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Abstract. In the context of signed line graphs, this article introduces a modified inflation tech-

nique to study strong Gram congruence of non-negative (integral quadratic) unit forms, and uses

it to show that weak and strong Gram congruence coincide among positive unit forms of Dynkin

type An. The concept of inverse of a quiver is also introduced, and is used to obtain and analyze

the Coxeter matrix of non-negative unit forms of Dynkin type An. With these tools, connected

principal unit forms of Dynkin type An are also classified up to strong congruence.
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1. Introduction

An integral quadratic form is a homogeneous polynomial q of degree two with integer coefficients,

given usually as qpxq “ xtr qGqx for a unique upper triangular matrix qGq. In case qGq has only 1’s

as diagonal entries, q is simply called a unit form, and the symmetric matrix Gq “ qGq ` qGtr
q is

a generalized Cartan matrix (see for instance [3] or [29]). Two unit forms q1 and q are said to be

weakly (resp. strongly) Gram congruent, if there is an integer matrix B with detpBq “ ˘1 such that

Gq1 “ BtrGqB (resp. qGq1 “ Btr qGqG). Clearly, strong congruence implies weak congruence.
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The classification of connected positive unit forms up to weak Gram congruence is well known

(see Ovsienko [20], Kosakowska [16] and Simson [23]). Corresponding generalizations to the non-

negative case are also known (see Barot and de la Peña [5, 6], and Simson et al. [26, 32]). A strong

Gram classification of non-negative unit forms is far from been completed (see [28, Problem 2.1paq]

and [29, Problem 1.12] for a specific formulation of these problems in terms of Coxeter spectra):

Problem A. Classify all (connected) non-negative unit forms up to strong Gram congruence.

The following problem was posed by Simson in [25, Problems 1.10 and 1.11] (see also [28, Prob-

lem 2.1pbq]):

Problem B. Construct algorithms that compute an integer matrix B with detpBq “ ˘1 that defines

the strong Gram congruence qGq1 “ Btr qGqB, in case the quadratic unit forms q and q1 are strongly

Gram congruent.

There have been many advances towards the strong classification of positive quadratic forms, both

from computational and geometrical points of view. For instance, a classification for small cases

(n ď 9), including the exceptional cases E6, E7 and E8, as well as all non-simply laced cases, was

presented by Simson et al., cf. [29]. The general case of Dynkin type Dn was announced in [28] (see

also [29, §4]), and is solved by Simson in [30].

There is a well known graphical description of quadratic (unit) forms by means of (loop-less)

signed multi-graphs (or bigraphs, as called in the paper following Simson [23]). It is easy to verify

that if qpxq “ 1

2
xtrp2I ` Aqx, where A is the symmetric adjacency matrix of a loop-less bigraph

(where I denotes the identity matrix of appropriate size), then q is non-negative if and only if the least

eigenvalue of A is greater than or equal to ´2.

Loop-lees bigraphs whose symmetric adjacency matrix has least eigenvalue greater than or equal

to ´2 have attracted the attention of graph theorists since the 1960’s [13, 1, 12, 8], mainly focusing

in their graphical characterization and Laplacian (or Kirchhoff) spectral properties. The connection

of these bigraphs with the classical root systems ADE was established in the seminal work [8] by

Cameron, Goethals, Seidel and Shult in 1976 (see also [34]).

The theory of (loop-lees) bigraphs with least eigenvalue ´2, and the theory of quadratic (unit)

forms, have maintained fairly independent roads (see for instance [29] and references therein), per-

haps due to their seemingly different graphical and algebraic goals. The author translated in [14]

the inflation techniques into the combinatorial context of (a version of) line digraphs, using the so-

called incidence quadratic form of a quiver (directed multi-graph). Some of the basic concepts in [14]

had already been introduced by Zaslavsky in [37, §3], see also [7, 36]. Here we further explore this

connection. More on the development of the theory of line graph can be found in [9].

Motivated by results of Barot [2] and von Höhne [33], the author associated to any quiver Q a

bigraph IncpQq, called incidence graph of Q [14]. This construction has many similarities to the

so-called line digraph (introduced by Harary and Norman [13] in 1961), and is used as an auxiliary

construction for signed line graphs (see [37, 7]). The theory of flations for non-negative unit forms of

Dynkin type An, in this combinatorial context, was worked out in [14]. Here we propose a modified

theory of flations that preserves strong Gram congruence of unit forms (Section 3), given a solution of

Problem A for positive unit forms of Dynkin type An:
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Theorem A. Any two connected positive unit forms of Dynkin type An are strongly Gram congruent.

An essentially combinatorial proof of Theorem A is given below (Theorem 3.16), after some

technical preparations. An equivalent result was obtained recently by Simson in [31], in the context

of edge-bipartite graphs and morsifications of quadratic forms. Recall that a positive unit form is

positive precisely when it is non-negative and has corank zero (see Lemma 2.1pcq below). A connected

non-negative unit form of corank one is called principal. In Section 4 we present a combinatorial

formula for the Coxeter matrix in terms of quiver inverses, whose similarity invariants (for instance,

the characteristic polynomial, called Coxeter polynomial of the unit form), serve as discriminant in

the analogous of Theorem A for principal unit forms (Theorem 4.12):

Theorem B. Two connected principal unit forms of Dynkin type An are strongly Gram congruent if

and only if they have the same Coxeter polynomial.

A list of the corresponding Coxeter polynomials is given in Remark 4.10. Quiver inverses are

used in Corollary 4.8 to give bounds for the coefficients of the Coxeter matrix associated to non-

negative unit forms q of Dynkin type An. In Section 2 we collect concepts and general results needed

throughout the paper.

2. Basic notions

The set of integers is denoted by Z, and the canonical basis of Zn by e1, . . . , en. All matrices have

integer coefficients, and for a n ˆ m matrix A and a n ˆ m1 matrix B, the n ˆ pm ` m1q matrix with

columns those of A and B (in this order), is denoted by rA|Bs. In particular, if A1, . . . , Am are the

columns of A, we write A “ rA1| ¨ ¨ ¨ |Ams. The identity nˆn matrix is denoted by In, and simply by

I for appropriate size. The transpose of a matrix A is denoted by Atr, and if A is an invertible square

matrix, then A´tr denotes pA´1qtr. By total (or linear) order we mean a partial order where any two

elements are comparable, and a totally (or linearly) ordered set is one equipped with such order.

2.1. Integral quadratic forms

Let q “ qpx1, . . . , xnq be an integral quadratic form on n ě 1 variables, that is, q is a homogeneous

polynomial of degree two,

qpx1, . . . , xnq “
ÿ

1ďiďjďn

qijxixj.

In case qii “ 1 for i “ 1, . . . , n we say that q is a unit form. The (upper) triangular Gram matrix

associated to an integral quadratic form q is the n ˆn matrix given by qGq “ pgijq where gij “ qij for

1 ď i ď j ď n and gij “ 0 for 1 ď j ă i ď n. The symmetric Gram matrix associated to q is given

by Gq “ qGq ` qGtr
q .

As usual, the form q can be seen as a function q : Zn Ñ Z given by evaluation in the vector of

variables px1, . . . , xnq. Notice that for x “ px1, . . . , xnqtr P Z
n we have

qpxq “ xtr qGqx “
1

2
xtrGqx.
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For an endomorphism T : Zn Ñ Z
n, the integral quadratic form qT is given by qT pxq “ qpT pxqq.

Observe that GqT “ T trGqT (where here as in the rest of the text we identify an endomorphism T

with its square matrix under the ordered canonical basis e1, . . . , en of Zn). We say that two unit forms

q and q1 are weakly congruent if there is an automorphism T of Zn such that q1 “ qT (written q1 „ q

or q1 „T q).

The direct sum q ‘ q1 : Zn`n1
Ñ Z of integral quadratic forms q : Zn Ñ Z and q1 : Zn1

Ñ Z is

given by

pq ‘ q1qpx1, . . . , xn`n1q “ qpx1, . . . , xnq ` q1pxn`1, . . . , xn`n1q.

Observe that qGq‘q1 “

˜ qGq 0

0 qGq1

¸
, which we denote by qGq ‘ qGq1 . The symmetric bilinear form

associated to an integral quadratic form q : Zn Ñ Z, denoted by qp´|´q : Zn ˆ Z
n Ñ Z, is given by

qpx|yq “ qpx ` yq ´ qpxq ´ qpyq,

(notice that qpx|yq “ xtrGqy for any x, y P Zn). The radical radpqq of a unit form q is the set of

vectors x in Z
n such that qpx|´q ” 0 (called radical vectors of q). Clearly, radpqq is a subgroup

of Z
n, whose rank corkpqq is called corank of q. Alternatively, corkpqq “ n ´ rkpqq, where

rkpqq “ rkpGqq is called rank of q. By root of q we mean a vector x P Z
n such that qpxq “ 1.

For convenience, throughout the text we use the notation qji “ qij for i ă j. A unit form q is said

to be connected if for any indices i ‰ j there is a sequence of indices i0, . . . , ir with r ě 1 such that

i “ i0, j “ ir and qit´1it ‰ 0 for t “ 1, . . . , r. Recall that a unit form q : Zn Ñ Z is called non-

negative (resp. positive) if qpxq ě 0 for any vector x in Z
n (resp. qpxq ą 0 for any non-zero vector

x in Z
n). A unit form q is called principal if q is non-negative and has corank one, see Simson [21]

and Kosakowska [16]. The following important observation is well known (see for instance [5]), for

convenience here we give a short proof.

Lemma 2.1. For a unit form q the following assertions hold.

a) If q is not connected, then q „ q1 ‘ q2 for unit forms q1 and q2.

b) If q is non-negative and qpxq “ 0, then x is a radical vector of q.

c) The unit form q is positive if and only if q is non-negative and corkpqq “ 0.

Assume now that q is a non-negative unit form, and that q1 is a unit form weakly congruent to q.

d) Then q1 is non-negative and corkpq1q “ corkpqq.

e) If q is connected, then so is q1.

Proof:

A more specific version of paq will be given later in Lemma 2.5. For pbq, take a basic vector ei and

any integer m. If qpxq “ 0 for a vector x, then

0 ď qpmx ` eiq “ mqpx|eiq ` 1.

Since m and i are arbitrary, then qpx|eiq “ 0 and x is a radical vector of q.



J.A. Jiménez González / A Graph Theoretical Framework for the Strong Gram Classification of Non-negative 53

For pcq, if q is positive then clearly q is non-negative and radpqq “ 0. Conversely, if q is non-

negative and corkpqq “ 0, then radpqq “ 0. By pbq, for any non-zero vector x we have qpxq ą 0. To

prove pdq consider an automorphism T such that q1 “ qT . Then q1pxq “ qpT pxqq ě 0, that is, q1 is

non-negative. Since

Gq1 “ T trGqT,

it is well known that rkpGq1 q “ rkpGqq (cf. [19, § 4.5]), and therefore corkpq1q “ corkpqq.

Finally, to show peq assume that q1 “ qT is not connected. By paq we may assume that q1 “ q1‘q2

for unit forms q1 : Zn1 Ñ Z and q2 : Zn2 Ñ Z (with n “ n1 ` n2). Let y1, . . . , yn be the columns

of T´1. Since q is a unit form, yi is a root of q1 for i “ 1 . . . , n. Moreover, if y1i (resp. y2i ) is the

projection of yi into its first n1 entries (resp. its last n2 entries), then

1 “ q1pyiq “ q1py1i q ` q2py2i q.

By pdq, the unit forms q1 and q2 are non-negative, therefore either q1py1i q “ 1 and q2py2i q “ 0, or

q1py1i q “ 0 and q2py2i q “ 1. Consider the following partition of the set t1, . . . , nu,

X “ t1 ď i ď n | q1py1i q “ 1u and Y “ t1 ď j ď n | q2py2j q “ 1u.

By pbq, observe that if i P X and j P Y , then y1j is a radical vector of q1 and y2i is a radical vector of

q2, and therefore

qpei ` ejq “ q1pyi ` yjq “ q1py1i ` y1j q ` q2py2i ` y2j q “ q1py1i q ` q2py2j q “ 2.

Then qpei ` ejq “ qpeiq ` qpejq, which implies that qij “ 0 for arbitrary i P X and j P Y (for

qij “ qpei|ejq). We need to show that both X and Y are non-empty sets.

We may write

pT´1qtrGq1T´1 “
´
Btr Ctr

¯ ˜
Gq1 0

0 Gq2

¸ ˜
B

C

¸
“ BtrGq1B ` CtrGq2C,

where B and C are respectively n1 ˆ n and n2 ˆ n matrices. If Y is an empty set, then the columns

of C are radical vectors of q2, and therefore

Gq “ pT´1qtrGq1T´1 “ BtrGq1B.

In particular, rkpqq ď rkpq1q (cf. [19, §4.5]). This is impossible, since by pdq we have rkpqq “
rkpq1q “ rkpq1q ` rkpq2q ą rkpq1q (a similar contradiction can be found assuming that X is an

empty set). This completes the proof, since X ‰ H and Y ‰ H imply that q is non-connected. [\

The example following Remark 2.2 below shows that the non-negativity assumption is necessary

for part peq in Lemma 2.1.
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2.2. Bigraphs and associated unit forms

Let Γ “ pΓ0,Γ1, σq be a bigraph, that is, a multi-graph pΓ0,Γ1q together with a sign function

σ : Γ1 Ñ t˘1u such that all parallel edges have the same sign (see [23]). As usual, bigraphs are

graphically depicted in the following way: for vertices i and j, an edge a joining i and j with σpaq “ 1

will be denoted by ‚i ‚j , and by ‚i ‚j if σpaq “ ´1 (this convention is used in [5]

and [14], and is opposite to the one used in [23]). We assume that the set of vertices Γ0 is totally

ordered. If Γ has no loop and |Γ0| “ n, the (upper) triangular adjacency matrix }AdjΓ of Γ is the

n ˆ n matrix given by

}AdjΓ “

¨
˚̊
˚̊
˚̊
˚̊
˚̊
˝

0 d1,2 d1,3 ¨ ¨ ¨ d1,n´1 d1,n

0 0 d2,3 ¨ ¨ ¨ d2,n´1 d2,n

0 0 0
... d3,n´1 d3,n

...
...

...
. . .

...
...

0 0 0 ¨ ¨ ¨ 0 dn´1,n

0 0 0 ¨ ¨ ¨ 0 0

˛
‹‹‹‹‹‹‹‹‹‹‚

,

where |dij | is the number of edges between vertices i ă j, and σpaqdij “ |dij | for any such edge a.

Throughout the text we assume that all bigraphs are loop-less, that is, have no loop.

The (upper) triangular Gram matrix qGΓ of Γ is given by qGΓ “ I ´ }AdjΓ (following the

convention in [23] one gets qGΓ “ I` }AdjΓ). The quadratic form associated to a bigraph Γ is given

by

qΓpxq “ xtr qGΓx, for any x P Z
n,

that is, qGqΓ “ qGΓ. There is a well known bijection between unit forms and loop-less bigraphs (see

for instance [23] and [14]), given by the corresponding triangular (Gram and adjacency) matrices.

Remark 2.2. For a loop-less bigraph Γ, the unit form qΓ is connected if and only if Γ is a connected

bigraph.

Proof:

Take qΓpxq “
ř

1ďiďjďn

qijxixj , and observe that for any sequence of indices i0, . . . , ir such that

qit´1it ‰ 0 for t “ 1, . . . , r, there is a sequence of edges a1, . . . , ar in Γ such that at contains vertices

it´1 and it (that is, pi0, a1, i1, . . . , ir´1, ar, irq is a walk in Γ). Hence the claim follows. [\

Consider the following connected bigraph Γ with twelve edges, and non-connected bigraph Γ1

with six edges,

Γ “ ‚1

❆❆
❆❆

❆❆
❆❆

❆❆
❆

❆❆
❆❆

❆❆
❆❆

❆❆
❆

‚2

‚3 ‚4

Γ1 “ ‚1 ‚2

‚3 ‚4
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None of the unit forms qΓ and qΓ1 is non-negative, and qΓ1 „ qΓ. Indeed, we have

GΓ “

˜
2 5̂ 2̂ 2̂

5̂ 2 0 0

2̂ 0 2 3̂

2̂ 0 3̂ 2

¸
and GΓ1 “

˜
2 3̂ 0 0

3̂ 2 0 0

0 0 2 3̂

0 0 3̂ 2

¸
,

where for an integer a we take â “ ´a. A direct calculation shows that if B “

˜
1 0 0 0
1 1 0 0

2̂ 0 1 0

2̂ 0 0 1

¸
, then

GΓ1 “ BtrGΓB.

2.3. Elementary transformations for unit forms

We consider the following transformations of a unit form q : Zn Ñ Z.

1. Point inversion. Take a subset of indices C Ď t1, . . . , nu and define the automorphism VC :

Z
n Ñ Z

n given by VCpekq “ ´ek if k P C , and VCpekq “ ek otherwise. The transformation

VC is known as point inversion (or sign change) for q, and the unit form qVC is usually referred

to as point inversion of q.

2. Swapping. Given two indices i ‰ j, consider the transformation Sij : Zn Ñ Z
n given by

Sijpeiq “ ej , Sijpejq “ ei and Sijpekq “ ek for k ‰ i, j (clearly, Sij “ Sji). We say that the

unit form qSij is obtained from q by swapping indices i and j.

3. Flation. For two indices i ‰ j, consider the sign ǫ “ sgnpqijq P t`1, 0,´1u of qij . Take

the linear transformation T ǫ
ij : Zn Ñ Z

n given by T ǫ
ijpxq “ x ´ ǫxiej , for a (column) vector

x “ px1, . . . , xnqtr in Z
n. The transformation T ǫ

ij will be referred to as flation for q.

4. FS-transformation. For our arguments we consider the composition rT ǫ
ij “ T ǫ

ijSij , and call it a

FS-(linear) transformation for q if ǫ “ sgnpqijq.

Remark 2.3. Let q be a unit form, with indices i ‰ j.

a) Let T ǫ
ij be a flation for q. Then q1 “ qT ǫ

ij is a unit form if and only if |qij| ď 1, and in that case

q1T´ǫ
ij “ q.

b) Let rT ǫ
ij be a FS-transformation for q. Then q1 “ q rT ǫ

ij is a unit form if and only if |qij| ď 1, and

in that case q1 rT´ǫ
ji “ q.

Proof:

To show paq, observe that q1pekq “ qpekq “ 1 if k ‰ i, and

q1peiq “ qpT ǫ
ijpeiqq “ qpei ´ ǫejq “ 1 ` pǫ ´ |qij |q.

Since ǫ “ sgnpqijq, it follows that q1peiq “ 1 if and |qij | ď 1. That T ǫ
ijT

´ǫ
ij “ I is clear, since

T ǫ
ijT

´ǫ
ij pxq “ T ǫ

ijpx ` ǫxiejq “ T ǫ
ijpxq ` ǫxiT

ǫ
ijpejq “ x ´ ǫxiej ` ǫxiej “ x,

for any x in Z
n. Claim pbq follows from paq. [\
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A composition T “ T ǫ1
i1j1

¨ ¨ ¨T ǫr
irjr

is called an iterated flation for a unit form q, if taking q0 “ q,

then T ǫt
itjt

is a flation for qt´1, and qt “ qt´1T ǫt
itjt

is a unit form, for t “ 1, . . . , r. In a similar situation,

a composition rT “ rT ǫ1
i1j1

¨ ¨ ¨ rT ǫr
irjr

is called an iterated FS-transformation for q.

2.4. Weak classification and strong congruence

The classification of positive unit forms up to weak congruence is classical: for n ě 1, the weak

equivalence classes of connected positive unit forms in n variables are in correspondence with the set

of (simply laced) Dynkin types Dn, where

Dn “

$
’&
’%

tAnu, if n “ 1, 2, 3,

tAn,Dnu, if n “ 4, 5 or n ě 9,

tAn,Dn,Enu, if n “ 6, 7, 8,

(called Dynkin graphs on n vertices, see Table 1). The following weak classification of connected

non-negative unit forms can be found in [32] (see also [5]). If J Ă t1, . . . , nu is a subset of indices,

denote by τ : ZJ Ñ Z
n the canonical inclusion. If q : Zn Ñ Z is a unit form, then the compo-

sition q1 “ qτ is a unit form called restriction of q, and the unit form q is called extension of q1.

Simson fixed in [26] (see also [32, Algorithm 3.18]) canonical extensions of connected positive unit

forms, via corresponding connected bigraphs p∆pcq for c ě 0 and ∆ a Dynkin graph, which serve as

representatives of weak congruence classes of connected positive unit forms.

Table 1. (Simply laced) Dynkin graphs with ordered set of vertices.

Notation Graph

An pn ě 1q ‚1 ‚2 ‚3 . . . ‚n´2 ‚n´1 ‚n

Dn pn ě 4q
‚1

◆◆
◆

‚3 ‚4 . . . ‚n´2 ‚n´1 ‚n

‚2

♣♣♣

E6

‚6

‚1 ‚2 ‚3 ‚4 ‚5

E7

‚4

‚1 ‚2 ‚3 ‚5 ‚6 ‚7

E8

‚4

‚1 ‚2 ‚3 ‚5 ‚6 ‚7 ‚8
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Theorem 2.4. (Simson-Zając, 2017)

Let q : Zn Ñ Z be a non-negative connected unit form of corank corkpqq “ c. Then there exists an

iterated flation B : Zn Ñ Z
n and a unique Dynkin graph ∆ P Dn´c, denoted by Dynpqq “ ∆ and

called Dynkin type of q, such that the unit form qB is the canonical c-extension of q∆. In particular,

two non-negative unit forms q and q1 are weakly congruent if and only if they are of the same corank

and of the same Dynkin type.

Two unit forms q and q1 are said to be strongly (Gram) congruent, written q1 « q or q1 «B q, if

there is an automorphism B such that

qGq1 “ Btr qGqB.

A complete classification of strong congruence classes for the exceptional Dynkin types E6, E7

and E8 is given in [29, 28], as well as for the non-simply laced Dynkin types Bn, Cn, F4 and G2.

Similar results for the Dynkin type Dn were announced in [28] and proved in [30].

Lemma 2.5. Let q : Z
n Ñ Z be a unit form. If q is not connected, then q « q1 ‘ q2 for unit

forms q1 and q2, and q2 ‘ q1 « q1 ‘ q2. In particular, strong congruence preserves connectedness of

non-negative unit forms.

Proof:

Assume that q is not connected, and take non-empty sets X and Y such that qij “ 0 for i P X and

j P Y . There is a permutation ρ of the set t1, . . . , nu satisfying

• If i ă j and i, j P X or i, j P Y , then ρpiq ă ρpjq.

• If i P X and j P Y , then ρpiq ă ρpjq.

Let P “ reρ´1p1q| ¨ ¨ ¨ |eρ´1pnqs be the permutation matrix associated to the inverse permutation ρ´1,

and consider the product

A “ paijqni“1 “ P tr qGqP.

Then aρpiqρpjq “ qij , and by the conditions on the permutation ρ, the matrix A has the following

block-diagonal shape,

A “

˜
A1 0

0 A2

¸
.

Moreover, A1 and A2 are upper diagonal matrices with ones in their main diagonals. Taking qi such

that qGqi “ Ai (for i “ 1, 2), we get

P tr qGqP “ qGq1 ‘ qGq2 “ qGq1‘q2 ,

as wanted. Swapping the sets X and Y we get q « q2 ‘ q1.

The last claim follows by Lemma 2.1peq, since strong congruence implies weak congruence. [\
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2.5. Elementary quiver transformations

A quiver Q “ pQ0, Q1, s, tq consists of (finite) sets Q0 and Q1, whose elements are called vertices

and arrows of Q respectively, and functions s, t : Q1 Ñ Q0. We say that the vertices v and w are

source and target of an arrow i respectively, if spiq “ v and tpiq “ w, and display i graphically as

v
i // w if v ‰ w. For convenience we consider the set vpiq “ tspiq, tpiqu of vertices incident to i.

An arrow i with spiq “ tpiq is called a loop of Q, and we say that Q is a loop-less quiver if it contains

no loop. Two arrows i and j are said to be parallel if vpiq “ vpjq, and adjacent if vpiq X vpjq ‰ H.

The degree of a vertex v in Q is the number of arrows i in Q such that v P vpiq. A vertex in Q with

degree one is called a leaf, and any arrow i such that vpiq contains a leaf is called a pendant arrow

of Q. Observe that Q “ pQ0, tvpiquiPQ1
q is a multi-graph, referred to as underlying graph of Q. We

say that Q is simple, connected or a tree if so is Q, and walks of Q are also called walks of Q. To be

precise and fix some notation, by walk of Q we mean an alternating sequence of vertices and arrows

in Q of the form,

α “ pv0, i1, v1, . . . , vℓ´1, iℓ, vℓq,

such that vpitq “ tvt´1, vtu for t “ 1, . . . , ℓ. The notation α “ iǫ1
1

¨ ¨ ¨ iǫℓℓ for ǫt “ ˘1 is also used,

where the symbol i`1

t stands for spitq “ vt´1 and tpitq “ vt, while i´1

t stands for spitq “ vt and

tpitq “ vt´1 (that is, the sign ǫt denotes the direction in which the arrow it is found along the walk

α). The non-negative integer ℓ is called length of the walk α, and we call vertex v0 (resp. vertex vℓ)

the starting vertex (resp. the ending vertex) of α. A walk with length zero is called a trivial walk.

As usual we omit the exponent `1 in our notation of walks, and abusing notation we set spαq “ v0
and tpαq “ vℓ. Observe that the reversed sequence

pvℓ, iℓ, vℓ´1, . . . , v1, i1, v0q,

is also a walk in Q, referred to as reverse walk of α and denoted by α´1. With our notation we have

piǫ1
1

¨ ¨ ¨ iǫℓℓ q´1 “ i
´ǫℓ
ℓ ¨ ¨ ¨ i´ǫ1

1
,

(in particular spi´1q “ tptq and tpi´1q “ spiq).

Let Q “ pQ1, Q0q be a quiver (we will usually exclude the source and target functions s and

t from the notation of Q). For a vertex v P Q0, we denote by Qpvq the quiver obtained from Q by

removing the vertex v, as well as all arrows containing it (that is, all arrows i with v P vpiq). Similarly,

if i P Q1 is an arrow of Q, we denote by Qpiq the quiver obtained from Q by removing the arrow i.

We will need the following transformations of a loop-less quiver Q “ pQ0, Q1q. Throughout the

text we assume that both sets Q0 and Q1 are totally ordered.

1. Arrow inversion. Let C be a set of arrows in Q, and take QVC to be the quiver obtained from Q

by inverting the direction of all arrows in C .

2. Swapping. Given two arrows i ‰ j in Q, define the new quiver QSij as the quiver obtained

from Q by swapping arrows i and j (therefore, swapping their positions in the total ordering of

Q1).
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3. (Quiver) Flation. Let i and j be adjacent arrows in Q, and choose signs ǫi and ǫj such that

α “ iǫijǫj is a walk in Q. Consider the quiver Q1 obtained from Q by replacing i by a new

arrow i1 having spi1q “ spαq and tpi1q “ tpαq if ǫi “ 1, and spi1q “ tpαq and tpi1q “ spαq if

ǫi “ ´1. The new arrow i1 takes the place of the deleted arrow i in the ordering of Q1. We will

use the notation Q1 “ QT ǫ
ij where ǫ “ ´ǫiǫj , and say that T ǫ

ij is a flation for the quiver Q. If i

and j are non-adjacent arrows, we take QT 0
ij “ Q.

4. FS-transformation. By FS-transformation of a quiver Q with respect to the ordered pair of

different arrows pi, jq, we mean the new quiver QrT ǫ
ij given by

QrT ǫ
ij “ pQT ǫ

ijqSij .

The analogous of Remark 2.3 can be stated as follows.

Remark 2.6. Let Q be a loop-less quiver.

a) Let T ǫ
ij be a flation for Q. Then Q1 “ QT ǫ

ij is a loop-less quiver if and only if i and j are

non-parallel arrows, and in that case Q1T ´ǫ
ij “ Q.

b) Let rT ǫ
ij be a FS-transformation for Q. Then Q1 “ QrT ǫ

ij is a loop-less quiver if and only if i and

j are non-parallel arrows, and in that case Q1 rT ´ǫ
ji “ Q.

Moreover, the four types of transformations described above preserve the number of vertices and

arrows of a quiver, as well as its connectedness if i and j are non-parallel arrows.

Proof:

Let i and j be non-parallel arrows in Q, and notice that by construction the corresponding arrows i1

and j1 in Q1 “ QT ǫ
ij are non-parallel (for i1 takes the place of the walk iǫijǫj of Q, and j1 remains

unchanged). Moreover, i and j are adjacent in Q if and only if i1 and j1 are adjacent in Q1. Noticing

that now pi1qǫipj1q´ǫj is a walk in Q1, then T ´ǫ
i1j1 is a flation for Q1, and a second application of the

construction above shows that pQ1qT ´ǫ
i1j1 “ Q (subsequently labels i1 and j1 are replaced by i and j).

In particular,

pQrT ǫ
ijq

rT ´ǫ
ji “ prQ1SijsT

´ǫ
ji qSij “ prQ1T ´ǫ

ij sSijqSij “ Q,

since clearly rQ1SijsT ´ǫ
ji “ rQ1T ´ǫ

ij sSij . This shows paq and pbq.

Now, if Q1 is the quiver obtained from Q after applying any of the four types of transformations

above, then Q1
0

“ Q0, and |Q1
1
| “ |Q1|. The claim on connectedness is clear for arrow inversions and

swappings, and follows for T ǫ
ij and rT ǫ

ij using the arguments above. [\

3. Quivers and their incidence bigraphs

The techniques presented in this section were introduced in a slightly wider context in [14], following

ideas from Barot [2] and von Höhne [33].
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3.1. Incidence quadratic forms

Consider an arbitrary quiver Q with |Q0| “ m vertices and |Q1| “ n arrows, both sets Q0 and Q1

with fixed total orderings. The (vertex-arrow) incidence matrix of Q is the m ˆn matrix IpQq with

columns Ii “ espiq ´etpiq for i P Q1 (observe that Ii “ 0 if and only if i is a loop in Q), cf. [37]. For a

loop-less quiver Q, it will be useful to consider the incidence function σQ : Q0 ˆQ1 Ñ t`1, 0,´1u
given by

σQpv, iq “

$
’&
’%

`1, if v is the source of arrow i,

´1, if v is the target of arrow i,

0, otherwise.

Clearly, IpQq “ rσQpv, iqsiPQ1

vPQ0
. For a non-trivial walk α “ iǫ1

1
¨ ¨ ¨ǫℓℓ in Q, we use the notation

Iα “
řℓ

t“1
ǫtIit . Observe that Iα is the telescopic sum

Iα “ ǫ1pespi1q ´ etpi1qq ` . . . ` ǫℓpespiℓq ´ etpiℓqq “ espαq ´ etpαq.

Definition 3.1. Let Q be a quiver with m ě 1 vertices and n ě 0 arrows.

a) The square matrix GQ “ IpQqtrIpQq is defined to be the symmetric Gram matrix of Q.

b) Let qGQ be the (unique) upper triangular matrix such that GQ “ qGQ ` qGtr

Q , called (upper)

triangular Gram matrix of Q.

c) The quadratic form qQ : Zn Ñ Z given by

qQpxq “
1

2
xtrIpQqtrIpQqx “

1

2
||IpQqx||2,

is defined to be the quadratic form associated to Q.

Notice that the matrix qGQ is the standard matrix morsification of qQ in the sense of Simson [24].

Remark 3.2. Observe that GQ and qGQ do not depend on the order given to the set of vertices Q0.

Indeed, if Q1 is a copy of Q with different ordering of its vertices, there is a permutation mˆm matrix

P such that IpQ1q “ PIpQq, and therefore IpQ1qtrIpQ1q “ IpQqtrP trPIpQq “ IpQqtrIpQq.

To present a graphical description of qQ, we need the following definition.

Definition 3.3. Let Q be a loop-less quiver with m ě 1 vertices and n ě 0 arrows. The incidence

(bi)graph IncpQq of a loop-less quiver Q is defined as follows. The set of vertices IncpQq0 of

IncpQq is the set of arrows of Q (that is, IncpQq0 “ Q1). The signed edges in IncpQq are given as

follows:

a) Let i and j be adjacent non-parallel arrows in Q. Then the vertices i and j are connected by

exactly one edge a in IncpQq, with sign σpaq given by σpaq “ p´1qσQpv, iqσQpv, jq where v

is the (unique) vertex in Q with tvu “ vpiq X vpjq.
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b) Let i and j be parallel arrows in Q. Then the vertices i and j are connected by exactly two edges

a and b in IncpQq, with signs given by

σpaq “ p´1qσQpv, iqσQpv, jq and σpbq “ p´1qσQpv1, iqσQpv1, jq,

where v and v1 are the vertices in Q such that vpiq “ tv, v1u “ vpjq. Notice that σpaq “ σpbq.

c) If i and j are non-adjacent arrows in Q, then the vertices i and j are not adjacent in IncpQq.

See [14] for an alternative and more general construction of IncpQq (compare also with the signed line

graph construction in [37, 7]). The following lemma contains a graphical description of the quadratic

form qQ.

Lemma 3.4. For any loop-less quiver Q with n arrows, the quadratic form qQ : Zn Ñ Z of Q is a

unit form, and

a) qGQ “ I ´ }AdjpIncpQqq.

b) qQ “ qIncpQq.

c) qQ is non-negative.

d) qQ is connected if and only if Q is a connected quiver.

Proof:

The non-negativity of qQ follows directly from the definition GqQ “ IpQqtrIpQq. The diagonal

entries of IpQqtrIpQq are the squared norms of the columns Ii of IpQq. Since Q has no loop, each

column Ii “ espiq ´ etpiq has squared norm two, which shows that qQ is a unit form.

Observe that, by definition of IncpQq, we have

}AdjpIncpQqq “

#
´Itri Ij, if i ă j,

0, if i ě j.

In particular, since Q and IncpQq have no loop, we have

2I ´ r}AdjpIncpQqq ` }AdjpIncpQqqtrs “ IpQqtIpQq,

that is, qGQ “ I ´ }AdjpIncpQqq. Therefore qQ “ qIncpQq.

By construction, the incidence bigraph IncpQq is connected if and only if Q is connected. Then

the last claim follows from Remark 2.2. [\

3.2. The rank of an incidence matrix

The following result is well known (cf. [37]), and easy to prove.

Lemma 3.5. For a connected loop-less quiver Q we have rkpIpQqq “ |Q0| ´ 1.
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Proof:

Assume first that Q is a tree (that is, that |Q1| “ |Q0|´1), and proceed by induction on m “ |Q0| (the

cases m ď 2 are clear). Assume that m ą 2 and take a vertex v in Q with degree one. Then there is a

unique arrow i in Q containing v, and the restriction Qpvq is a tree. By induction hypothesis, the set of

columns tIj | j P Q1 ´ tiuu is linearly independent. Notice that v does not belong to the support of

Ij for j ‰ i, which implies that the whole set tIjujPQ1
is linearly independent, which completes the

induction step.

Assume now that Q is an arbitrary connected quiver with n arrows, and choose a spanning tree Q1

of Q. By the first part of the proof, the set of columns tIju with j P Q1
1 is linearly independent. In

particular rkpIpQqq ě m ´ 1. Take now an arrow i P Q1 ´ Q1
1, and let v and w be respectively the

source and target of i. Then there is a (unique) walk α “ iǫ1
1

¨ ¨ ¨ iǫℓℓ in Q1 with starting vertex v and

ending vertex w. We have

Iα “
ℓÿ

i“1

ǫtIit “ espαq ´ etpαq “ ev ´ ew “ Ii,

which shows that rkpIpQqq ď m ´ 1, hence the result. [\

Corollary 3.6. For a connected loop-less quiver Q we have corkpqQq “ |Q1| ´ |Q0| ` 1.

Proof:

Since qQ is a non-negative unit form in |Q1| variables and rkpGqQq “ rkpIpQqq (see for instance [38]),

by the lemma above we have the result (for corkpqq “ n ´ rkpGqq). [\

3.3. Connection between the elementary transformations of Q and qQ

Lemma 3.7. Let Q be a loop-less quiver with arrows i ‰ j. Then, for ǫ P t`1, 0,´1u, the linear

transformation T ǫ
ij is a flation for qQ if and only if T ǫ

ij is a quiver flation for Q.

Proof:

Take q “ qQ. Recall that T ǫ
ij is a flation for q if ǫ “ sgnpqijq. On the other hand, T ǫ

ij is a flation for Q

if ǫ “ ´ǫiǫj , where iǫijǫj is a walk of Q, when the arrows i and j are adjacent, and ǫ “ 0 otherwise.

Using Lemma 3.4, we simply compute qij for each of the cases in Definition 3.3:

a) Assume vpiq X vpjq “ tvu. Then qij “ σQpv, iqσQpv, jq, and i´σQpv,iqjσQpv,jq is a walk of Q.

Therefore sgnpqijq “ σQpv, iqσQpv, jq “ ´ǫiǫj .

b) Assume vpiqXvpjq “ tv,wu. Then |qij | “ 2 and sgnpqijq “ σQpv, iqσQpv, jq “ σQpw, iqσQpw, jq.

As before, i´σQpv,iqjσQpv,jq is a walk of Q, and sgnpqijq “ σQpv, iqσQpv, jq “ ´ǫiǫj .

c) If i and j are non-adjacent, then qij “ 0 and ǫ “ 0.

This completes the proof. [\
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Proposition 3.8. LetQ be a loop-less quiver, and consider an elementary transformation A P tVC ,Sij ,

T ǫ
ij,

rT ǫ
iju for Q (with C a subset of arrows, and arrows i ‰ j) with corresponding elementary linear

transformation A P tVC , Sij , T
ǫ
ij ,

rT ǫ
iju. Then

IpQAq “ IpQqA and qQA “ qQA.

Proof:

Notice that the claims for A “ VC or A “ Sij follow directly from the definitions, thus we only need

to show the claims for A “ T ǫ
ij .

If i and j are non-adjacent arrows, there is nothing to prove. Assume that i and j are adjacent

arrows, say vpiq “ tv,wu and vpjq “ tv,w1u. Let I 1
1, I

1
2, . . . be the columns of the (vertex-arrow)

incidence matrix IpQ1q where Q1 “ QT ǫ
ij . By definition (see 2.5), the new arrow i1 in Q1 satisfies

vpi1q “ tw,w1u, and I 1
k “ Ik for any arrow k P Q1 ´ tiu. Moreover, observe that

σQpv, iqI 1
i “ σQpv, iqIi ´ σQpv, jqIj , that is, I 1

i “ Ii ´ σQpv, iqσQpv, jqIj .

On the other hand, T ǫ
ij is a flation for qQ if ǫ “ sgnppqQqijq. Hence, using Lemma 3.4 we get

ǫ “ σQpv, iqσQpv, jq. Take I2 “ IpQqT ǫ
ij with columns I2

1 , I
2
2 , . . . Then, for k P Q1 we have

I2
k “ IpQqT ǫ

ijpekq

#
IpQqek “ Ik, if k ‰ i,

IpQqpei ´ ǫejq “ Ii ´ ǫIj, if k “ i.

Therefore I2
k “ I 1

k for all k, which completes the proof (cf. also [14, Proposition 5.2pbq and Re-

mark 5.2]).

For the claims on quadratic forms, taking q “ qQ and q1 “ qQA, we have

Gq1 “ IpQAqtrIpQAq “ AtrIpQqtrIpQqA “ AtrGqA,

that is, q1 “ qA. [\

Remark 3.9. For a subset C of arrows in Q we have

qQVC
«VC qQ,

where VC is the point inversion of 2.3 over the indices determined by C .

Proof:

Take q “ qQ, q1 “ qQVC
and V “ VC . Notice that V trTV is an upper (or lower) triangular matrix if

and only if so is T . This observation and the equality Gq1 “ V trGqV show that qGq1 “ V qGqV , that

is, q1 «V q. [\
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3.4. Admissibility

The following observation justifies our considerations on FS-transformations.

Lemma 3.10. Let qpxq “
ř

1ďiďjďn

qijxixj be a unit form, and take indices i ‰ j such that |qij| ď 1.

Consider the FS-transformation rT “ rT ǫ
ij for q, and take q1 “ q rT . Then q1 «

rT q if and only if

qik “ 0 “ qkj for any integer k such that i ă k ă j or j ă k ă i.

Proof:

Assume that i ă j. Consider the matrix qGq partitioned in the following way, where qtri,‚ “ pqi,i`1, . . . ,

qi,j´1q and qtr‚,j “ pqi`1,j , . . . , qj´1,jq,

qGq “

¨
˚̊
˚̊
˚̊
˝

G1 y1 A y2 B

0 1 qtri,‚ qij ztr
1

0 0 G2 q‚,j C

0 0 0 1 ztr
2

0 0 0 0 G3

˛
‹‹‹‹‹‹‚
,

and where G1, G2 and G3 are upper triangular (square) matrices with all diagonal entries equal to 1,

with matrices A,B,C and vectors y1, y2, z1, z2 of appropriate size. Observe that the composition

pT ǫ
ijqtr qGqT

ǫ
ij has the following shape,

pT ǫ
ijqtr qGqT

ǫ
ij “

¨
˚̊
˚̊
˚̊
˝

G1 y1 ´ y2 A y2 B

0 2 ´ ǫqij qtri,‚ qij ´ ǫ ztr1 ´ ztr2

0 ´q‚,j G2 q‚,j C

0 ´ǫ 0 1 ztr2

0 0 0 0 G3

˛
‹‹‹‹‹‹‚
.

Swapping the i-th and j-th columns and rows of the matrix above, we get

p rT ǫ
ijqtr qGq

rT ǫ
ij “

¨
˚̊
˚̊
˚̊
˝

G1 y2 A y1 ´ y2 B

0 1 0 ´ǫ ztr2

0 q‚,j G2 ´q‚,j C

0 qij ´ ǫ qtri,‚ 2 ´ ǫqij ztr1 ´ ztr2

0 0 0 0 G3

˛
‹‹‹‹‹‹‚
.

Now, since ǫ “ sgnpqijq and |qij| ď 1, then qij ´ ǫ “ 0 (and 2 ´ ǫqij “ 1, as already argued in

Remark 2.3paq). We conclude by observing that rT tr qGq
rT is an upper triangular matrix if and only if

qi,‚ “ 0 and q‚,j “ 0. The case j ă i can be shown in a similar way. [\
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A FS-transformation rT ǫ
ij for q such that q rT ǫ

ij «
rT ǫ
ij q will be called q-admissible.

For an arrow i P Q1 in a loop-less quiver Q, consider the set Q1piq of all arrows in Q adjacent to

arrow i, that is, Q1piq “ tj P Q1 | j ‰ i and vpiq X vpjq ‰ Hu. We say that two arrows i ‰ j in Q

are Q-admissible (or that rT ǫ
ij is Q-asmissible) if we have

k R Q1piq Y Q1pjq, for any arrow k with i ă k ă j or j ă k ă i.

Corollary 3.11. Let Q be a loop-less quiver with arrows i ‰ j, and consider the flation rT “ rT ǫ
ij for

Q, and the corresponding FS-transformation rT “ rT ǫ
ij for qQ. Then rT is qQ-admissible if and only if

rT is Q-admissible, and in that case

q
QrT «

rT qQ.

Proof:

Take qQpxq “
ř

1ďiďjďn

qijxixj . By Lemma 3.10, the transformation rT is qQ admissible if and only if

qik “ 0 “ qkj for all k such that i ă k ă j or j ă k ă i. Correspondingly, using Lemma 3.4 and the

definition of incidence graph IncpQq, this means that

k R Q1piq Y Q1pjq, for any arrow k with i ă k ă j or j ă k ă i,

that is, rT is qQ admissible if and only if rT is Q-admissible. [\

3.5. Iterated transformations

Recall that by iterated FS-(linear) transformation rT for q we mean a composition of the form rT “
rT ǫ1
i1j1

¨ ¨ ¨ rT ǫr
irjr

such that rT ǫt
itjt

is a FS-transformation for qt´1, where q0 “ q and we take recursively

qt “ qt´1 rTitjt , and such that each qt is a unit form for t “ 1, . . . , r. If each rT ǫt
itjt

is qt´1-admissible,

we say that rT is a q-admissible iterated FS-(linear) transformation. In this case we have qr «
rT q.

An iterated FS-transformation rT of a loop-less quiver Q is a concatenation rT “ rT ǫ1
i1j1

¨ ¨ ¨ rT ǫr
irjr

of FS-transformations such that if we take inductively Q0 “ Q and Qt “ Qt´1 rT ǫt
itjt

, then the pair of

arrows it and jt are not parallel in Qt´1 for t “ 1, . . . , r. The expression QrT denotes the final (loop-

less) quiver Qr. If in each step t, the FS-transformation rT ǫt
itjt

is Qt´1-admissible, then the iterated

FS-transformation rT is called Q-admissible. By definition and Corollary 3.11, rT is Q-admissible if

and only if rT is qQ admissible, and in that case

q
QrT «

rT qQ.

Notice that if rT is a Q-admissible iterated FS-transformation, and rT 1 is a QrT -admissible iterated

FS-transformation, then the concatenation rT rT 1 is a Q-admissible iterated FS-transformation.

Recall that a maximal (quiver) star Sn with n arrows is a tree quiver with n ` 1 vertices (and

arbitrary direction of its arrows), such that there exists a vertex v0 incident to all arrows of the quiver
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(called center of the star). One of our main combinatorial problems is to show that any tree quiver

can be brought to a maximal star via an admissible iterated FS-transformation. We need the following

key preliminary observation.

Lemma 3.12. For any maximal (quiver) star S and any vertex v P S0, there exists a S-admissible

iterated FS-transformation rT such that SrT is a maximal star having v as its center.

Proof:

Let 1, . . . , n be the arrows of the maximal star S, all of them having in common the center of the star

v0, and assume n ě 2. The rest of vertices v1, . . . , vn of S are enumerated such that vt is incident to

the arrow t for t “ 1, . . . , n. We show that the following is a S-admissible iterated FS-transformation,

W “ rT2,1 rT3,2 ¨ ¨ ¨ rTn,n´1.

For t “ 1, . . . , n, take Qt to be the tree quiver with same set of vertices than S, given by

v2
1

●●
●●

●●
● vt`1

t`1

✉✉
✉✉
✉✉
✉

Qt “
... v1 t

v0
...

vt
t´1

✇✇✇✇✇✇✇
vn

n

❏❏❏❏❏❏❏❏

(the direction of arrows, not shown in the diagram, is irrelevant for the proof). Then Q1 “ S, and

clearly rTt`1,t is a Qt-admissible FS-transformation (admissibility holds since t ` 1 and t are consec-

utive arrows). Observe that Qt`1 “ Qt rTt`1,t, and thus by definition Qn “ SW . Notice also that Qn

is a maximal star with center the vertex v1, that W is a Qn-admissible iterated FS-transformation, and

that the first arrow 1 in Qn joins the vertices v1 and v2. In particular, the quiver pSWqW is a maximal

star with center v2, whose first arrow joins vertices v2 and v3.

Now, if v “ v0 is the original center of the star, there is nothing to do. If v “ vt for some

1 ď t ď n, then we may repeat the above construction t times to get a maximal star SWt with center

the vertex vt, as wanted, where Wt denotes the concatenation of t copies of W . [\

Proposition 3.13. For any tree quiver Q with selected vertex v, there exists a Q-admissible iterated

FS-transformation rT such that QrT is a maximal star with center the vertex v.

Proof:

We proceed by induction on the number of arrows n “ |Q1| of the tree Q. For n “ 1 there is nothing

to show. For n “ 2 the tree Q is a star, and we may change the position of its center as in the Lemma

above. Hence, we may assume that n ě 3 and that the claim holds for all trees with less than n arrows.

Let n be the maximal arrow in Q (relative to the total order ď in Q1) and take vpnq “ tv,wu. Let

Q1 be the quiver obtained from Q by deleting the arrow n. Then Q1 is the disjoint union of exactly two

tree quivers, one containing vertex v and denoted by Qv, and one containing vertex w and denoted by

Qw . The sets Qv
1 and Qw

1 inherit the total order from Q1.
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Observe that, by the maximality of n, any Qv-admissible iterated FS-transformation is also Q-

admissible, and similarly for Qw. We distinguish two cases:

Case 1. Assume first that |Qw
0 | “ 1 (that is, that w is a leaf in Q). By induction hypothesis, we may

assume that Qv is a maximal star with center v. Then Q is a maximal star. We proceed analogously if

|Qv
0| “ 1.

Case 2. Assume that |Qw
0

| ą 1 and |Qv
0
| ą 1, and that the second largest arrow n ´ 1 in Q belongs to

Qv. By induction hypothesis, we may assume that Qv is a maximal star with center v. In particular,

n ´ 1 and n are adjacent arrows and n ´ 1 is a pendant arrow in Q. Then rTn´1,n is a Q-admissible

FS-transformation, and the maximal arrow n in Q1 “ QrTn´1,n is a pendant arrow in Q1. Apply then

Case 1 to the tree quiver Q1.

To complete the proof, use the Lemma above to change the center of the resulting maximal star,

as desired. [\

Remark 3.14. For a loop-less quiver Q, all Q-admissible iterated FS-transformations are reversible.

To be precise, if rT “ rT ǫ1
i1j1

¨ ¨ ¨ rT ǫr
irjr

is a Q-admissible iterated FS-transformation and Q1 “ QrT , then

rT ´1 :“ rT ´ǫr
jrir

¨ ¨ ¨ rT ´ǫ1
j1i1

,

is a Q1-admissible FS-transformation, and Q “ Q1 rT ´1.

Proof:

The claim follows inductively from Remark 2.6pbq. [\

3.6. Strong congruence among positive unit forms of Dynkin type An

The following proposition is one of the goals in [14] (see [14, Theorem 5.5pcq and Corollary 6.6]).

Here we give a short proof. For c ě 0, define the canonical c-extension linear quiver
ÝÑ
A

pcq
n as a

quiver obtained from the linear quiver
ÝÑ
An “

ÝÑ
A

p0q
n “ v1

1 // v2 . . . vn
n // vn`1 by adding c

arrows from vn`1 to v1:

ÝÑ
A

pcq
n “ v1

1 // v2
2 // v3 . . . vn´1

n´1 // vn
n // vn`1

n`c

ii n`1

¨¨¨

ii

Observe that the incidence graph of
ÝÑ
A

pcq
n is the canonical c-vertex extension pApcq

n of Dynkin type

An, as defined by Simson in [26, Definition 2.2],

Incp
ÝÑ
A

pcq
n q “ pApcq

n .

Proposition 3.15. Let q be a connected non-negative unit form of Dynkin type An. Then there is a

connected loop-less quiver Q such that q “ qQ.
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Proof:

By Theorem 2.4, there is an iterated flation T “ T ǫ1
i1j1

¨ ¨ ¨T ǫr
irjr

for q such that qT “ qpApcq
n

is the

canonical c-extension of qAn (for c ě 0 the corank of q, see [26, 32]).

Take Q as the unique quiver satisfying

IpQq “ Ip
ÝÑ
A

pcq
n qT´1,

and notice that for any x P Z
n we have

qQpxq “
1

2
xtrIpQqtrIpQqx “

1

2
xtrT´trIp

ÝÑ
A

pcq
n qtrIp

ÝÑ
A

pcq
n qT´1x “

“ qpApcq
n

pT´1xq “ qpxq,

that is, q “ qQ. [\

Now we are ready to prove one of the main Gram classification results of the paper.

Theorem 3.16. Let q be a connected positive unit form of Dynkin type An. If q1 is a unit form with

q1 „ q, then there exists a composition of q-admissible iterated FS-linear transformations and sign

changes B, such that

q1 «B q.

Proof:

Let Q be a tree quiver such that q “ qQ as in Proposition 3.15. By Proposition 3.13, there is a Q-

admissible iterated FS-transformation rT such that QrT is a maximal star. Take an arrow inversion V

such that S “ QrT V has all arrows pointing away from the star center. Denote by rT the FS-linear

transformation for q corresponding to rT , and by V the point inversion corresponding to V , so that

qTV “ qS, by Proposition 3.8.

Now, if q1 „ q then q1 is a connected positive unit form (by Lemma 2.1). As before, there

is a composition of q1-admissible iterated FS-linear transformations T 1, and a point inversion V 1,

such that q1T 1V 1 “ qS “ qTV . Considering the linear transformation B “ TV pV 1q´1pT 1q´1, by

Corollary 3.11 and Remark 3.9 we have q1 «B q, which completes the proof. [\

4. Combinatorial Coxeter analysis of unit forms of Dynkin type An

We begin this section giving some combinatorial definitions, in particular the notion of inverse of a

quiver, which will be used for the Coxeter analysis of non-negative unit forms of Dynkin type An. Let

Q “ pQ0, Q1, s, tq be a loop-less quiver, with a fixed total ordering ď of its arrows, and consider the

sets

Qă
1 pv, iq “ tj P Q1 | j ă i and v P vpiq X vpjqu,

for each vertex v and each arrow i of Q.
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Definition 4.1. Let α “ iǫ0
0
iǫ1
1

¨ ¨ ¨ iǫℓℓ be a non-trivial walk of Q.

a) We say that the walk α is minimally decreasing if

it`1 “ maxQă
1 pvt, itq, for t “ 0, . . . , ℓ ´ 1.

b) If α is minimally decreasing, we say that α is left complete if whenever βα is minimally

decreasing for some walk β, then β is a trivial walk. Similarly, α is right complete if whenever

αβ is minimally decreasing for some walk β, then β is a trivial walk. A left and right complete

minimally decreasing walk will be called structural (decreasing) walk.

We will mainly consider the following particular minimally decreasing walks. For an arrow i with

there are exactly two right complete minimally descending walks starting with arrow i, one starting at

vertex sptq and denoted by α´
Qpi`1q, and one starting at vertex tpiq and denoted by α´

Qpi´1q. To be

precise, if

α´
Qpi`1q “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq,

then v´1 “ spiq, i0 “ i, it`1 “ maxQă
1

pvt, itq for t “ 0, . . . , ℓ ´ 1, and Qă
1

pvℓ, iℓq “ H.

Similarly, if

α´
Qpi´1q “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq,

then v´1 “ tpiq, i0 “ i, it`1 “ maxQă
1

pvt, itq for t “ 0, . . . , ℓ ´ 1, and Qă
1

pvℓ, iℓq “ H. For a

vertex v we denote by α´
Qpvq the unique structural decreasing walk starting at v.

Consider dually the minimally increasing walks α`
Qpi˘1q and α`

Qpvq.

Definition 4.2. Define a new quiver Q˚ “ pQ˚
0
, Q˚

1
, s˚, t˚q having the same set of vertices Q˚

0
“ Q0

than Q, and the same number of arrows |Q˚
1
| “ |Q1|, and such that each arrow i in Q corresponds to

an arrow i˚ in Q˚, given by

s˚pi˚q “ tpα´
Qpi´1qq, and t˚pi˚q “ tpα´

Qpi`1qq.

The order of the set of arrows of Q˚
1 corresponds to the order in Q1 (that is, i˚ ď j˚ in Q˚

1 if and only

if i ď j in Q1).

The quiver Q˚ defined above will be referred to as inverse quiver of Q, and we will use the

notation Q´1 “ Q˚ (we will drop the asterisk ˚ on arrows of Q´1 when the context allows it).

Proposition 4.4 below, for which we need the following technical result, justifies our definitions.

4.1. A technical lemma

Recall that the columns of the (vertex-arrow) incidence matrix IpQq of Q are denoted by Ii “ spiq ´
tpiq P Z

|Q0| for an arrow i of Q. The columns of IpQ´1q will be denoted by I´1

i for an arrow i of

the inverse quiver Q´1. For convenience, we consider the function x´,´y : Q1 ˆ Q1 Ñ Z given by

xi, jy “ Itri Ij for arrows i and j in Q.
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Lemma 4.3. Let Q be a loop-less quiver. Define an auxiliary function Ξ : Q0 ˆ Q1 Ñ Z
|Q0|, given

for a vertex v and an arrow k of Q by,

Ξpv, kq “
ÿ

iPQă
1

pv,kq

I´1

i

xi, ky

|xi, ky|
,

where as usual the sum is zero when the set of indices is empty. Then the following assertions hold:

a) If j “ maxQă
1

pv, kq and vpjq “ tv,wu, then Ξpv, kq “ xj,ky
|xj,ky| rIj ´ Ξpw, jqs.

b) For any arrow k with vpkq “ tv,wu we have Ξpv, kq ` Ξpw, kq “ Ik ´ I´1

k .

In particular, for any arrow k in Q the following recursive formula for I´1

k holds,

I´1

k “ Ik ´
ÿ

iăk

I´1

i xi, ky.

Proof:

We proceed by induction on the totally ordered arrows Q1. Observe that if k is minimal in Q1, then

Ξpspkq, kq “ 0 “ Ξptpkq, kq and I´1

k “ Ik, therefore all claims hold in this case. For simplicity, for

adjacent arrows j and k we take

σpj, kq “
xj, ky

|xj, ky|
P t˘1u.

To verify paq for an arrow k, assume that pbq is satisfied for all arrows smaller than k. Then, since

j “ maxQă
1

pv, kq, we have Qă
1

pv, kq “ tju Y Qă
1

pv, jq, and therefore

Ξpv, kq “ I´1

j σpj, kq `
ÿ

iPQă
1

pv,jq

I´1

i σpi, kq

“ I´1

j σpj, kq `
ÿ

iPQă
1

pv,jq

I´1

i σpi, jqσpj, kq (1)

“ σpj, kq
”
I´1

j ` Ξpv, jq
ı

“ σpj, kq
”
I´1

j ` Ij ´ I´1

j ´ Ξpw, jq
ı

(2)

“ σpj, kq rIj ´ Ξpw, jqs ,

where the equality (1) holds since σpi, jqσpj, kq “ σpi, kq whenever vpiq X vpjq X vpkq ‰ H, and

the equality (2) holds applying pbq to the arrow j.

To show pbq, assume the claim holds for all arrows smaller than k, and that paq holds for all arrows

smaller than or equal to k. Consider the minimally descending walk α “ α´
Qpk´1q of i0 “ k as in the

definition above,

α “ iǫ0
0

¨ ¨ ¨ iǫrr ,

(in particular, ǫ0 “ ´1 since tpkq “ v´1). For simplicity, for such a walk and for t “ 1, . . . , r define

σpit, it´1, . . . , i1, i0q “ p´1qt`1 xit, it´1y xit´1, it´2y ¨ ¨ ¨ xi1, i0y

|xit, it´1y xit´1, it´2y ¨ ¨ ¨ xi1, i0y|
P t˘1u.
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Applying recursively paq we get Ξpv0, i0q “
řr

t“1
Iitσpit, . . . , i0q. However, since spi0q “ v0, we

have σpit, . . . , i0q “ ´σpvt, itq “ ǫt, and therefore the above expression for Ξpv0, i0q is a telescopic

sum, that is,

Ξpv0, i0q “ Ii1ǫ1 ` . . . ` Iirǫr “ ev0 ´ eξpv0,i0q.

Proceeding similarly for Ξpw0, i0q, where w0 “ tpi0q, we find that

Ξpw0, i0q “ eξpw0,i0q ´ ew0
.

Since our definition of I´1

i0
is I´1

i0
“ eξpv0,i0q ´ eξpw0,i0q, these equations yield the result,

Ξpv0, i0q ` Ξpw0, i0q “ ev0 ´ eξpv0,i0q ` eξpw0,i0q ´ ew0
“ Ii0 ´ I´1

i0
.

Now, to verify the last claim, for an arrow k with vpkq “ tv,wu consider the sets

X “ Qă
1 pv, kq ´ Qă

1 pw, kq, Y “ Qă
1 pw, kq ´ Qă

1 pv, kq and Z “ Qă
1 pv, kq X Qă

1 pw, kq.

Then, applying pbq, we get

I´1

k “ Ik ´
ÿ

iPQă
1

pv,kq

I´1

i σpi, kq ´
ÿ

iPQă
1

pw,kq

I´1

i σpi, kq

“ Ik ´

˜ ÿ

iPXYY

I´1

i

xj, ky

|xj, ky|
` 2

ÿ

iPZ

I´1

i

xj, ky

|xj, ky|

¸

“ Ik ´
ÿ

iăk

I´1

i xi, ky,

where the last equality holds since |xi, ky| “ 1 if i P X Y Y , and |xi, ky| “ 2 if i P Z (observe that

Z is the set of arrows smaller than k that are parallel to k), and xi, ky “ 0 if i R X Y Y Y Z . This

completes the proof. [\

4.2. Gram matrices of a quiver and its inverse

We recall that the inverse quiver of a loop-less quiver Q is given in Definition 4.2, and is denoted by

Q´1.

Proposition 4.4. Let Q be a loop-less quiver with inverse quiver Q´1 and upper triangular Gram

matrices qGQ and qGQ´1 . Then

IpQ´1q “ IpQq qG´1

Q and qGQ
qGQ´1 “ I.

Proof:

Take G “ qGQ and let A be the (upper) triangular adjacency matrix }AdjpIncpQqq of the incidence

bigraph IncpQq of Q (hence G ` Gtr “ IpQqtrIpQq “ 2I ´ pA ` Atrq, cf. 3.1). We proceed by

induction on the number of arrows m “ |Q1| of Q (the claim is trivial for m “ 1). Let 1, . . . ,m

be the ordered arrows of Q, and denote by rQ the quiver obtained from Q by removing the maximal
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arrow m. Notice that, by maximality, the inverse rQ´1 is obtained from Q´1 by removing its maximal

arrow. Then

Ip rQq “ rI1| ¨ ¨ ¨ |Im´1s, and G “

˜ rG ´V

0 1

¸
,

where rG “ qG rQ and V is the column vector of size m´1 given by V “ pxt,myqm´1

t“1
(since G “ I´A,

cf. Lemma 3.4). Observe that

G´1 “

˜ rG´1 rG´1V

0 1

¸
,

therefore, by induction hypothesis,

IpQqG´1 “ rIp rQq|Ims

˜ rG´1 rG´1V

0 1

¸

“ rIp rQq rG´1|Ip rQq rG´1V ` Ims

“ rIp rQ´1q|Im ` Ip rQ´1qV s.

We have shown in Lemma 4.3 that

Im ` Ip rQ´1qV “ Im ´
m´1ÿ

t“1

I´1

t xt,my “ I´1
m ,

that is, IpQqG´1 “ rIp rQ´1q|I´1
m s “ IpQ´1q, as wanted.

Now we show that qGQ
qGQ´1 “ I. By the first claim, observe that

qGQ´1 ` qGtr

Q´1 “ GQ´1 “ IpQ´1qtrIpQ´1q

“ qG´tr

Q IpQqtrIpQq qG´1

Q “ qG´tr

Q GQ
qG´1

Q

“ qG´tr

Q p qGQ ` qGtr

Q q qG´1

Q “ qG´tr

Q ` qG´1

Q .

This completes the proof since both qGQ´1 and qG´1

Q are upper triangular matrices. [\

As consequence we have the following important observation.

Corollary 4.5. For a loop-less quiver Q the following assertions hold.

a) The inverse quiver Q´1 has no loop, and

Q “ pQ´1q´1.

b) The quiver Q is connected if and only if Q´1 is connected.

c) Inverses commute with arrow inversions, that is, if C is a set of arrows in Q, and C˚ is the set

of corresponding arrows in Q´1, then pQVCq´1 “ Q´1VC˚ .
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Proof:

For paq, if Q´1 has a loop, then its (vertex-arrow) incidence matrix IpQ´1q has a zero column, say

Ii “ 0. Then the i-th diagonal entry of GQ´1 “ IpQ´1qtrIpQ´1q is zero. But GQ´1 “ qG´1

Q ` qG´tr

Q ,

which means that the i-th diagonal entry of qG´1

Q is zero. This is impossible since qG´1

Q is invertible. It

follows that the inverse quiver Q´1 has no loop. Now, applying Proposition 4.4, we obtain

IppQ´1q´1q “ IpQ´1q qG´1

Q´1 “ rIpQq qG´1

Q s qGQ “ IpQq,

that is, Q “ pQ´1q´1. This completes the proof of paq.

For pbq, notice that the construction of the inverse Q´1 involves only vertices and arrows inside

the connected components of Q, that is, if Q “ Q1 Y Q2, then

Q´1 “ pQ1q´1 Y pQ2q´1.

Using paq, this shows that Q is connected if and only if so is Q´1.

For pcq, by applying Propositions 3.8 and 4.4 we obtain

IppQVCq´1q “ IpQVCq qG´1

QVC
“ IpQqVCpV tr

C
qGQVCq´1

“ IpQq qG´1

Q V ´tr

C “ IpQ´1qVC “ IpQ´1VC˚q.

Here we use the equalities qGQVC
“V tr

C
qGQVC (cf. Remark 3.9) and V ´tr

C “VC .Clearly IppQVC q´1q“
IpQ´1VC˚q implies pQVCq´1 “ Q´1VC˚ . This finishes the proof of pcq. [\

4.3. A combinatorial formula for the Coxeter matrix

The Coxeter matrix associated to a unit form q on n variables is the n ˆ n matrix given by

Φq “ ´ qGtr

q
qG´1
q .

The characteristic polynomial of Φq, given by ϕqpλq “ detpIλ ´ Φqq, is called Coxeter polynomial

of q. The Coxeter number cq of q is the minimal natural number m such that Φm
q “ I, if such number

exists, and cq “ 8 otherwise (cf. [29] for these and related definitions). The following result may be

found in [29, Proposition 4.2] in a wider context.

Lemma 4.6. Let q and q1 be unit forms. If q1 «B q, then

Φq1 “ BtrΦqB
´tr.

In particular, ϕq1pλq “ ϕqpλq and cq1 “ cq .

Proof:

By hypothesis we have qGq1 “ Btr qGqB, therefore qG´1

q1 “ B´1 qG´1
q B´tr, and

Φq1 “ ´ qGtr

q1
qG´1

q1 “ ´pBtr qGtr

q BqpB´1 qG´1
q B´trq “ BtrΦqB

´tr.

Finally, both the characteristic polynomial and the order of a square matrix are similarity invariants,

therefore the remaining two equalities hold. [\
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We now give a combinatorial expression for the Coxeter matrix of some unit forms.

Theorem 4.7. For a loop-less quiver Q, the following formula for the Coxeter matrix ΦqQ of the unit

form qQ holds,

ΦqQ “ I ´ IpQqtrIpQ´1q.

Proof:

By Proposition 4.4 we have

I ´ IpQqtrIpQ´1q “ I ´ IpQqtrIpQq qG´1

Q “ I ´ GQ
qG´1

Q

“ I ´ p qGQ ` qGtr

Q q qG´1

Q

“ I ´ I ´ qGtr

Q
qG´1

Q

“ ´ qGtr

qQ
qG´1
qQ

“ ΦqQ ,

since qGQ “ qGqQ . [\

We define the Coxeter matrix ΦQ of a loop-less quiver Q as

ΦQ “ I ´ IpQqtrIpQ´1q.

The Coxeter polynomial of qQ, denoted by ϕQpλq, is also referred to as Coxeter polynomial of Q.

Corollary 4.8. Let q : Zn Ñ Z be a connected non-negative unit form of Dynkin type An´c (with

c the corank of q). Then the entries cij of the Coxeter matrix Φq “ pcijqni,j“1
of q are bounded as

follows.

|cij ´ δij | ď 2, for i, j “ 1, . . . , n,

where δij “ 1 if i “ j and δij “ 0 otherwise. Moreover,

a) If q is principal (that is, of corank one) and |qij | ď 1 for all i, j “ 1, . . . , n, then |cij | ď 2 for

i, j “ 1, . . . , n.

b) If q is positive, then |cij | ď 1 for i, j “ 1, . . . , n.

Proof:

By Proposition 3.15, there is a connected loop-less quiver Q such that q “ qQ. If Ii and I´1

i denote

respectively the columns of the (vertex-arrow) incidence matrices IpQq and IpQ´1q, then the pi, jq-th

entry dij of the matrix ΦQ ´ I is dij “ ´Itri I´1

j . In particular,

|dij | ď 2 and ´ 2 ď dii ď 0, for i, j “ 1, . . . , n.

Hence the general claim follows since dij ` δij “ cij , by Theorem 4.7.

Let q be a principal unit form. By Corollary 3.6, we see that the connected quiver Q satisfies

|Q0| “ |Q1| (that is, Q is a 1-tree quiver). Assume, to the contrary, that there is an arrow i such that
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Itri I´1

i “ ´2, that is, i and its corresponding arrow i˚ in the inverse quiver Q´1 are parallel arrows

with opposite directions, say

spiq “ v “ t˚pi˚q and tpiq “ w “ s˚pi˚q,

where Q “ pQ0, Q1, s, tq and Q´1 “ pQ0, Q
˚
1 , s

˚, t˚q. Let α “ α´
Qpi´1q and β “ α´

Qpi`1q be the

minimally descending walks starting with arrow i, as given after Definition 4.1. Then

spαq “ tpiq “ s˚pi˚q “ tpαq and spβq “ spiq “ t˚pi˚q “ tpβq,

that is, both α and β are closed walks. Since Q is a 1-tree and α ‰ β (for spαq ‰ spβq), and both α

and β are minimally descending walks, we conclude that α “ iǫ0
0
iǫ1
1

and β “ i´ǫ0
0

i´ǫ1
1

. In particular

|qi0i1| “ 2, which proves the claim paq.

Assume now that q is a positive unit form. Again by Corollary 3.6, we see that the connected

quiver Q is a tree. Assume that i and j are arrows in Q such that v˚pi˚q “ vpjq. Let α “ iǫ0
0
iǫ1
1

¨ ¨ ¨ iǫrr
and β “ j

η0
0
j
η1
1

¨ ¨ ¨ jηss be as before, where i “ i0 “ j0. In this situation, observe that there are signs

ǫ, η P t˘1u such that the following is a non-trivial closed walk in Q,

j
η1
1

¨ ¨ ¨ jηss jηi´ǫr
r ¨ ¨ ¨ i´ǫ1

1
iǫ0,

which is impossible since Q is a tree. This shows that |cij | ď 1 for i ‰ j.

Finally, for any arrow i in Q with corresponding arrow i˚ in Q´1, we may argue as above to show

that if vpiqXv˚pi˚q ‰ 0, then either spiq “ s˚pi˚q or tpiq “ t˚pi˚q. This shows that dii “ ´Itri I´1

i P
t´2,´1, 0u, and in particular cii “ dii ` 1 P t´1, 0, 1u, which completes the proof of pbq. [\

4.4. Extended maximal stars

Recall that a 1-tree quiver is a connected quiver Q with |Q0| “ |Q1|. By maximal 1-star we mean

a 1-tree quiver rS such there is a vertex v P rS0 (called center of the star) incident to all arrows of rS.

Notice that there is exactly one pair of parallel arrows in rS, say ℓ ă m. In that case, if the maximal

1-star quiver rS has n ` 1 arrows and 1 ď ℓ ă m ď n ` 1, we use the notation

rS “ rSℓ,mn .

For instance, the cases rSℓ,5
4

for 1 ď ℓ ă 5, with corresponding inverses shown underneath, have the

following shapes,
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We now generalize Lemma 3.12 and Proposition 3.13 to maximal 1-stars.

Lemma 4.9. Let rS be a maximal 1-star quiver.

a) For an arbitrary vertex v of rS, there is a rS-admissible iterated FS-transformation rT such that
rSrT is a maximal 1-star with center v.

b) If rS “ rSℓ,mn and rS1 “ rSℓ1,m1

n , then qrS1 « qrS if and only if

pm1 ´ ℓ1q “ pm ´ ℓq or pm1 ´ ℓ1q ` pm ´ ℓq “ n ` 1.

Proof:

Let rS1 “ t1, . . . , n, n ` 1u be the arrows of the maximal 1-star rS, all of them having in common the

center of the star v0, and assume n ą 3. Take rS “ rSℓ,mn for arrows 1 ď ℓ ă m ď n`1, and enumerate

the non-central vertices of rS so that vt is incident to arrow t for t “ 1, . . . ,m ´ 1, and to arrow t ` 1

for t “ m, . . . , n.

To prove paq it is enough to show, as in Lemma 3.12, that there is a rS-admissible iterated FS

transformation rT such that rSrT is a maximal 1-star with center v1, and such that the vertex v2 is

incident to the minimal arrow of rSrT . We distinguish three cases:

Case 1. Assume first that ℓ ą 1. We use the following iterated FS-transformation,

W “ rT2,1 rT3,2 ¨ ¨ ¨ rTn`1,n.

As in Lemma 3.12, a direct computation shows

rSℓ,mn W “ rSℓ´1,m´1
n ,

where now v1 is the star center of rSW , and the first arrow of rSW is joining vertices v1 and v2.

Case 2. Assume now that ℓ “ 1 and m ą 2, and consider the following iterated FS transformation,

Wm “ rT2,1 rT3,2 ¨ ¨ ¨ rTm´1,m´2
rTm`1,m ¨ ¨ ¨ rTn`1,n,

obtained from W by omitting the transformation rTm,m´1. Notice similarly that rS1,mn W “ rSm´1,n`1
n .

Indeed, the quiver Q :“ rSrT2,1 rT3,2 ¨ ¨ ¨ rTm´1,m´2 has the following shape,

v2
1

❖❖
❖❖

❖❖
❖❖

❖❖ vm
m`1

qq
qq
qq
qq
q

... v1
m´1

m
v0

...

vm´1

m´2

♦♦♦♦♦♦♦♦♦♦
vn

n`1

▼▼▼▼▼▼▼▼▼

The arrows m and m´1 are parallel in Q, therefore we omit rTm,m´1 to avoid loops (see Remark 2.6).

However, rTm`1,m ¨ ¨ ¨ rTn`1,n is a Q-admissible iterated FS-transformation, and one can directly com-

pute
rS1,mn Wm “ QrTm`1,m ¨ ¨ ¨ rTn`1,n “ rSm´1,n`1

n .
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Moreover, since m ą 2, both vertices v1 and v2 are incident to the minimal arrow of rSWm.

Case 3. Assume now that ℓ “ 1 and m “ 2. Take

M “ rTn,n`1
rTn´1,n ¨ ¨ ¨ rT1,2 and Mn “ rTn´1,n ¨ ¨ ¨ rT1,2,

and observe that Q1 “ rSMn´1 has the following shape,

Q1 “ v2
1

n ❖❖
❖❖

❖❖
❖❖

❖
n`1
❖❖

❖❖
❖❖

❖❖
❖

n´1

2n´2

v3 v1 v0

v4
...
vn

Q1Mn “ v2

1
❖❖

❖❖
❖❖

❖❖
❖

n`1
❖❖

❖❖
❖❖

❖❖
❖

v3
2

v1 n v0

v4
3

♦♦♦♦♦♦♦♦♦

...
vn

n´1

������������

Notice also that Q1Mn “ rS1,n`1
n is a maximal 1-star with center v1, and such that v2 is incident to the

minimal arrow of Q1Mn.

Take now rT to be the transformation W , Wm or Mn´1Mn in cases 1, 2 and 3 respectively, and

observe that we have

rSℓ,mn rT “

# rSℓ´1,m´1
n , if ℓ ą 1,

rSm´1,n`1
n , if ℓ “ 1.

(3)

By the above, rSrT is a maximal 1-star with center v1 and such that v2 is incident to the minimal arrow

of rSrT , which shows the inductive step to complete the proof of paq.

To show pbq, if

pm1 ´ ℓ1q “ pm ´ ℓq or pm1 ´ ℓ1q ` pm ´ ℓq “ n ` 1,

then by Corollary 3.11 and equation (3) we have qrS1 « qrS. For the converse, assume that qrS1 « qrS.

Using equation (3), we may also assume that m “ n` 1 “ m1, and that 1 ď ℓ, ℓ1 ď n`1

2
. In this case,

consider the shape of the Coxeter polynomial of rS (see remark below), must have ℓ “ ℓ1. Hence the

result. [\

Remark 4.10. A direct calculation using the description of Coxeter matrices in Theorem 4.7 yields

the following Coxeter polynomial for a maximal 1-star rS “ rSℓ,mn ,

ϕrSpλq “ pλm´ℓ ´ 1qpλpn`1q´pm´ℓq ´ 1q.

Therefore, Lemma 4.9pbq may be reinterpreted as follows:

b’) Two maximal 1-star quivers are strongly Gram congruent if and only if they have the same

Coxeter polynomial.

Results of this kind for posets may be found in [11].
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Proposition 4.11. Let Q be a 1-tree quiver. Then for any vertex v in Q there is a Q-admissible iterated

FS-transformation rT such that QrT is a maximal 1-star with center the vertex v.

Proof:

We proceed as in Proposition 3.13, that is, by induction on the number n “ |Q1| of arrows in Q. For

n “ 1, 2 the tree Q is a 1-star, and we may change the position of its center as in the Lemma above.

Hence, we may assume that n ě 3 and that the claim holds for all 1-trees with less than n arrows.

Let n be the maximal arrow in Q (relative to the total order ď in Q1) and take vpnq “ tv,wu.

Let Q1 be the quiver obtained from Q by deleting the arrow n. The set Q1
1 inherits a total order

from Q1. Observe that, by the maximality of n, any Q1-admissible iterated FS-transformation is also

Q-admissible. We distinguish two cases:

Case 1. Assume first that Q1 is a connected quiver. Then Q1 is a (0´)tree, and we may use Proposi-

tion 3.13 to assume that Q1 is a maximal star with center v. Since vpnq “ tv,wu, then Q is a maximal

1-star.

Case 2. Assume now that Q1 is not connected. Then Q1 is the disjoint union of exactly two connected

quivers, one containing vertex v and denoted by Qv, and one containing vertex w and denoted by Qw.

Subcase 2.1. Assume first that |Qw
0

| “ 1. Then Qv is a 1-tree, and by induction hypothesis we

may assume that Qv is a maximal 1-star with center v. Hence Q is a maximal star, and we proceed

analogously if |Qv
0
| “ 1.

Subcase 2.2. Assume now that |Qw
0 | ą 1 and |Qv

0| ą 1, and that the second largest arrow n´ 1 in

Q belongs to Qv. Since Q is a 1-tree, either Qv is a 0-tree or a 1-tree with less than n arrows. Thus,

by Proposition 3.13 or induction hypothesis respectively, we may assume that Qv is a maximal c-star

with center v for c “ 0 or c “ 1. First, if n ´ 1 is a pendant arrow in Qv, then n is a pendant arrow in

Q1 “ QrT ǫ
n´1,n, and we may apply Case 1 above to the 1-tree quiver Q1. Second, if n´1 has a parallel

arrow j in Qv, then the arrows j, n ´ 1 and n form a cycle in Q1, and we may apply Case 1 above to

the 1-tree quiver Q1.

To complete the proof, use Lemma 4.9paq to change the center of the resulting 1-star as desired. [\

We end this section with the second main classification result of the paper.

Theorem 4.12. Two (connected) principal unit forms of Dynkin type An are strongly Gram congruent

if and only if they have the same Coxeter polynomial.

Proof:

Since Coxeter polynomials are strong Gram invariants (Lemma 4.6), we only need to show sufficiency:

assume q and q1 are principal unit forms in n` 1 variables, both of Dynkin type An and same Coxeter

polynomial. By Proposition 3.15, there are connected 1-tree quivers Q and Q1 such that q “ qQ and

q1 “ qQ1 . By Proposition 4.11, there is a Q-admissible iterated FS-transformation rT and a maximal

1-star rSℓ,mn (for some n ě 1 and 1 ď ℓ ă m ď n ` 1), such that QrT “ rSℓ,mn . By Lemma 4.9pbq and

Remark 4.10, we may assume that m “ n ` 1 and 1 ď ℓ ď n`1

2
is such that

ϕQpλq “ ϕrSℓ,n`1
n

pλq “ pλℓ ´ 1qpλn`1´ℓ ´ 1q.
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Proceeding similarly for qQ1 , since ϕQ1 “ ϕQ, we find a Q1-admissible iterated FS-transformation

rT 1 with Q1 rT 1 “ rSℓ,n`1
n “ QrT , hence q « q1 by Corollary 3.11. [\

Concluding remarks and future work

We stress that the proof of all preparatory results towards the main theorems (the elementary quiver

transformations, Lemmas 3.12, 4.9, Propositions 3.13, 4.11, and most importantly, Proposition 3.15)

are completely constructive, and can be easily implemented in any programming language of general

use. In particular, one may follow the proofs of Theorems 3.16 and 4.12 to find algorithmic solutions

to Problem B in terms of iterated FS-transformations, for the case of non-negative unit forms of

Dynkin type An of corank zero or one.

It seems to be a good idea to consider quadratic forms q : Zn Ñ Z having symmetric Gram matrix

Gq factorized as

Gq “ ItrI,

for a n ˆ m matrix I with “special” properties, for instance, one having columns in the root systems

as given in [8, Definitions 3.1 and 3.2]. Any such quadratic form is clearly non-negative. Here we

consider the root system An given in [8, Definition 3.1], that is, matrices I such that for each column

Iei (for i “ 1, . . . , n) there are signs S, T P t˘1u and indices s, t P t1, . . . , nu satisfying

i) Iei “ Ses ` Tet.

ii) S ‰ T .

iii) s ‰ t.

Indeed, matrices with these three conditions are precisely the (vertex-arrow) incidence matrices of

loop-less quivers, and Proposition 3.15 asserts that the corresponding quadratic forms are precisely

the non-negative unit forms with all components of Dynkin type Ar.

Assume, additionally, that A is a Z-invertible matrix morsification of q with integer coefficients

(in the sense of Simson [24]). As in the proof of Theorem 4.7, the Coxeter matrix ΦA “ ´AtrA´1 of

A admits the following expression,

ΦA “ In ´ ItrIA´1.

In an upcoming paper [15], we show that the similarity invariants of ΦA correspond to the orthogonal

invariants of the matrix

ΛA “ Im ´ IA´1Itr,

which turns out to be an orthogonal matrix, producing in this way many important strong Gram in-

variants of A. The particular case when IA´1 satisfies again conditions pi ´ iiiq above has special

combinatorial features, as illustrated in Section 4.2 when A is the standard morsification of q. In

this case, IA´1 is precisely the incidence matrix of the inverse of the quiver with incidence matrix

I . Although successful for coranks zero and one, we do not know whether the technique of FS-

transformations used in Lemmas 3.12 and 4.9 can be generalized to higher coranks (even corank two).
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As in the proofs of Propositions 3.13 and 4.11, and Theorems 3.16 and 4.12, such a generalization

would imply the Coxeter spectral determination of strong Gram classes of non-negative unit forms of

Dynkin type An, as in the positive and principal case. In an upcoming work, we approach such strong

classification with a matricial method.

A different direction is to omit conditions piiq and piiiq on I , that is, to consider simply “incidence

matrices” as in [37]. In a future work we show that the corresponding quadratic forms include not only

non-negative semi-unit forms of Dynkin type An, but also those of Dynkin type Dn, as well as the

Euler form of important classes of algebras (for instance, gentle algebras of finite global dimension).

Moreover, the results of 4.3 and [15] can be extended to unimodular morsifications of quadratic forms

with Gram matrix factorized by “incidence matrices”, potentially facilitating their Coxeter spectral

analysis.

In some sense, the matrix I exposes internal properties of ItrI . The straightforward constructions

and considerations of the paper work in support of this claim.
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