
′) .

Note that the first and last double-implications hold by Lemma 4.8, while the second one holds by

hypothesis. Finally, we conclude that x1[[y1]] ∼  x2[[y2]]. ⊓⊔

We now can turn back to the lemmas on the post(·) and pre(·) operators, the upward and downward

languages they induce and their relationship to upward and downward quotient.

Lemma 4.10. Let A = (Q,Σ, δ, F ) be a BTA with L = L(A) and let t ∈ TΣ and x ∈ CΣ. Then the

following hold:

(a)
⋃

q∈postt(i(A)) L↑(q) = L t−1, and

(b) If A has no unreachable states and L is path-closed, then
⋃

q∈prex(F )L↓(q) = x−1L .

Proof:

We start by recalling that i(A) = {q ∈ Q | ∃a ∈ Σ0 : q ∈ δ(a[ ])} as defined in Section 2.2.

(a)
⋃

q∈postt(i(A)) L↑(q) = Lt−1.

Recall that L↑(q) simply denotes L↑(q, F ). To simplify further the notation, denote i(A) as I .

L t−1 =

{x ∈ CΣ | x[[t]] ∈ L} =

{x ∈ CΣ | ∃t′∈TQ : x[[t]] →∗
A t′, t′(ε) ∈ F, ℓ(t′) ⊆ I} =†

{x ∈ CΣ | ∃t′∈TQ : x[[q]] →∗
A t′, t′(ε) ∈ F, q ∈ postt(I)} =

⋃

q∈postt(I)

L↑(q) .

Note that, from the statement to the left of the equality † we have that t ∈ L↓(q, I) for some

q ∈ Q, which is equivalent to the fact q ∈ postt(I).
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(b) If A has no unreachable states and L is path-closed, then
⋃

q∈prex(F )L↓(q) = x−1L .

Recall that L↓(q) denotes L↓(q, i(A)), L↑(q) denotes L↑(q, F ) and ∼  denotes ∼F . We have

that:

x−1L =

{t ∈ TΣ | x[[t]] ∈ L} =†

{t ∈ TΣ | ∃y ∈ CΣ : x ∼  y, y[[t]] ∈ L} =

{t ∈ TΣ | ∃t′ ∈ TQ : t →∗
A t′, t′(ε) = q, x ∈ P∼  (L↑(q))} =

{t ∈ TΣ | ∃t′ ∈ TQ : t →∗
A t′, t′(ε) = q, q ∈ prex(F )} =

⋃

q∈prex(F )

L↓(q) ,

where equality † holds by Lemma 4.7. Namely, since L is path-closed and A has no unreachable

states, then for every x, y ∈ CΣ s.t. x ∼  y we have that x−1L = y−1L.
⊓⊔

Lemma 4.11. Let A = 〈Q,Σ, δ, F 〉 be a BTA. Let S ⊆ Q, f ∈ Σ, t1, . . . , t〈f〉 ∈ TΣ and let

x, y ∈ CΣ. Then the following hold:

(a) postf [t1,...,t〈f〉](S) = δ({f [postt1(S), . . . ,postt〈f〉(S)]}).

(b) If A has no unreachable states and L(A) is path-closed then prex[[y]](F ) = prey(prex(F )).

Proof:

(a) postf [t1,...,t〈f〉](S) = δ({f [postt1(S), . . . ,postt〈f〉(S)]}).

postf [t1,...,t〈f〉](S) =

{q | f [t1, . . . , t〈f〉] ∈ L↓(q, S)} =

{q | ∀i ∈ 1..〈f〉,∃t′i ∈ TQ : ti →
∗
A t′i, t

′
i(ε) = qi,

ℓ(t′i) ⊆ S, q ∈ δ(f [q1, . . . , q〈f〉])} =

{q | ∀i ∈ 1..〈f〉,∃qi ∈ postti(S) : q ∈ δ(f [q1, . . . , q〈f〉])} =

δ({f [postt1(S), . . . ,postt〈f〉(S)]}) .

Note that the first three equalities hold by definition of post(·), by definition of downward

language of q w.r.t. S and by definition of the transition function δ respectively. Finally, the last

equality holds by definition of δ extended to sets.

(b) If A has no unreachable states and L(A) is path-closed then prex[[y]](F ) = prey(prex(F )).

First, note that L↑(q) denotes L↑(q, F ), and ∼  denotes ∼F . Also recall that, by definition of

root-to-pivot equivalence, x ∼  y iff:
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(a) piv(x) = piv(y) and ∀p, p′ ∈ (N+)
∗ if p·p′ = piv(x) then x(p) = y(p), and

(b) ∃q ∈ Q : x ∈ L↑(q) ⇔ ∃q′ ∈ Q : y ∈ L↑(q
′).

(⇒). We first prove that ∀q ∈ Q : q ∈ prex[[y]](F ) ⇒ q ∈ prex(prey(F )). By definition we

have that:

q ∈ prex[[y]](F ) ⇔

x[[y]] ∈ P∼F (L↑(q)) ⇔

∃z ∈ CΣ with z ∼  x[[y]] : z ∈ L↑(q) . (7)

Note that for every z ∈ CΣ and for every i ∈ 1.. h�(z), there exists x̃, ỹ ∈ CΣ such that z = x̃[[ỹ]]
and h�(x̃) = i. Using this, we rewrite statement (7) as follows:

q ∈ prex[[y]](F ) ⇔

∃x̃, ỹ ∈ CΣ, x̃[[ỹ]] ∼  x[[y]],h�(x̃) = h�(x) : x̃[[ỹ]] ∈ L↑(q) .

Using the definition of L↑(q) and →∗
A:

q ∈ prex[[y]](F ) ⇔

∃x̃, ỹ∈ CΣ, x̃[[ỹ]] ∼  x[[y]],h�(x̃) = h�(x),∃t, r∈ TQ :

ỹ[[q]] →∗
A r, x̃[[r(ε)]] →∗

A t, t(ε) ∈ F . (8)

Note that we are under the conditions of Lemma 4.9. Specifically, A has no unreachable states

and L(A) is path-closed, by hypothesis. Furthermore, h�(x) = h�(x̃), x̃[[ỹ]] ∈ L↑(q) and, since

x[[y]] ∼  x̃[[ỹ]], we have that ∃q′ ∈ Q : x[[y]] ∈ L↑(q
′). Therefore, by Lemma 4.9, we have that

x̃[[ỹ]] ∼  x[[y]] ⇔ x̃ ∼  x, and ỹ ∼
prex(F )

 y. Thus:

q ∈ prex[[y]](F ) ⇒

∃x̃, ỹ ∈ CΣ, (x̃ ∼  x), (ỹ ∼
prex(F )

 y),∃t, r ∈ TQ :

ỹ[[q]] →∗
A r, x̃[[r(ε)]] →∗

A t, t(ε) ∈ F . (9)

Notice that r(ε) ∈ prex(F ) since x̃ ∼  x and x̃ ∈ L↑(r(ε)). Then:

∃x̃, ỹ ∈ CΣ, (x̃ ∼  x), (ỹ ∼
prex(F )

 y),∃t, r ∈ TQ :

ỹ[[q]] →∗
A r, x̃[[r(ε)]] →∗

A t, t(ε) ∈ F ⇔

∃ỹ ∈ CΣ, ỹ ∼
prex(F )

 y,∃r ∈ TQ :

ỹ[[q]] →∗
A r, r(ε) ∈ prex(F ) ⇔

∃ỹ ∈ CΣ, ỹ ∼
prex(F )

 y : ỹ ∈ L↑(q,prex(F )) ⇔

y ∈ P
∼

prex(F ) 

(L↑(q,prex(F ))) ⇔

q ∈ prey(prex(F )) .
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(⇐). Now we show that ∀q ∈ Q : q ∈ prey(prex(F )) ⇒ q ∈ prex[[y]](F ). Observe that,

from the hypothesis q ∈ prey(prex(F )), we can follow the same reasoning as the one above

bottom-up up to Equation (9), as every statement is chained with a ⇔ symbol. Thus, we have

that:

q ∈ prex(prey(F )) ⇔

∃x̃, ỹ ∈ CΣ, (x̃ ∼  x), (ỹ ∼
prex(F )

 y),∃t, r ∈ TQ :

ỹ[[q]] →∗
A r, x̃[[r(ε)]] →∗

A t, t(ε) ∈ F . (10)

Now we check that we are under the hypotheses of Lemma 4.9. First, we have that h�(x) =
h�(x̃) since x̃ ∼  x. Also, ∃q ∈ Q : x̃[[ỹ]] ∈ L↑(q) (see Equation (10)). Finally, using that

x̃ ∼  x (which implies that ∃q1 ∈ Q : x ∈ L↑(q1)) and ỹ ∼
prex(F )

 y (which implies that ∃q2 ∈

Q : y ∈ L↑(q2,prex(F ))) together with Lemma 4.8, we conclude that ∃q′ ∈ Q : x[[y]] ∈ L↑(q
′).

Thus, we are indeed under the conditions of Lemma 4.9 and we have that:

q ∈ prex(prey(F )) ⇒

∃x̃, ỹ∈ CΣ, x̃[[ỹ]] ∼  x[[y]],h�(x̃) = h�(x),∃t, r∈ TQ :

ỹ[[q]] →∗
A r, x̃[[r(ε)]] →∗

A t, t(ε) ∈ F . (11)

Finally, from Equation (11), we can follow the same reasoning as the one given above from

Equation (8) bottom-up up to the statement q ∈ prex[[y]](F ), as every statement is chained with

a ⇔ symbol.

We conclude that ∀q ∈ Q, q ∈ prex[[y]](F ) ⇔ q ∈ prey(prex(F )).
⊓⊔

We are now in position to introduce BTA-based equivalences.

Definition 4.12. (BTA-based equivalences)

Let A = 〈Q,Σ, δ, F 〉 be a BTA and let t, r ∈ TΣ and x, y ∈ CΣ. The upward and downward BTA-

based equivalences are respectively given by:

t ∼u

A r
def
⇔ postt(i(A)) = postr(i(A))

x ∼d

A y
def
⇔ prex(F ) = prey(F ) .

Note that these equivalences have finite index since tree automata have finitely many states. Next,

we show that ∼u

A and ∼d

A enable Lemmas 3.3 and 3.9 respectively.

Lemma 4.13. Let A be a BTA with L = L(A). Then,

(a) ∼u

A is an upward congruence and ∼u

A ⊆ ∼u

L.

(b) If A has no unreachable states and L is path-closed then ∼d

A is a strongly downward congruence

w.r.t. L and ∼d

A ⊆ ∼d

L.
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Proof:

Let A = 〈Q,Σ, δ, F 〉 and, to simplify the notation, let I be the set i(A).

(a) ∼u

A is an upward congruence and ∼u

A ⊆ ∼u

L.

We first prove that ∼u

A is an upward congruence. Let f ∈ Σ and ti, ri ∈ TΣ for i ∈ 1..〈f〉 be

such that ti ∼
u

A ri. By Definition 4.12, we have that postti(I) = postri(I), for each i ∈ 1..〈f〉.
Therefore, by Lemma 4.11(a), we conclude that postf [t1,...,t〈f〉](I) = postf [r1,...,r〈f〉](I), i.e.,

f [t1, . . . , t〈f〉] ∼
u

A f [r1, . . . , r〈f〉].

Next, we show that ∀t, r ∈ TΣ : t ∼u

A r ⇒ L t−1 = Lr−1. Since t ∼u

A r, i.e., postt(I) =
postr(I), we have that

⋃
q∈postt(I)

L↑(q) =
⋃

q∈postr(I)
L↑(q). By Lemma 4.10(a), we con-

clude that Lt−1 = Lr−1.

(b) If A has no unreachable states and L is path-closed then ∼d

A is a strongly downward congruence

w.r.t. L and ∼d

A ⊆ ∼d

L.

First, we show that ∀x, y ∈ CΣ : x ∼d

A y ⇒ x−1L = y−1L. Since x ∼d

A y, i.e., prex(F ) =
prey(F ), we have that: ⋃

q∈prex(F )

L↓(q) =
⋃

q∈prey(F )

L↓(q) .

Since A has no unreachable states and L is path-closed, by Lemma 4.10(b), we conclude that

x−1L = y−1L.

Now we prove that ∼d

A is a downward congruence. Let x, y ∈ CΣ : x ∼d

A y, i.e., prex(F ) =
prey(F ). We will show that for every c ∈ CΣ, x[[c]] ∼d

A y[[c]], i.e., prex[[c]](F ) = prey[[c]](F ).
Relying on Lemma 4.11(b) we have that, prex[[c]](F ) = prec(prex(F )) = prec(prey(F )) =

prey[[c]](F ). Thus, we conclude that x[[c]] ∼d

A y[[c]].

Finally, we show that ∼d

A is strongly downward w.r.t. L. Let x, y ∈ CΣ : x ∼d

A y, t ∈ x−1L, r ∈
y−1L and t(ε) = r(ε), with t, r ∈ TΣ. We will prove that x[[t[[�]]i]] ∼d

A x[[r[[�]]i]] and

y[[t[[�]]i]] ∼
d

A y[[r[[�]]i]], for every i ∈ 1..〈f〉. Note that if the previous holds then, since ∼d

A

is a downward congruence, i.e., x[[t[[�]]i]] ∼
d

A y[[t[[�]]i]] and using transitivity of ∼d

A, we can

conclude that x[[t[[�]]i]] ∼
d

A y[[r[[�]]i]], for every i ∈ 1..〈f〉.

For the clarity of the argument, let us assume w.l.o.g. that t = f [t1, t2] and r = f [r1, r2].
Thus, we have to prove that x[[f [�, t2]]] ∼

d

A x[[f [�, r2]]] and x[[f [t1,�]]] ∼
d

A x[[f [r1,�]]], as

well as y[[f [�, t2]]] ∼
d

A y[[f [�, r2]]] and y[[f [t1,�]]] ∼
d

A y[[f [r1,�]]]. Note that, by definition,

x[[f [�, t2]]] ∼
d

A x[[f [�, r2]]] is equivalent to prex[[f [�,t2]]](F ) = prex[[f [�,r2]]](F ).

Assume q ∈ prex[[f [�,t2]]](F ), i.e., x[[f [�, t2]]] ∈ P∼  (L↑(q)). We will show that

q ∈ prex[[f [�,r2]]](F ).

As we have shown previously, x ∼d

A y ⇒ x−1L = y−1L. Therefore, since t ∈ x−1L and

r ∈ y−1L, then r ∈ x−1L and t ∈ y−1L. Hence, as A has no unreachable states and

r ∈ x−1L, we have that ∃q′ ∈ Q,∃t′ ∈ TQ : x[[f [q′, r2]]] →∗
A t′, t′(ε) ∈ F , i.e., ∃q′ ∈

Q : x[[f [�, r2]]] ∈ L↑(q
′). Note that, by Definition 4.3 (root-to-pivot equivalence w.r.t. F ),
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x[[f [�, t2]]] ∼  x[[f [�, r2]]]. Since, by hypothesis, x[[f [�, t2]]] ∈ P∼  (L↑(q)), we have that

x[[f [�, r2]]]∈P∼  (L↑(q)). By definition of prex[[f [�,r2]]](F ), we conclude that q∈prex[[f [�,r2]]](F )

and thus, prex[[f [�,t2]]](F ) ⊆ prex[[f [�,r2]]](F ).

The proof of prex[[f [�,r2]]](F ) ⊆ prex[[f [�,t2]]](F ) goes similarly.

Thus, we have that x[[f [�, t2]]] ∼
d

A x[[f [�, r2]]]. On the other hand, the proof of x[[f [t1,�]]] ∼
d

A

x[[f [r1,�]]] is symmetric.

Finally, note that the remainder of the proof, i.e., y[[f [�, t2]]] ∼
d

A y[[f [�, r2]]] and y[[f [t1,�]]] ∼
d

A

y[[f [r1,�]]] is symmetric, replacing x by y. ⊓⊔

The next example illustrates the need of root-to-pivot equivalence to define pre(·) in order to

ensure that the automata-based downward congruence is indeed strongly downward.

Example 4.14. Consider the BTA A = 〈Q,Σ0 ∪Σ2, δ, F 〉 with Q = {qa, qb, qc, qf , q•}, Σ0 =
{a, b, c}, Σ2 = {f}, F = {qf}, and s.t. δ is defined as follows: {qf} = δ(f [qa, qa]) = δ(f [qb, qb]) =
δ(f [qc, qc]) = δ(f [q•, q•]); {qa, q•} = δ(a[ ]); {qb, q•} = δ(b[ ]), and {qc, q•} = δ(c[ ]). We will con-

struct Hd(∼d,L(A)) = 〈Q′,Σ0 ∪ Σ2, δ
′, F ′〉 where ∼d is a downward congruence defined as follows.

For each x, y ∈ CΣ:

x ∼d y
def
⇔ wpreAx (F ) = wpreAy (F ) ,

where wpreAx (S)
def
= {q ∈ Q | x ∈ L↑(q, S)}, with S ⊆ Q. Note that the definition of wpreAx (S) is

similar to that of preAx (S) (Definition 4.5) except that we drop root-to-pivot equivalence.

It is easy to check that ∼d defines the following blocks:

• P∼d(X1), where X1 = {f [�, a], f [a,�]}, since wprex(F ) = {qa, q•}, ∀x ∈ X1;

• P∼d(X2), where X2 = {f [�, b], f [b,�]}, since wprex(F ) = {qb, q•}, ∀x ∈ X2;

• P∼d(X3), where X3 = {f [�, c], f [c,�]}, since wprex(F ) = {qc, q•}, ∀x ∈ X3;

• P∼d(�) since wprex(F ) = {qf}; and

• P∼d(X4), where X4 = CΣ0∪Σ2 \ (X1 ∪X2 ∪X3 ∪ {�}) since wprex(F ) = ∅, ∀x ∈ X4.

By Definition 3.5, Q′ = {P∼d(X1), P∼d(X2), P∼d(X3), P∼d(�)}, F ′ = P∼d(�) and δ′ is defined

as follows: {P∼d(X1)} = δ′(a[ ]); {P∼d(X2)} = δ′(b[ ]); {P∼d(X3)} = δ′(c[ ]); and {P∼d(�)} =
δ′(f [P∼d(Xi), P∼d(Xj)]), ∀i, j∈{1, 2, 3}. For instance, note that P∼d(�)∈δ′(f [P∼d(X3), P∼d(X1)])
since there exist t1 = a[ ], t2 = c[ ] such that �[[f [a, c][[�]]1]] ∈ P∼d(X3) and �[[f [a, c][[�]]2]] ∈
P∼d(X1).

However, observe that H
d(∼d,L(A)) is not co-deterministic since, for instance, P∼d(�) ∈

δ′(f [P∼d(X3), P∼d(X1)]) and P∼d(�) ∈ δ′(f [P∼d(X1), P∼d(X3)]) where P∼d(X1) 6= P∼d(X3).
This is because ∼d is not a strongly downward congruence w.r.t. L(A). In fact, in Definition 3.8, let

x = y = � and t = f [a, c], r = f [a, a] where x[[t]], y[[r]] ∈ L(A). Then, note that (trivially) x ∼d y,

but x[[t[[�]]1]] = f [�, a] 6∼d f [�, c] = x[[r[[�]]1]].

Now we will build H
d(∼d

A,L(A)) = 〈Q′,Σ0 ∪ Σ2, δ
′, F ′〉 where ∼d

A is the automata-based down-

ward congruence (Definition 4.12). Note that ∼d

A defines the following classes of equivalence:
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• P∼d

A
(X), where X = {f [�, a], f [a,�], f [�, b], f [b,�], f [�, c], f [c,�]}, as prex(F ) = {qa, qb,

qc, q•}, ∀x ∈ X;

• P∼d

A
(�) as prex(F ) = {qf}; and

• P∼d

A
(X4), where X4 = CΣ0∪Σ2 \ (X ∪ {�}).

Notice that X = X1 ∪ X2 ∪ X3. According to Definition 3.5, Q′ = {P∼d

A
(X), P∼d

A
(�)}, F ′ =

{P∼d

A
(�)} and δ′ is defined as follows: {P∼d

A
(X)} = δ′(a[ ]) = δ′(b[ ]) = δ′(c[ ]) and {P∼d

A
(�)} =

δ′(f [P∼d

A
(X), P∼d

A
(X)]).

Note that H
d(∼d

A,L(A)) is co-deterministic as ∼d

A is a strongly downward congruence w.r.t.

L(A). The reader may check that Hd(∼d

A,L(A)) is isomorphic to the co-DBTA AcD that results

from applying the co-determinization operation to A and removing empty states. ♦

In the light of the Lemma 4.13, the upward BTA-based congruences are indeed finer than (or

equal to) the language-based ones, i.e., ∼u

A ⊆ ∼u

L. So are their downward counterparts if A has no

unreachable states and L(A) is path-closed. The following theorem gives a sufficient condition for the

language-based and the BTA-based congruences to coincide.

Theorem 4.15. Let A be a BTA such that L = L(A) is a path-closed language. Then,

(a) If A is a co-DBTA with no empty states, then ∼u

A = ∼u

L.

(b) If A is a DBTA with no unreachable states then ∼d

A = ∼d

L.

Proof:

(a) If A is a co-DBTA with no empty states, then ∼u

A = ∼u

L.

By Lemma 4.13(a), we have that ∼u

A ⊆ ∼u

L.

Next, we show that if A is a co-DBTA without empty states, then ∼u

L ⊆ ∼u

A. To simplify the

notation, let I denote the set i(A).

First, note that since A has no empty states, Lt−1 = Lr−1 = ∅ iff postt(I) = postr(I) = ∅.

Now we consider the case Lt−1 = Lr−1 6= ∅ and proceed by contradiction. Assume that

L t−1 = Lr−1 and postt(I) 6= postr(I). Recall that:

L t−1 =

{x ∈ CΣ | x[[t]] ∈ L} =

{x ∈ CΣ | ∃t′∈TQ : x[[t]] →∗
A t′, t′(ε) ∈ F, ℓ(t′) ⊆ I} =†

{x ∈ CΣ | ∃t′∈TQ : x[[q]] →∗
A t′, t′(ε) ∈ F, q ∈ postt(I)} .

Note that, from the statement to the left of the equality † we have that t ∈ L↓(q, I) for some

q ∈ Q, which is equivalent to the fact q ∈ postt(I).

By hypothesis, Lt−1 = Lr−1 6= ∅, and thus we can assume that there exists q′ ∈ Q with q′ 6= q
such that q ∈ postt(I) ∩ (postr(I))

∁ and q′ ∈ postr(I). Then, there exists t′ ∈ TΣ : x[[q]] →∗
A
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t′, t′(ε) ∈ F , and there exists r′ ∈ TΣ : x[[q′]] →∗
A r′, r′(ε) ∈ F . Since |F | = 1, Lt−1 = Lr−1

and q 6= q′, there exists necessarily q0 ∈ Q and f ∈ Σ such that |δ−1(q0) ∩ {f} × Q〈f〉| > 1.

This is a contradiction since A is co-deterministic. Therefore, we conclude that if Lt−1 = Lr−1

then postt(I) = postr(I).

(b) If A is a DBTA with no unreachable states then ∼d

A = ∼d

L.

Since A has no unreachable states and L = L(A) is path-closed, by Lemma 4.13(b), we have

that ∼d

A is a strongly downward congruence w.r.t. L and ∼d

A ⊆ ∼d

L.

Now we show that, in particular, if A is a DBTA then ∼d

A = ∼d

L. Given x, y ∈ CΣ with

x−1L = y−1L, we will show that prex(F ) = prey(F ).

By Lemma 4.10(b) and the fact that x−1L = y−1L, we have that:

x−1L =
⋃

q∈prex(F )

L↓(q) =
⋃

q∈prey(F )

L↓(q) = y−1L . (12)

First, note that A has no unreachable states, i.e., ∀q ∈ Q : L↓(q) 6= ∅. In particular, ∀q ∈
prex(F ) : L↓(q) 6= ∅.

Second, we prove that if A is a DBTA then, for every pair of states q, q′ ∈ Q, L↓(q) = L↓(q
′)

implies q = q′. The proof goes by contradiction. Assume that q 6= q′. Then, since L↓(q) =
L↓(q

′), for every t ∈ L↓(q), there exists t′, t′′ ∈ TQ with t′ 6= t′′ s.t. t →∗
A t′, t′(ε) = q and

t →∗
A t′′, t′′(ε) = q′′. Therefore, for some t0 ∈ TΣ∪Q satisfying that t →∗

A t0 →∗
A t′ and

t →∗
A t0 →∗

A t′′, we have that |δ(t0)| > 1. This is a contradiction since A is deterministic.

Thus, we conclude that if A is a DBTA then L↓(q) = L↓(q
′) implies q = q′.

Finally, we prove that prex(F )=prey(F ) by contradiction. Assume w.l.o.g. that q ∈ prex(F )∩

(prey(F ))∁. Thus, as we have shown before, for each q′ ∈ prey(F ) with q′ 6= q, we have that

L↓(q) 6= L↓(q
′). Therefore, equality (12) does not hold, which yields to contradiction. We

conclude that, necessarily, prex(F ) = prey(F ).
⊓⊔

Finally, the following lemma shows that the blocks of ∼u

L (resp. ∼d

L) can be described as inter-

sections of complemented (using the symbol ∁ in superscript) and uncomplemented downward (resp.

upward) quotients of L. Similarly, the blocks of ∼u

A correspond to intersections of complemented and

uncomplemented downward languages of states of A.

For the counterpart characterization of the blocks of ∼d

A, the result is not symmetric to that of the

blocks of ∼u

A. This is expected as ∼d

A is based on our definition of pre(·), which in turn is defined

not only in terms of upward languages but also uses the notion of root-to-pivot equivalence. We will

use this lemma to give the generalization of Brzozowski’s method for the construction of the minimal

DBTA (in Section 5.1).

Lemma 4.16. Let A = 〈Q,Σ, δ, F 〉 be a BTA without unreachable states and such that L = L(A)
and I = i(A).
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Then, for every t ∈ TΣ, x ∈ CΣ, we have that:

P∼u

L
(t) =

⋂

y∈L t−1

y−1L ∩
⋂

y/∈L t−1

(y−1L)∁

P∼d

L
(x) =

⋂

r∈x−1L

Lr−1 ∩
⋂

r /∈x−1L

(Lr−1)∁

P∼u

A
(t) =

⋂

q∈postt(I)

L↓(q) ∩
⋂

q /∈postt(I)

(L↓(q))
∁

P∼d

A
(x) =

⋂

q∈prex(F )

P∼  (L↑(q)) ∩
⋂

q /∈prex(F )

(P∼  (L↑(q)))
∁ .

Proof:

Let us start with the equalities on the upward congruences ∼u

L and ∼u

A.

For each r ∈ TΣ we have that:

r ∈
⋂

y∈Lt−1

y−1 L ∩
⋂

y/∈Lt−1

(y−1 L)∁ ⇔†

∀y ∈ CΣ : y ∈ Lt−1 ⇔ r ∈ y−1 L ⇔††

∀y ∈ CΣ : y ∈ Lt−1 ⇔ y ∈ Lr−1 ⇔

Lt−1 = Lr−1 ⇔

r ∈ P∼u

L
(t) ,

where double-implication † holds by definition of set intersection and †† holds since, for every r ∈
TΣ, y ∈ CΣ : r ∈ y−1L ⇔ y ∈ Lr−1.

On the other hand, for each r ∈ TΣ:

r ∈
⋂

q∈postt(I)

L↓(q, I) ∩
⋂

q /∈postt(I)

(L↓(q, I))
∁ ⇔

∀q ∈ Q : q ∈ postt(I) ⇔ r ∈ L↓(q, I) ⇔
†

∀q ∈ Q : q ∈ postt(I) ⇔ q ∈ postr(I) ⇔

postt(I) = postr(I) ⇔

r ∈ P∼u

A
(t) ,

where double-implication † holds as, for each r ∈ TΣ, q ∈ Q : r ∈ L↓(q, I) ⇔ q ∈ postr(I).

Now we move to the equalities on downward congruences. First, for each z ∈ CΣ we have that:

z ∈
⋂

r∈x−1L

Lr−1 ∩
⋂

r /∈x−1L

(Lr−1)∁ ⇔

∀r ∈ TΣ : r ∈ x−1L ⇔ z ∈ Lr−1 ⇔†

∀r ∈ TΣ : r ∈ x−1L ⇔ r ∈ z−1L ⇔

x−1L = z−1L ⇔

z ∈ P∼d

L
(x) ,
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where double-implication † holds since, for each z ∈ CΣ, r ∈ TΣ : r ∈ z−1L ⇔ z ∈ Lr−1.

Finally, we prove the last equality. For each z ∈ CΣ we have that:

z ∈
⋂

q∈prex(F )

P∼  (L↑(q)) ∩
⋂

q /∈prex(F )

(P∼  (L↑(q)))
∁ ⇔

∀q ∈ Q : q ∈ prex(F ) ⇔ z ∈ P∼  (L↑(q)) ⇔
†

∀q ∈ Q : q ∈ prex(F ) ⇔ q ∈ prez(F ) ⇔

prex(F ) = prez(F ) ⇔

z ∈ P∼d

A
(x) ,

where double-implication † holds as, for each z ∈ CΣ, q ∈ Q : z ∈ P∼  (L↑(q)) ⇔ q ∈ prez(F ). ⊓⊔

4.1. Determinization and minimization of BTAs using congruences

In what follows, we will use Min
u,Min

d and Det
u,Detd to denote the constructions H

u,Hd when

applied, respectively, to the language-based congruences induced by a regular tree language and the

automata-based congruences induced by a BTA.

Definition 4.17. (Min
u,Min

d and Det
u,Detd)

Let A be a BTA with L = L(A). Define:

Min
u(L)

def
= H

u(∼u

L, L) Det
u(A)

def
= H

u(∼u

A, L)

Min
d(L)

def
= H

d(∼d

L, L) Det
d(A)

def
= H

d(∼d

A, L) .

All the above constructions yield to BTAs defining the language L (recall that, additionally, we

need L to be path-closed when using the downward congruences). Concretely, Detu(A) and Det
d(A)

correspond to the bottom-up determinization and co-determinization operations defined in Section 2.

On the other hand, since Min
u(L) and Min

d(L) are constructed upon the language-based con-

gruences, the resulting BTAs are minimal. More precisely, Min
u(L) yields the minimal DBTA for

L, and Min
d(L) yields the minimal co-DBTA, as long as L is path-closed. Finally, since Det

d(A)
is a co-DBTA satisfying the conditions of Theorem 4.15(a), when we apply to it the determinization

operation (Detu) we obtain the minimal DBTA for L. Note that the fact that we construct it upon

the co-DBTA Det
d(A) requires that L is path-closed. A similar result holds when co-determinizing

(Detd) the DBTA Det
u(A). All these notions are summarized by the following theorem.

Theorem 4.18. Let A be a BTA with L = L(A). Then the following properties hold:

(a) L(Min
u(L)) = L = L(Detu(A)).

(b) If L is path-closed then L(Min
d(L)) = L = L(Detd(A)).

(c) Det
u(A) ≡ AD.

(d) If L is path-closed and A has no unreachable states then Det
d(A) ≡ AcD.
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(e) Min
u(L) is isomorphic to the minimal DBTA for L.

(f) If L is path-closed then Min
d(L) is isomorphic to the minimal co-DBTA of L.

(g) If L is path-closed then Det
u(Detd(A)) ≡ Min

u(L).

(h) If L is path-closed then Det
d(Detu(A)) ≡ Min

d(L).

Proof:

Let A
def
= 〈Q,Σ, δ, F 〉.

(a) L(Min
u(L)) = L = L(Detu(A)).

It is well-known that ∼u

L is an upward congruence [17, 1] and, by Lemma 4.13(a), so is ∼u

A. By

definition, we have that t ∼u

L r ⇒ Lt−1 = Lr−1. On the other hand, also by Lemma 4.13(a),

we have that ∼u

A ⊆ ∼u

L. Therefore, by Lemma 3.3, L(Min
u(L)) = L = L(Detu(A)).

(b) If L is path-closed then L(Min
d(L)) = L = L(Detd(A)).

Lemmas 4.2 and 4.13(b) show that both ∼d

L and ∼d

A are downward congruences satisfying the

condition of Lemma 3.7. Therefore, L(Min
d(L)) = L = L(Detd(A)).

(c) Det
u(A) ≡ AD.

Recall that, given A = 〈Q,Σ, δ, F 〉, AD denotes the DBTA that results from applying the

bottom-up determinization to A and removing all unreachable states. Let AD = 〈Qd,Σ, δd, Fd〉
and Det

u(A) = 〈Q̃,Σ, δ̃, F̃ 〉.

Let P be the partition induced by ∼u

A and let ϕ : Q̃ → Qd be the mapping assigning to each

state P (t) ∈ Q̃, the set postAt (i(A)) ∈ Qd with t ∈ TΣ. Observe that ϕ is well-defined since,

by def. 4.12, t ∼u

A r iff postAt (i(A)) = postAr (i(A)). We show that ϕ is BTA isomorphism

between Det
u(A) and AD. First, we show that ϕ(i(Detu(A))) = i(AD). To simplify the

notation, let us denote i(A) as I .

ϕ(i(Detu(A))) =

ϕ({P (t) ∈ Q̃ | ∃a ∈ Σ0 : P (t) ∈ δ̃(a[ ])}) = [Def. of ϕ]

{postAt (I) | ∃a ∈ Σ0 : P (t) ∈ δ̃(a[ ])} = [Def. 3.1]

{postAt (I) | ∃a ∈ Σ0 : a ∈ P (t)} = [Def. of P ]

{postAt (I) | ∃a ∈ Σ0 : posta(I) = postt(I)} .

Rewriting the above equation we have that:

ϕ(i(Detu(A))) =

{posta(I) | a ∈ Σ0} = [Def. of posta(I)]

{q ∈ Q | q ∈ δ(a[ ]), a ∈ Σ0} = [Def. of i(AD)]

i(AD) .

Next, we show that ϕ is surjective, i.e. ∀S ∈ Qd,∃t ∈ TΣ : S = postAt (I). We proceed

by induction on the structure of AD, i.e., we set the base case to S = i(AD) and we use the

transition function δd onwards to reach all S ∈ Qd. Recall that AD has no unreachable states.



32 P. Ganty et al. / A Congruence-Based Perspective on Finite Tree Automata

• Base case: Let S = i(AD). Then, S = posta(I), with a ∈ Σ0.

• Inductive step: W.l.o.g., let us assume that f ∈ Σ with 〈f〉 = 2. Let S, S1, S2 ∈ Qd

be such that S ∈ δd(f [S1, S2]). Assume ∃t1, t2 ∈ TΣ such that Si = postti(I) with

i ∈ {1, 2}. Then,

S =

{q ∈ Q | ∃q1 ∈ S1, q2 ∈ S2, q ∈ δ(f [q1, q2])} =

{q ∈ Q | ∃q1 ∈ postt1(I), q2 ∈ postt2(I),

q ∈ δ(f [q1, q2])} =

postf [t1,t2](I) ,

where the first equality holds by definition of AD, the second equality holds by definition

of Si with i ∈ {1, 2}, and the third equality holds using Lemma 4.11(a).

Since AD keeps only reachable states, it follows that ∀S ∈ Qd,∃t ∈ TΣ : ϕ(P (t)) = S,

i.e. ϕ is surjective.

It is routine to check that ϕ is injective for otherwise there exists t 6∼u

A r with postAt (i(A)) =
postAr (i(A)) which contradicts definition 4.12. We thus conclude from above (ϕ is injective

and surjective) that ϕ is bijective.

Next, we show that ϕ(F̃ ) = Fd:

ϕ(F̃ ) = [Def. 3.1]

ϕ({P (t) | t ∈ L}) = [Def. of ϕ]

{postAt (I) | t ∈ L} = [Def. of L(A)]

{postAt (I) | post
A
t (I) ∩ F 6= ∅} =

Fd .

Note that the last equality holds by definition of AD and using the fact that ϕ is bijective.

Finally, w.l.o.g., assume that f ∈ Σ with 〈f〉 = 2, and let P (t), P (t1), P (t2) ∈ Q̃. By definition

of AD we have that:

ϕ(P (t)) ∈ δd(f [ϕ(P (t1)), ϕ(P (t2))]) ⇔

postAt (I) = {q′ ∈ Q | ∃q′i ∈ postti(I) : q
′ ∈ δ(f [q′1, q

′
2])} .

Using Lemma 4.11(a), we have that the above equation is equivalent to:

postAt (I) = postf [t1,t2](I) ⇔ [Def. ∼u

A]

t ∼u

A f [t1, t2] ⇔ [Def. of P ]

P (t) = P (f [t1, t2]) ⇔
† [f [P (t1), P (t2)] ⊆ P (f [t1, t2])]

f [P (t1), P (t2)] ⊆ P (t) ⇔ [Def. 3.1]

P (t) ∈ δ̃(f [P (t1), P (t2)]) .



P. Ganty et al. / A Congruence-Based Perspective on Finite Tree Automata 33

Note that double-implication † holds since ∼u

A is an upward congruence and thus, f [P (t1),
P (t2)] ⊆ P (f [t1, t2]).

(d) If L is path-closed and A has no unreachable states then Det
d(A) ≡ (A)cD.

Recall that, given A = 〈Q,Σ, δ, F 〉, AcD = 〈Qd,Σ, δd, Fd〉 denotes the co-DBTA that re-

sults from applying the co-determinization operation to A and removing all empty states. Let

Det
d(A) = 〈Q̃,Σ, δ̃, F̃ 〉. Let P be the partition induced by ∼d

A and let ϕ : Q̃ → Qd be the map-

ping assigning to each state P (x) ∈ Q̃, the set preAx (F ) ∈ Qd. Observe that ϕ is well-defined

since, by def. 4.12, x ∼d

A y iff preAx (F ) = preAy (F ). We show that ϕ is an isomorphism

between Det
d(A) and AcD. First, we show that ϕ(F̃ ) = Fd.

ϕ(F̃ ) = [Def. 3.5]

ϕ({P (�)}) = [Def. of ϕ]

{preA� (F )} = [Def. of preA�(F )]

{F} = [Def. of Fd]

Fd .

Next, we show that ϕ is surjective, i.e. ∀S ∈ Qd,∃x ∈ CΣ with x−1L 6= ∅ : S = preAx (F ). We

proceed by induction on the structure of AcD, i.e., we set the base case to S = Fd and we use

the transition function δd backwards to reach all S ∈ Qd. Recall that AcD has no empty states

and the set of states of Detd(A), i.e., Q̃, is defined as Q̃ = {P (x) | x ∈ CΣ, x
−1L 6= ∅}.

• Base case: Let S = Fd. Then S = preAx (F ) with x = �.

• Inductive step: Now, let f ∈ Σ and let S, S1, . . . , S〈f〉 ∈ Qd be such that S ∈ δd(f [S1, . . . ,

S〈f〉]). By I.H., ∃x ∈ CΣ with x−1L 6= ∅ : S = preAx (F ). Now let us show that

∀i ∈ 1..〈f〉,∃z ∈ CΣ with z−1L 6= ∅ : Si = preAz (F ). By definition of AcD we have

that, for all i ∈ 1..〈f〉:

Si = {qi ∈ Q | ∃q′ ∈ S,∃q1, . . . , qi−1, qi+1, . . . , q〈f〉 ∈ Q :

q′ ∈ δ(f [q1, . . . , q〈f〉])} .

Since A has no unreachable states, the above set is equivalent to:

{qi ∈ Q | ∃t ∈ TΣ,∃r ∈ TQ : t(ε) = f, t[[qi]]i →
∗
A r,

r(ε) ∈ S} . (13)

Note that qi ∈ Q belongs to the set in (13) iff qi ∈ pret̃[[�]]i
(S), for every t̃ ∈ TΣ with

t̃[[�]]i ∼
S t[[�]]i. In fact, ∃t ∈ TΣ,∃r ∈ TQ : t(ε) = f, r(ε) ∈ S and t[[qi]]i →

∗
A r implies

that qi ∈ pret̃[[�]]i
(S) by setting t̃[[�]]i = t[[�]]i. On the other hand, if qi ∈ pret̃[[�]]i

(S)

with t̃[[�]]i ∼
S t[[�]]i then, by definition of pret̃[[�]]i

(S), ∃y ∈ CΣ with y ∼S t̃[[�]]i : y ∈

LA
↑ (qi, S). Therefore, ∃t ∈ TΣ,∃r ∈ TQ : t(ε) = f, t[[qi]]i →

∗
A r and r(ε) ∈ S by setting

t[[�]]i = y.
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Thus, the set in (13) is equivalent to:

{qi ∈ Q | ∃t̃ ∈ TΣ : t̃[[�]]i ∼
S t[[�]]i, qi ∈ preA

t̃[[�]]i
(S)} .

By induction hypothesis we have that the above set is equivalent to:

{qi ∈ Q | ∃t̃ ∈ TΣ, ∃x ∈ CΣ : t̃[[�]]i ∼
S t[[�]]i, x

−1L 6= ∅,

qi ∈ preA
t̃[[�]]i

(preAx (F ))} .

Finally, using Lemma 4.11(b), the latter is equivalent to:

{qi ∈ Q | ∃t̃ ∈ TΣ, ∃x ∈ CΣ : t̃[[�]]i ∼
S t[[�]]i, x

−1L 6= ∅,

qi ∈ preA
x[[t̃[[�]]i]]

(F )} .

Therefore, for all non-empty Si ∈ Qd, there exists z(= x[[t̃[[�]]i]]) ∈ CΣ with z−1L 6= ∅
such that Si = preAz (F ) and, since AcD has no empty states, it follows that ϕ is surjective.

It is routine to check that ϕ is injective for otherwise there exists x 6∼d

A y with preAx (F ) =
preAy (F ) which contradicts definition 4.12. We thus conclude from above (ϕ is injective and

surjective) that ϕ is bijective.

On the other hand, ϕ(i(Detd(A))) = i(AcD) since:

ϕ(i(Detd(A))) =

ϕ({P (x) ∈ Q̃ | ∃a ∈ Σ0 : P (x) ∈ δ̃(a[ ])}) =

{preAx (F ) | ∃a ∈ Σ0 : P (x) ∈ δ̃(a[ ])} =

{preAx (F ) | ∃a ∈ Σ0 : P (x)[[a]] ⊆ L} .

By definition of L(A) and Lemma 4.7 we have that the above set is equivalent to:

{preAx (F ) | ∃a ∈ Σ0,∃q ∈ prex(F ) : q ∈ δ(a[ ])} .

Finally, since ϕ is bijective we have that the latter is equivalent to:

{qd ∈ Qd | ∃a ∈ Σ0,∃q ∈ qd : q ∈ δ(a[ ])} = [Def. of δd]

{qd ∈ Qd | ∃a ∈ Σ0 : qd ∈ δd(a[ ])} = [Def. of i(AcD)]

i(AcD) .

Finally, we prove that:

ϕ(P (x)) ∈ δd(f [ϕ(P (x1)), . . . , ϕ(P (x〈f〉))]) iff

P (x) ∈ δ̃(f [P (x1), . . . , P (x〈f〉)]) ,

where P (x), P (x1), . . . , P (xk) ∈ Q̃ and f ∈ Σ.
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Note that, by definition of AcD and ϕ, ϕ(P (x)) ∈ δd(f [ϕ(P (x1)), . . . , ϕ(P (x〈f〉))]) iff, for

each i ∈ 1..〈f〉 :

preAxi
(F ) = {qi ∈ Q | ∃q ∈ preAx (F ),∃q1, . . . , q〈f〉 ∈ Q :

q ∈ δ(f [q1, . . . , q〈f〉])} .

Since A has no unreachable states, for all i ∈ 1..〈f〉, we have that:

preAxi
(F ) = {qi ∈ Q | ∃q ∈ preAx (F ),∃t ∈ L↓(q) :

t(ε) = f, qi ∈ preAt[[�]]i
({q})} .

By Lemma 4.11(b), we have that the above equality is equivalent to:

∃t ∈ TΣ : t(ε) = f,preAxi
(F ) = preAx[[t[[�]]i]]

(F ) ⇔

∃t ∈ TΣ : t(ε) = f, xi ∼
d

A x[[t[[�]]i]] ⇔

∃t ∈ TΣ : t(ε) = f, P (xi) = P (x[[t[[�]]i]]) ⇔
†

∃t ∈ TΣ : t(ε) = f, P (x)[[t[[�]]i]] ⊆ P (xi) ⇔

P (x) ∈ δ̃(f [P (x1), . . . , P (xk)]) .

Note that double-implication † holds since ∼d

A is a downward congruence and thus,

P (x)[[t[[�]]i]] ⊆ P (x[[t[[�]]i]]).

(e) Min
u(L) is isomorphic to the minimal DBTA for L.

Let P be the partition induced by the Nerode’s upward congruence ∼u

L. As shown by Comon et

al. [1], the minimal DBTA for L is the BTA M = 〈Q′,Σ, δ′, F ′〉 where Q′ = {P (t) | t ∈ TΣ},

F ′ = {P (t) | t ∈ L} and δ′(f [P (t1), . . . , P (t〈f〉)]) = P (f [t1, . . . , t〈f〉]) for every f ∈ Σ and

t, t1, . . . , t〈f〉 ∈ TΣ. Hence, it is easy to check that M ≡ Min
u(L).

(f) If L is path-closed then Min
d(L) is isomorphic to the minimal co-DBTA for L.

Trivially, ∼d def
= ∼d

L is the coarsest strongly downward congruence w.r.t. L that satisfies:

∀x, y ∈ CΣ : x ∼d y ⇒ x−1L = y−1L . (14)

Next, we show that Min
d(L) is the minimal co-DBTA for L by contradiction.

Let A′ = 〈Q,Σ, δ, F 〉 be a co-DBTA for L with strictly fewer states than Min
d(L). Note that

we can assume that A′ has no unreachable states, otherwise we could simply remove them and

obtain a smaller equivalent co-DBTA.

First, we show that, for every co-DBTA A = 〈Q,Σ, δ, F 〉 with no unreachable states, the set

preAx (F ) is a singleton, for every x ∈ CΣ. We proceed by contradiction. Let F = {qf}, x ∈ CΣ
and assume that ∃q, q′ ∈ Q with q 6= q′ and such that q, q′ ∈ preAx (F ) , i.e., x ∈ P∼  (L↑(q))

and x ∈ P∼  (L↑(q
′)). By definition of P∼  , ∃y ∼  x : y ∈ L↑(q) and ∃y′ ∼  x : y ∈ L↑(q

′),
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i.e., ∃t, t′ ∈ TQ : y[[q]] →∗
A t, y′[[q′]] →∗

A t′ and t(ε) = t′(ε) = qf . Observe that y ∼  y′, by

transitivity of ∼  .

Since q 6= q′, t(ε) = t′(ε) = qf and y ∼  y′, there exists necessarily y1, y
′
1 ∈ CΣ∪Q with

y1 ∼  y
′
1, ri, r

′
i ∈ TQ, f ∈ Σ and q0 ∈ Q s.t.:

y[[q]] →∗
A y1[[f [r1, . . . , r〈f〉]]] →A x̃[[q0[r1, . . . , r〈f〉]]] →

∗
A t

and

y′[[q′]] →∗
A y′1[[f [r

′
1, . . . , r

′
〈f〉]]] →A ỹ[[q0[r

′
1, . . . , r

′
〈f〉]]] →

∗
A t′ ,

where ri 6= r′i, for some i ∈ 1..〈f〉. It follows that ∃q0 ∈ δ(f [r1(ε), . . . , r〈f〉(ε)]) and q0 ∈
δ(f [r′1(ε), . . . , r

′
〈f〉(ε)]) with ri(ε) 6= r′i(ε) for some i ∈ 1..〈f〉, which contradicts the fact that

A is co-deterministic. Thus, we conclude that if A is a co-DBTA with no unreachable states,

preAx (F ) is a singleton, for every x ∈ CΣ.

Therefore, ∼d

A′ , which by Lemma 4.13(b) is a strongly downward congruence w.r.t. L that

satisfies Equation (14), has as many equivalence classes as states has A′. Since A′ has fewer

states than Min
d(L), it follows that ∼d

A′ ⊂ ∼d

L, which contradicts the fact that ∼d

L is the coarsest

strongly downward congruence that satisfies Equation (14).

Therefore A′ has, at least, as many states as Min
d(L) and, as a consequence, Min

d(L) is the

minimal co-DBTA for L.

(g) If L is path-closed then Det
u(Detd(A)) ≡ Min

u(L).

It follows from Corollary A.4 and 3.9 that Detd(A) is a co-DBTA with L(A) = L(Detd(A)).
Furthermore, by Remark 3.6, Detd(A) has no empty states. Therefore, by Theorem 4.15(a), we

have that ∼u

Det
d(A)

= ∼u

L(A) so Det
u(Detd(A)) ≡ Min

u(L).

(h) If L is path-closed then Det
d(Detu(A)) ≡ Min

d(L).

It follows by Remark 3.2 that Detu(A) is a DBTA with no unreachable states. Furthermore, by

Lemma 3.3, L(A) = L(Detu(A)) . Thus, by Theorem 4.15(b), we have that ∼d

Det
u(A) = ∼d

L(A),

so Det
d(Detu(A)) ≡ Min

d(L). ⊓⊔

5. A congruence-based perspective on Brzozowski’s method

Brzozowski’s double-reversal method [15] is a classical algorithm for minimizing word automata. It

relies on the fact that determinizing a co-deterministic automaton N yields the minimal determin-

istic automaton for the language of N . In this section, we show, as an easy consequence of Theo-

rem 4.18(c), (d), and (g), that this algorithm can be adapted for finding the minimal DBTA for the

language of a given BTA. To the best of our knowledge this is the first proof of correctness of this

method for minimizing bottom-up tree automata. A precise statement is given next followed by a

justification.

Corollary 5.1. Let A be a BTA without unreachable states such that L = L(A) is a path-closed

language. Then, (AcD)D ≡ Min
u(L).
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To be precise, Brzozowski’s double-reversal method for word automata constructs the interme-

diate co-deterministic automaton by combining a reverse operation, followed by a determinization

operation and then a reverse operation again. However, the reverse construction applied to BTAs, i.e.,

the operation that flips the direction of the transition function and switches final states by initial states,

does not yield a BTA. On the contrary, it produces, a top-down tree automaton (TTA).

Top-down tree automata (see [1] for a detailed description of this model), as opposed to the class

of BTAs, start their computations from the root, which is an initial state of the automaton, down to

the leaves. Since TTAs can be interpreted as the reverse of BTAs, indeed both classes of automata

define the regular tree languages, all the results of Section 4 have TTA-equivalents that we defer to

Appendix A.1. It is worth noting that, as co-DBTAs, deterministic TTAs are strictly less expressive

than the general TTAs and define the subclass of path-closed languages. Since Brzozowski’s method

goes through the construction of an intermediate co-DBTA AcD, this algorithm is restricted to BTAs

defining path-closed tree languages.

Relying on the definitions and notation we introduce in Appendix A.1, we conclude this section

by stating Brzozowski’s method using the reverse operation. Namely, given a BTA A, AR denotes the

reverse TTA of A and (AR)D denotes the result of applying the counterpart determinization operation

on TTAs. Thus, ((AR)D)R ≡ AcD and the following holds.

Corollary 5.2. Let A be a BTA without unreachable states such that L = L(A) is a path-closed

language. Then, (((AR)D)R)D ≡ Min
u(L).

5.1. Generalization of Brzozowski’s method

Brzozowski’s double-reversal methods builds a co-DBTA in order to guarantee, by Theorem 4.15(a),

that determinizing the automaton produces the minimal DBTA.

In the word automata case, Brzozowski and Tamm [18] showed that going through a co-deterministic

automata is not necessary and defined a class of automata, which strictly contains the co-deterministic

ones, for which determinizing the automata yields the minimal deterministic automaton. Next we

generalize that result from word to trees which, incidentally, allows us to drop the restriction to the

path-closed languages.

Theorem 5.3. Let A = 〈Q,Σ, δ, F 〉 be a BTA with L = L(A). Then Det
u(A) ≡ Min

u(L) iff

∀q ∈ Q : P∼u

L
(L↓(q)) = L↓(q).

Proof:

First, we show that if Detu(A) is the minimal DBTA for L then we have ∀q ∈ Q : P∼u

L
(L↓(q)) =

L↓(q).

To simplify the notation, let I denote i(A). Then, we have that:

P∼u

L
(L↓(q)) =

{r ∈ TΣ | ∃t ∈ L↓(q) : Lr−1 = L t−1} = [∼u

L = ∼u

A]

{r ∈ TΣ | ∃t ∈ L↓(q) : postAr (I) = postAt (I)} .
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Note that ∼u

L = ∼u

A by hypothesis, since Det
u(A) ≡ Min

u(L). On the other hand, by definition,

q ∈ postAt (I) ⇒ t ∈ L↓(q). Thus, we have the following set inclusion:

{r ∈ TΣ | ∃t ∈ L↓(q) : postAr (I) = postAt (I)} ⊆

{r ∈ TΣ | q ∈ postAr (I)} =

L↓(q) .

By reflexivity of ∼u

L, we have that L↓(q) ⊆ P∼u

L
(L↓(q)), and thus we conclude P∼u

L
(L↓(q)) = L↓(q).

Now, assume that P∼u

L
(L↓(q)) = L↓(q), for each q ∈ Q. Then, for every t ∈ TΣ,

P∼u

A
(t) =†

⋂

q∈postAt (I)

L↓(q) ∩
⋂

q /∈postAt (I)

(L↓(q))
∁ =††

⋂

q∈postAt (I)

P∼u

L
(L↓(q)) ∩

⋂

q /∈postAt (I)

(P∼u

L
(L↓(q)))

∁ . (15)

Note that equality † holds by Lemma 4.16 and †† holds since P∼u

L
(L↓(q)) = L↓(q) by hypothesis.

It follows from (15) that P∼u

A
(t) is a union of blocks of P∼u

L
, for each t ∈ TΣ. In other words,

∼u

L ⊆ ∼u

A. On the other hand, by Lemma 4.13(a), ∼u

A ⊆ ∼u

L. Therefore, P∼u

A
(t) necessarily

corresponds to one single block of P∼u

L
, namely, P∼u

L
(t). Since P∼u

A
(t) = P∼u

L
(t) for each t ∈ TΣ,

we conclude that Detu(A) ≡ Min
u(L). ⊓⊔

Given a regular tree language L, the minimal DBTA for L is Min
u(L) (Theorem 4.18(e)). On the

other hand, we show (see proof of Lemma 3.3) that the states of the minimal DBTA are in one-to-one

correspondence with the blocks of P∼u

L
, i.e., for every state q of Min

u(L), there exists a tree t ∈ TΣ
such that L↓(q) = P∼u

L
(t) and vice-versa. Therefore, for every S ⊆ TΣ, P∼u

L
(S) = S iff S is a

union of downward languages of states of the minimal DBTA for L. This property and Theorem 5.3

allows us to give an alternative characterization of the class of automata for which the determinization

operation yields the minimal DBTA.

Corollary 5.4. Let A be a BTA with L = L(A). Then (A)D ≡ Min
u(L) iff the downward language

of every state in A is a union of downward languages of the minimal DBTA for L.

It is worth pointing that similarly to path-closedness the conditions of Corollary 5.4 and Theo-

rem 5.3 are decidable since isomorphism is decidable, Detu(A) and (A)D are effectively computable

and so is Min
u(L) [1].

Finally, we give the counterpart result of Theorem 5.3 for co-DBTAs. Namely, we show a suffi-

cient and necessary condition on a BTA A that guarantees that when we co-determinize it (AcD) we

obtain the minimal co-DBTA for L(A).

Theorem 5.5. Let A = 〈Q,Σ, δ, F 〉 be a BTA without unreachable states and such that L = L(A) is

a path-closed language. Then Det
d(A) ≡ Min

d(L) iff ∀q ∈ Q : P∼d

L
(L↑(q)) = P∼  (L↑(q)).
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Proof:

First, we will show that if Detd(A) ≡ Min
d(A) then P∼d

L
(L↑(q)) = P∼  (L↑(q)),∀q ∈ Q.

P∼d

L
(L↑(q)) =

{x ∈ CΣ | ∃y ∈ L↑(q) : y
−1L = x−1L} = [∼d

L = ∼d

A]

{x ∈ CΣ | ∃y ∈ L↑(q) : preAy (F ) = preAx (F )} .

Note that ∼d

L = ∼d

A by hypothesis, since Detd(A) ≡ Min
d(L). On the other hand, since y ∈ L↑(q) ⇒

q ∈ preAy (F ), we have the following set inclusion:

{x ∈ CΣ | ∃y ∈ L↑(q) : preAy (F ) = preAx (F )} ⊆

{x ∈ CΣ | q ∈ preAx (F )} =

P∼  (L↑(q)) .

Since L is path-closed and A has no unreachable states, by Lemma 4.7, x ∼  y ⇒ x−1L = y−1L,

for every x, y ∈ CΣ. Therefore, P∼  (L↑(q)) ⊆ P∼d

L
(L↑(q)), hence we conclude that P∼d

L
(L↑(q)) =

P∼  (L↑(q)).

Now, we will prove that if P∼d

L
(L↑(q)) = P∼  (L↑(q)), for each q ∈ Q, then Det

d(A) ≡ Min
d(L).

For every x ∈ CΣ:

P∼d

A
(x) =†

⋂

q∈preAx (F )

P∼  (L↑(q)) ∩
⋂

q /∈preAx (F )

(P∼  (L↑(q)))
∁ =††

⋂

q∈preAx (F )

P∼d

L
(L↑(q)) ∩

⋂

q /∈preAx (F )

(P∼d

L
(L↑(q)))

∁ . (16)

Note that equality † holds by Lemma 4.16 and †† holds since P∼  (L↑(q)) = P∼d

L
(L↑(q)) by hypoth-

esis.

It follows from (16) that P∼d

A
(x) is a union of blocks of P∼d

L
. In other words, x ∼d

L y ⇒ x ∼d

A y,

for every x, y ∈ CΣ. By Lemma 4.13(b), we have that x ∼d

A y ⇒ x ∼d

L y. Thus, P∼d

A
(x) necessarily

corresponds to one single block of ∼d

L, namely, P∼d

L
(x). Since P∼d

A
(x) = P∼d

L
(x), for each x ∈ CΣ,

we conclude that Detd(A) ≡ Min
d(L). ⊓⊔

Corollary 5.6. Let A be a BTA with L = L(A). Then (A)cD ≡ Min
d(L) iff the set of contexts

root-to-pivot equivalent to the upward language of every state in A is a union of upward languages of

the minimal co-DBTA for L.

It is worth pointing that the conditions of Corollary 5.6 and Theorem 5.5 are decidable since

isomorphism is decidable, Detd(A) and (A)cD are effectively computable and so is Min
d(L) [20,

§ 2.11].
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6. Related work and conclusions

In this paper, we build on previous work on word automata [16] and present a congruence-based per-

spective on the determinization and minimization operations for bottom-up (and top-down, see Ap-

pendix A.1) tree automata. As a consequence, we obtain the first, to the best of our knowledge, proof

of correctness of the double-reversal method for BTAs. Björklund and Cleophas, in their taxonomy

of minimization algorithms for tree automata [12], proposed a double-reversal method for DBTAs.

They observed that the reverse operation is embedded within the notion of top-down and bottom-up

determinization although they did not include a proof of correctness of the algorithm.

Courcelle et al. [21] also studied the problem of determinizing and minimizing word and tree au-

tomata by offering a geometrical and general view on these operations. Roughly speaking, our frame-

work is an instantiation of theirs using a concrete decomposition of their binary relations (namely, de-

terministic and co-deterministic decompositions). However, they focus on the so-called lr-determinism

of BTAs, which is a relaxed version of our notion of co-determinism for BTAs that is defined in terms

of the downward languages of the states of the BTA instead of being a purely syntactic notion, as our

definition. As a consequence, the class of languages that are lr-determinizable, i.e., the so-called ho-

mogeneous languages, includes the path-closed languages. While theirs is a more general setting, our

framework is constructive, in the sense that, it is defined upon congruences that allows us to extract

automata constructions.

We also give a generalization of the double-reversal method in the same lines as the generalization

of Brzozowski and Tamm [18] for the case of word automata, which further evidences the connection

between congruences and determinization of automata. Note that the double-reversal method only

applies to path-closed languages since it requires a co-determinization step, which is only possible for

that class of languages. However, the generalized double-reversal method drops this restriction since,

for every regular language, its minimal DBTA is already an automaton satisfying the condition of the

generalized double-reversal method.

Figure 2 summarizes the relations between these tree automata constructions. Note that it includes

the counterpart TTA congruence-based constructions (TDetd, TDetu, TMin
d and TMin

u) whose def-

inition we deferred to the Appendix.

As a final note, we show how previous results on word automata follow from our results when we

only consider monadic trees. First, note that, in the monadic case:

(i) every tree language is path-closed;

(ii) every downward congruence is strongly downward w.r.t. a given tree language, and

(iii) the notion of root-to-pivot equivalence between contexts collapes to the standard notion of

equality.

A consequence of the latter is that our definition of pre(·) for tree automata coincides with the standard

one for word automata. As a result of these observations, in the monadic case, Corollary 5.1 (Brzo-

zowski’s double-reversal method for BTAs) collapses to the counterpart result for word automata [15].

Finally, Theorem 5.3 (generalization of the double-reversal method) also collapses to the counterpart

generalization for word automata given by Brzozowski and Tamm [18], later addressed in [16].



P. Ganty et al. / A Congruence-Based Perspective on Finite Tree Automata 41

AB
Det

d(AB) Det
u(Detd(AB))

AT
TDet

d(AT) TDet
u(TDetd(AT))
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d

R
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u

R

TDet
d
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u

TDet
u

AT
TDet

u(AT) TDet
d(TDetu(AT))

AB
Det

u(AB) Det
d(Detu(AB))

R

TMin
d

TDet
u

R

TDet
d

R

Det
u

Min
d

Det
d

Figure 2. Relations between the automata constructions Det
d,Detu, TDetd,TDetu,Min

d,Min
u,TMin

d and

TMin
u. Note that constructions Min

d,Min
u,TMin

d and TMin
u are applied to the language defined by the

automaton in the origin of the labeled arrow, while the others are applied directly to the automaton. The upper

arcs of the diagrams follow from Theorem 4.18(g) and Theorem A.12(h). The squares and the bottom arc follow

from Corollary A.11, since AT = (AB)R. Incidentally, the diagram shows a new relation which follows from

the definition of HuR,HdR and the fact that AT = (AB)R: TDet
d(TDetd(AT)) ≡ TMin

u(AT), the minimal

co-deterministic TTA for L(AT).

6.1. Future work

We have not considered yet how to build an automaton that satisfies the condition of Theorem 5.3. In

particular, it is worth considering whether lr-deterministic automata satisfy this condition.

On the other hand, Ganty et al. [22] showed that quasiorders, i.e., reflexive and transitive binary re-

lations, are related to residual word automata in the same way congruences are related to deterministic

word automata. We believe that relaxing the equivalences presented in this work to obtain quasiorders

would allow us to offer a new perspective on residual tree automata, defined by Carme et al. [23].
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A. Appendix

A.1. Top-down tree automata as reverse of bottom-up tree automata

In the main part of the document, we focus on bottom-up tree automata. This decision is motivated

by the fact that deterministic BTAs are strictly more expressive than their top-down counterparts. On

the other hand, TTAs can be interpreted as the reverse of BTAs, and thus we can easily extend the

results obtained for bottom-up tree automata to their top-down counterparts. This will be the goal of

this section.

Our ultimate purpose is to give a complete perspective on Brzozowski’s method to minimize BTAs

as a technique that combines a reverse operation followed by determinization operation twice (see Fig-

ure 2). As a product, we obtain a counterpart method for the minimization of TTAs. In the following,

we use AB to denote a BTA and AT for a TTA.

A.1.1. Top-down tree automata

Definition A.1. (Top-down tree automaton)

A top-down tree automaton (TTA for short) is a tuple AT = 〈Q,Σ, δ, I〉 where Q is a finite set of

states; Σ is a ranked alphabet of rank n; δ : Q → ℘(
⋃n

i=0 Σi × Qi) is the transition function and

I ⊆ Q is the set of initial states. Given a TTA AT, we define its set of final states as f(AT)
def
= {q ∈

Q | ∃a ∈ Σ0 : a[ ] ∈ δ(q)}.

A TTA is deterministic (DTTA for short) iff I is a singleton and for every state q ∈ Q and symbol

f ∈ Σn, with n ≥ 1, we have: if f [q1, . . . , q〈f〉] ∈ δ(q) and f [q′1, . . . , q
′
〈f〉] ∈ δ(q) then qi = q′i for

each i = 1..〈f〉. Similarly, a TTA is co-deterministic (co-DTTA for short) iff every set of states in the

image of δ−1 is a singleton or is empty.

We define the move relation on a TTA, denoted by −→AT∈ TΣ∪Q × TΣ∪Q, as follows. Let t =
x[[q[t1, . . . , t〈f〉]]] and t′ = x[[f [t1, . . . , t〈f〉]]] for some x ∈ CΣ∪Q, q ∈ Q, f ∈ Σ and t1, . . . , t〈f〉 ∈ TQ.

Then t →AT t′
def
⇔ f [t1(ε), . . . , t〈f〉(ε)] ∈ δ(q). We use →∗

AT to denote the transitive closure of −→AT .

The language defined by AT is L(AT)
def
= {t ∈ TΣ | ∃t′ ∈ TQ : t′(ε) ∈ I, t′ →∗

AT t}. The language

definition might seem counterintuitive because it starts with a tree t′ in TQ and ends up with a tree t in

TΣ which is the one “recognized” by the TTA. Intuitively, a run of a TTA accepting a tree t ∈ TΣ first

“guesses” for each node v ∈ dom(t) a state labelling v and then tries to reinstate the original labels in
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a top down fashion using the move relation. We made this unusual choice to maintain coherence with

the move relation for BTA. In the example below we depicted such a sequence of moves from right to

left because we think it is easier for the reader to parse the sequence of moves backwards.

Example A.2. Let AT = 〈Q,Σ0 ∪ Σ2, δ, I〉 be a TTA with Q = {q0, q1}, Σ0 = {T,F}, Σ2 =
{∧,∨}, I = {q1}, and

δ(q0) = {∧[q0, q1],∧[q0, q0],∧[q1, q0],∨[q0, q0],F[ ]},

δ(q1) = {∧[q1, q1],∨[q1, q0],∨[q0, q1],∨[q1, q1],T[ ]} .

As in Example 2.5, L(AT) is defined as the set of all trees of the form t ∈ TΣ0∪Σ2 which yield to

propositional formulas, over the binary connectives ∧ and ∨ and the constants T and F, that evaluate

to T. For instance, the following is a sequence of moves accepting a tree t ∈ TΣ0∪Σ2 (listed last below)

such that t ∈ L(A).
q1

q1q1

q0q1

→AT

∨

q1q1

q0q1

→AT

∨

q1∨

q0q1

→AT . . . →AT

∨

T∨

FT

·

Note that, ∨[�, q1][[q1[q1, q0]]] →AT ∨[�, q1][[∨[q1, q0]]] as ∨[q1, q0] ∈ δ(q1). Observe that AT is

co-deterministic, but not deterministic since ∧[q0, q1],∧[q1, q0] ∈ δ(q0). ♦

For each q ∈ Q and S ⊆ Q, define the upward and downward language of q, respectively, as

follows:

LAT

↑ (q, S)
def
= {c ∈ CΣ | ∃t ∈ TQ : t →∗

AT c[[q]], t(ε) ∈ S}

LAT

↓ (q, S)
def
= {t ∈ TΣ | ∃t′ ∈ TQ : t′ →∗

AT t, t′(ε) = q, ℓ(t′) ⊆ S} .

We will simplify the notation and write LAT

↑ (q) when S = I and LAT

↓ (q) when S = f(AT). Also, we

will drop the superscript AT when the TTA AT is clear from the context.

A state q ∈ Q of a TTA is unreachable (resp. empty) iff its upward (resp. downward) language is

empty. It is straightforward to check that for every TTA AT we have that L(AT) =
⋃

q∈I L↓(q).

Given a TTA AT = 〈Q,Σ, δ, I〉 without empty states, the top-down determinization [19] builds

the DTTA 〈℘(Q),Σ, δ′, {I}〉 where the transition function δ′ is defined as follows. For each f ∈

Σ \ Σ0 and R ∈ ℘(Q), we have that f [R1, . . . , R〈f〉] ∈ δ′(R), where Ri
def
= {qi ∈ Q | ∃q ∈

R, q1, . . . , qi−1, qi+1, . . . , q〈f〉 ∈ Q : f [q1, . . . , qi, . . . , q〈f〉] ∈ δ(q)}. On the other hand, for every

a ∈ Σ0 and R ∈ ℘(Q) such that ∃q ∈ R : a ∈ δ(q), we have that a[ ] ∈ δ′(R). We abuse notation

(w.r.t. the notation introduced for BTAs) and denote by (AT)D the result of applying the top-down

determinization to AT.

As shown by Cleophas [19], the automaton (AT)D is top-down deterministic and, whenever

L(AT) is path-closed, L(AT) = L((AT)D).

A.1.2. Reverse tree automata constructions

We define the reverse TTA of a BTA AB = 〈Q,Σ, δ, F 〉 as (AB)R
def
= 〈Q,Σ, δr, I〉, where f [q1, . . .,

q〈f〉] ∈ δr(q)
def
⇔ q ∈ δ(f [q1, . . . , q〈f〉]) and I

def
= F . Analogously, we define the reverse BTA of a TTA
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AT = 〈Q,Σ, δ, I〉 as (AT)R
def
= 〈Q,Σ, δr, F 〉, where q ∈ δr(f [q1, . . . , q〈f〉])

def
⇔ f [q1, . . . , q〈f〉] ∈

δ(q) and F
def
= I . Observe that the BTA and TTA shown in Examples 2.5 and A.2 are the reverse of

each other.

Let AB be a BTA and let AT be its reverse, i.e., AT def
= (AB)R. It is easy to check that L(AB) =

L(AT) and AB is a co-DBTA (resp. DBTA) iff AT is a DTTA (resp. co-DTTA). Moreover, we have

that (AB)cD ≡ (AT)D and a state of AB is unreachable (resp. empty) iff it is empty (resp. unreachable)

in AT.

Note that we can define the TTA-equivalent of the constructions H
u and H

d simply by reversing

their transition functions and setting their final states as the initial ones.

Definition A.3. Let L ⊆ TΣ, and ∼u and ∼d be an upward and downward congruence, respectively.

Define:

H
uR def

= H
u(∼u, L))R H

dR def
= (Hd(∼d, L))R

Clearly, HuR yields a co-DTTA iff Hu yields a DBTA, and H
dR yields a DTTA iff Hd yields a co-

DBTA. Thus, the following result is a consequence of Lemma 3.3, and the one after is a consequence

of Lemmas A.4 and 3.9.

Corollary A.4. Let L ⊆ TΣ be a tree language and let ∼u be an upward congruence such that t ∼u

r ⇒ L t−1 = Lr−1 for every t, r ∈ TΣ. Then, HuR(∼u, L) is a co-DTTA with L(HuR(∼u, L)) = L.

Corollary A.5. Let L ⊆ TΣ be a path-closed language and let ∼d be a strongly downward congruence

w.r.t. L such that x ∼d y ⇒ x−1L = y−1L for every x, y ∈ CΣ. Then, HdR(∼d, L) is a DTTA with

L(HdR(∼d, L)) = L.

Next, we define congruences based on the states of a given TTA. These TTA-based congruences

are finer than (or equal to) the corresponding language-based ones and are thus said to approximate the

language-based congruences. To that end, we first define the post(·) and pre(·) operators for TTAs.

Definition A.6. Let AT = 〈Q,Σ, δ, I〉 be a TTA and let t ∈ TΣ, x ∈ CΣ and S ⊆ Q. Define:

postA
T

x (S)
def
= {q ∈ Q | x ∈ P∼S (L

AT

↑ (q, S))}

preA
T

t (S)
def
= {q ∈ Q | t ∈ LAT

↓ (q, S)} .

Note that we will omit the superscript AT when it is clear from the context.

Definition A.7. Let AT = 〈Q,Σ, δ, I〉 be a TTA and let t, r ∈ TΣ and x, y ∈ CΣ. The upward and

downward TTA-based equivalences are respectively given by:

t ∼u

AT r
def
⇔ pret(f(A

T)) = prer(f(A
T))

x ∼d

AT y
def
⇔ postx(I) = posty(I) .
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Lemma A.8. Let AB be a BTA and AT def
= (AB)R. Then, the following hold:

(a) ∼u

L(AB)
= ∼u

L(AT)
and ∼d

L(AB)
= ∼d

L(AT)
.

(b) ∼u

AB = ∼u

AT and ∼d

AB = ∼d

AT .

Proof:

Let AB = 〈Q,Σ, δ, F 〉 be a BTA with AT = (AB)R.

(a) ∼u

L(AB)
= ∼u

L(AT)
and ∼d

L(AB)
= ∼d

L(AT)
.

Trivial, since L(AB) = L(AT).

(b) ∼u

AB = ∼u

AT and ∼d

AB = ∼d

AT .

Relying on Definitions 4.5 and A.6, it is easy to see that, for every t ∈ TΣ, x ∈ CΣ and S ⊆
Q : postA

B

t (S) = preA
T

t (S) and postA
T

x (S) = preA
B

x (S). Thus, by Definitions 4.12 and A.7,

∼u

AB = ∼u

AT and ∼d

AB = ∼d

AT .
⊓⊔

As a consequence of Lemma 4.13 and A.8(b), we have the following corollary.

Corollary A.9. Let AT be a TTA with L = L(AT). Then,

(a) ∼u

AT is an upward congruence and ∼u

AT ⊆ ∼u

L.

(b) If A has no empty states and L is path-closed then ∼d

AT is a strongly downward congruence

w.r.t. L and ∼d

AT ⊆ ∼d

L.

A.1.3. Determinization and minimization of TTAs using congruences

We can now define the TTA-equivalents of the constructions from Definition 4.17.

Definition A.10. Let AT be a TTA with L = L(AT). Define:

TDet
u(AT)

def
= H

uR(∼u

AT ,A
T) TMin

u(L)
def
= H

uR(∼u

L, L)

TDet
d(AT)

def
= H

dR(∼d

AT ,A
T) TMin

d(L)
def
= H

dR(∼d

L, L) .

It follows from Lemma A.8 that the constructions TDet
u(AT) and TDet

d(AT) are related to

Det
u(AB) and Det

d(AB), respectively, through the reverse construction. The same holds for the

constructions TMin
u(L), TMin

d(L) and Min
u(L), Min

d(L), respectively.

Corollary A.11. Let AB be a BTA and AT def
= (AB)R with L = L(AT) = L(AB). Then,

TDet
u(AT) ≡ (Detu(AB))R TMin

u(L) ≡ (Min
u(L))R

TDet
d(AT) ≡ (Detd(AB))R TMin

d(L) ≡ (Min
d(L))R .
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Finally, we obtain the following result as the TTA-equivalent of Theorem 4.18.

Corollary A.12. Let AT be a TTA with L = L(AT). Then the following properties hold:

(a) L(TMin
u(L)) = L = L(TDetu(AT)).

(b) If L is path-closed then L(TMin
d(L)) = L = L(TDetd(AT)).

(c) TDet
u(AT) ≡ (AT)cD.

(d) If L is path-closed and AT has no empty states then TDet
d(AT) ≡ (AT)D.

(e) TMin
u is isomorphic to the minimal co-DTTA for L.

(f) If L is path-closed then TMin
d(L) is isomorphic to the minimal DTTA for L.

(g) If L is path-closed then TDet
u(TDetd(AT)) ≡ TMin

u(L).

(h) If L is path-closed then TDet
d(TDetu(AT)) ≡ TMin

d(L).

It follows from Corollary A.12(c), (d) and (h) that, given a TTA A, we have that ((((AT)R)D)R)D

is the minimal DTTA for L(AT).
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