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Abstract. Inthis paper we present a right version of the Buchberger algorithm over skew Poincaré-
Birkhoff-Witt extensions (skew PBW extensions for short) defined by Gallego and Lezama [5].
This algorithm is an adaptation of the left case given in [3]. In particular, we developed a right
version of the division algorithm and from this we built the right Grébner bases theory over bijec-
tive skew PBW extensions. The algorithms were implemented in the SPBWE library developed
in Maple, this paper includes an application of these to the membership problem. The theory
developed here is fundamental to complete the SPBWE library and thus be able to implement var-
ious homological applications that arise as result of obtaining the right Grobner bases over skew
PBW extensions.
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1. Skew PBW extensions

In this section we introduce the bijective skew PBW extensions whose are the fundamental topic in
this paper. Skew PBW extensions include well known classes of Ore algebras, operator algebras and
also a lot of quantum rings and algebras. The skew PBW extensions have been extensively studied,
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see [3], these are being implemented in the SPBWE library developed in Maple, see [1] and [4]. The
main purpose of this paper is to present the theory needed to develop the right Grébner theory and gen-
erate their respective algorithms implemented in Maple through SPBWE library., i.e., implementing the
division algorithm and Buchberger algorithm in the right case, similar works have been implemented,
see Fajardo [1] and [4], Fajardo-Lezama [2], Gasiorek et al., [7], Simson-Wojewddzki [11], Simson
[12], [13] and [14].

Definition 1.1. Let R and A be rings, we say that A is a skew PBW extension of R (also called
o-PBW extension), if the following conditions hold:

(i) RCA.

(ii) There exist finitely many elements x1,...,z, € A such that A is a left R-free module with
basis

Mon(A) := Mon{zy,...,z,} = {z* =2 - 28| = (v, ..., ) € N'}.
(iii) Forevery 1 <i <mnandr € R — {0} there exists ¢;,, € R — {0} such that

Tt — ¢ T € R. (D

(iv) Forevery 1 <i,j < n there exists ¢; ; € R — {0} such that

Tjx; — ¢ ;7T € R+ Rry + -+ + Ray,. 2)

In this case the extension is denoted by A = o(R)(x1,...,2,), and R is called the ring of coefficients
of the extension A.

Remark 1.2. Each element f € A — {0} has a unique representation in the form f = ¢; X; +--- +
¢t Xy, withe; € R— {0} and X; € Mon(A), 1 <i <t

The following proposition (see [3], Proposition 1.1.3) justifies the notation given in Definition 1.1 of
the skew PBW extensions.

Proposition 1.3. Let A = o(R)(z1,...,z,) be a skew PBW extension of R. Then, for 1 <i < n,
there exist an injective ring endomorphism o; : R — R and a o;-derivation §; : R — R such that

xir = o;(r)x; + 6(r),
for every r € R.

Definition 1.4. Let A = o(R)(z1,...,x,) be a skew PBW extension of R. A is called bijective if
o; is bijective for every 1 < ¢ < n and ¢; ; is invertible for any 1 <1,j < n.

Definition 1.5. Let A = o(R)(z1,...,x,) be a skew PBW extension of R, with endomorphisms
oi, 1 <1 < n. We will use the following notation.

(i) Fora = (a1,...,ap) € N*, 0% := o] -+ 0%, |a| := a1 + -+ + o, and if A is bijective

o %:=0, % -0, *.],Moreover, if 3= (f31, ..., Bn) € N”, then a+5:=(a1+01, ..., an+5n).
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(ii) For X = z® € Mon(A), exp(X) := a and deg(X) := |a|.
(i) Let 0 # f € A;if f = 1 X5 + -+ + ¢ Xy, with X; € Mon(A) and ¢; € R — {0}, then
deg(f) := max{deg(X;)}:_;.

The following characterization of skew P BW extensions was given in [6].

Theorem 1.6. Let A be a ring of a left polynomial type over R with respect to {x1,...,z,}. Aisa
skew PBW extension of R if and only if the following conditions hold:

(a) For every z* € Mon(A) and every 0 # r € R there exist unique elements 7, := 0%(r) €
R — {0} and p,» € A such that
x%r = Tam.Oé +pa,ra (3)

where p, , = 0 or deg(par) < |af if par # 0. Moreover, if r is left invertible, then r,, is left
invertible.

(b) For every 2, 2° € Mon(A) there exist unique elements ¢, 5 € R and p, 5 € A such that
22" = ca,50°M + pa g, “)
where ¢, g is left invertible, p, 3 = 0 or deg(pq,g) < | + B if pa,g # 0.
Remark 1.7.
(i) Letf,~,5 € N" and ¢ € R. Then we have the following identities:

0¥(C3,8)C0+8 = CoCo-tr.55 (5)

of (07(c))coy = c@ﬁag'w (c). 6)

(ii) One concludes from Theorem 1.6 that if A is bijective, then ¢, g is invertible for any o, 5 € N".

2. Orders on Mon(A™)

In this section we will compile some results taken from [3] that will be used in the theory of reduction
and the theory of Grobner for the right case.

Definition 2.1.  (a) We define in Mon(A) the deglex order by the formulas:

z® = g

or

z% = 2f <= { 2 # 2P but|a| > |8
or

\xo‘ 75 xﬁ, |a| = |B|but diwith a3 =01,...,0,_1 = Bi_1,0; > ;.

It is clear that the deglex order is a total order.
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(b) If 2 > x% and 2 # 2P we write z* > 2.

(c) Assume that the element f € A\ {0} has the unique form f = ¢z + -+ 4+ ¢z, with
¢ € R—{0},1 < i <t and 2* > --- > z%. We define the monomial ' to be the
leader monomial of f and we write Im(f) := 2 ; ¢ is the leader coefficient of f,lc(f) := ¢
and c1x™ is the leader term of f denoted by 1t(f) := ciz®. If f = 0, we define Im(0) :=
0,1c(0) := 0,1t(0) := 0 and we set X > O for any X € Mon(A).

2.1. Monomial orders in skew P BW extensions

Let A = o(R)(z1,...,x,) be a skew PBW extension of R and let > be a total order defined on
Mon(A). If z¢ > 2P but 2@ # 28 we will write z* > 2°. 2% < 2 means that 2 > 2. Let f # 0
be a polynomial of A. If

f=aXi+ - +aX,

with ¢; € R — {0} and X; > --- > X, are the monomials of f, then Im(f) := X, is the leading
monomial of f,1c(f) := ¢ is the leading coefficient of f and It(f) := ¢1 X is the leading term of
f. If f =0, we define Im(0) := 0,1c(0) := 0,1t(0) := 0, and we set X > 0 for any X € Mon(A).
Thus, we extend > to Mon(A4) U {0}.

Definition 2.2. Let > be a total order on Mon(A), it is said that > is a monomial order on Mon(A)
if the following conditions hold:

(i) Forevery 27, 2%, 7,2 € Mon(A)
2P = 2% = Im(272P2) = lm(z72%2?).

(i) z* > 1, for every z® € Mon(A).
(iii) > is degree compatible, i.e., |3 > |a| = 28 = 2.

Monomial orders are also called admissible orders. It is worth noting that every monomial order on
Mon(A) is a well order. Thus, there are not infinite decreasing chains in Mon(A). From now on we
will assume that Mon(A) is endowed with some monomial order.

Definition 2.3. Let 2z, 2% € Mon(A), we say that z® divides #, denoted by 2®|x”, if there exists
z7,2* € Mon(A) such that 27 = Im(272%2). We will say also that any monomial z* € Mon(A)
divides the polynomial zero.

The condition (iii) of Definition 2.2 is needed in the proof of the following proposition (see [3],
Proposition 13.1.4), and this one will be used in right Division Algorithm (Theorem 3.8).

Proposition 2.4. Let A be a bijective skew PBW extension and 2, z” € Mon(A) and f,g € A—{0}.
Then,
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(@) Im(z%g) = Im(z®1m(g)) = z*+teP(m9) e exp(lm(z®g)) = a+exp(lm(g). In particular,
Im(Im(f) Im(g)) = zexp(m())+exp(im(g)) je
exp(Im(Im(f)Im(g))) = exp(lm(f)) + exp(lm(g))

and
Im(z%2®) = 2977 i.e., exp(lm(z®z?)) = a + B. (7)

(b) The following conditions are equivalent:

() z|zP.
(ii) There exists a unique ¥ € Mon(A) such that 27 = Im(z%2%) = 297 and hence 8 =
0+ a.
(iii) There exists a unique 27 € Mon(A) such that 2 = Im(2®2%) = 2°*% and hence 3 =
o+ 0.
(iv) B; > a;forl <i<n,with 8 := (51,...,0n) and a := (o, ..., qy).
Proof:
Apply [3; Proposition 13.1.4]. ad
Remark 2.5.

(i) Let = be the monomial order on Mon(A). If there exists f = 27 ¢ + -+ + V¢, € A — {0}
such that 28 = x® f or P = fx<, then by Proposition 2.4, P = ot e, aco‘|:c5.

(ii) We note that there exists a least common multiple of two elements of Mon(A): in fact, let
%, 2% € Mon(A), then lem(z%,2%) = 27 € Mon(A), where 7 = (71,...,7,) With ; :=
max{a;, §;} foreach 1 < i < n.

2.2. Monomial orders on Mon(A™)

We will often represent the elements of A™ also as row vectors, in case when if this does not causa
confusion. We recall that the canonical basis of the free A-module A™ is

e1 = (1,0,...,0),e2 = (0,1,0,...,0),...,em = (0,0,...,1).

Definition 2.6. A monomial in A™ is a vector X = Xe;, where X = 2® € Mon(A4) and 1 < i < m,
ie.,

X=Xe;=(0,...,X,...,0),
where X is in the i-th position, named the index of X, ind(X) := 4. A term is a vector cX, where
¢ € R. The set of monomials of A™ will be denoted by Mon(A™). Let Y = Ye; € Mon(A™), we
say that X divides Y if i = j and X divides Y. We will say that any monomial X € Mon(A™) divides

the null vector 0. The least common multiple of X and Y, denoted by lem(X,Y), is 0 if 7 # j, and
Ue;, where U = lem(X,Y), if i = j. Finally, we define

exp(X) := exp(X) = o and deg(X) := deg(X) = |«/.
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We now define monomial orders on Mon(A™).

Definition 2.7. A monomial order on Mon(A™) is a total order > satisfying the following three
conditions:

(i) Im(zPz%)e; > xe;, for every monomial X = z%; € Mon(A™) and any monomial 27 in
Mon(A).

(i) If Y = 2%¢; = X = x%;, then Im(272")e; = Im(x72*)e; for every monomial z7 € Mon(A).
(iii) > is degree compatible, i.e., deg(X) > deg(Y) = X > Y.
IfX>Yand X #YwewriteX > Y. Y < Xmeans that X > Y.

Definition 2.7 implies that every monomial order on Mon(A™) is a well order. Next we give a mono-
mial order > on Mon(A), we can define two natural orders on Mon(A™).

Definition 2.8. Let X = Xe; and Y = Ye; € Mon(A™).

XY
(i) The TOP (term over position) order is defined by X >= Y <= < or
X =Yand i>j.

XY
(i) The TOPREYV order is definedby X =Y <= < or
X =Yand i<j.
Remark 2.9.

(i) Note that with TOP we have e,,, = €,,_1 > --- > e1 and ey > e2 > --- > e,, for TOPREV.

(i) The POT (position over term) and POTREV orders defined in [10] and [8] for modules over
classical polynomial commutative rings are not degree compatible.

We fix a monomial order on Mon(A) and a non-zero vector f € A™. Then we write f as a sum of
terms in the following form
f=aXi+ - +aX,

where ¢1,...,¢, € R—0and X; > X3 > -+ > X; are monomials of Mon(A™).

Definition 2.10. Letf := ¢;X; +--- + ¢ Xy € A" where c1,...,c; E R—0, X1 = Xo > - = X
monomials of Mon(A™) and X; := z"%e;, with v; € N™. Given g € A, we define

fg:=crxgej + -+ gey,

and we view fg as an element of A™.
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Remark 2.11. In the notation of Definition 2.10, we have exp(lm(fz®)) = exp(lm(f)) + . In fact,
as > is monomial order on Mon(A™), then Im(z7" z%)e;, > Im(az"*2%)e;, for each 2 < k < ¢,
thus, Im(fz®) = lm(z"x)e;, so, exp(Im(fz*)) = v1 + o = exp(Im(f)) + a. Hence, lc(fz*) =
c1Cy,a = le(f)cy a-
Definition 2.12. Under the notation introduced earlier, say that:
(i) It(f) := c1Xy is the leading term of f,
(ii) le(f) := c; is the leading coefficient of f
(iii) lm(f) := X; is the leading monomial of f.

For f = 0 we define Im(0) = 0,1c(0) = 0,1t(0) = 0, and if > is a monomial order on Mon(A™),
then we define X - 0 for any X € Mon(A™). So, we extend > to Mon(A™) [ J{0}.

3. Right reduction in A™

In this section we present the fundamental topics of reduction theory for right submodules of the free
A-module A™ when A is a bijective skew PBW extension. This theory was studied in the bijective
general case for left modules. Here we adapt the ideas used in [3].

Throughout are assume that R satisfies some natural computational conditions.

Definition 3.1. A ring R is right Grobner soluble (RG.S) if the following conditions hold:
(i) R is right Noetherian.

(i) Given a,ry,...,r, € R there exists an algorithm which decides whether « is in the right ideal
rmR+---+r,R,and if so, find by, ...,b,, € Rsuchthata = r1by + - + rbm.

(iii) Givenry, ...,y € R there exists an algorithm which finds a finite set of generators of the right
R-module

Syzgplr1 -+ mm] == {(b1,...,bm) € R™|r1by + -+ + rpbm = 0}

Remark 3.2. The three conditions (i) - (iii)imposed on R are needed in order to guarantee a right
Grobner theory in the rings of coefficients, in particular, to have an effective solution of the mem-
bership problem in R (see (ii) in Definition 3.3 below). From now on in this paper we will assume
that A = o(R)(x1,...,zy) is a skew PBW extension of R, where R is a RG.S ring and Mon(A) is
endowed with some monomial order.

The reduction process in A™ is defined as follows.

Definition 3.3. Let F' be a finite set of non-zero vectors of A™, and let f,h € A™, we say that f

reduces to & by F' in one step, denoted f N h, if there exist elements f, ... ,f, € Fandry,...,r €
R such that

@) lm(f;)|1m(f), 1 <i <t,ie., ind(lm(f;)) = ind(Im(f)) and there exists z% € Mon(A) such
that 3; + o = exp(Im(f)) with j3; := exp(lm(f;)).
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i) le(f) = lc(fl)oﬂl (r1)ef a0 + -+ le(fy) o™ (T‘t)Cf“at, where ¢f. o, = €3, ,a;-
(iti) h=f — b firiz®.

We say that f reduces to k by F’, denoted f r—£—>+ h, if and only if there exist vectors ky,... h;_1 €
A™ such that

fEF hI}F h2=F L LF

ht,1 F—F——> h.

S is reduced (also called minimal) with respect to F' if f = 0 or there is no one step reduction of f by
F, i.e., one of the first two conditions of Definition 3.3 fails. Otherwise, we will say that f is reducible

with respect to F. If f 'im h and h is reduced with respect to F', then we say that & is a remainder
for f with respect to F'.

Remark 3.4. Related to the previous definition we have the following remarks:
(i) By Theorem 1.6, the coefficients ¢, o, in the previous definition are unique and satisfy
xexp(lm(fi))xai = cfmaixexp(lm(fi))—’—ai + Df ;00

where py, a, = 0 or deg(lm(py, o,)) < |exp(Im(f;)) + o

, 1 <1<t
(i) Im(f) > lm(h) and f — h € (F'), where (F') is the right submodule of A™ generated by F'.

(iii) The remainder of f is not unique.

(vi) By definition we will assume that 0 RN 0.
(v)

t

I6(F) = ) L6l ra™),

i=1

From the reduction relation we obtain the following interesting properties.

Proposition 3.5. Assume that A is a bijective skew PBW extension. Let f,h € A™, § € N" and
F ={f,....f,} be afinite set of non-zero vectors of A™.

) Iff N h, then there exists p € A™ withp = 0 or Im(fz?) > lm (p) such that fz? +p Ny
(i) Iff FE—>+ handp € Aissuch thatp = 0 or Im(h) = Im(p), thenf +p r—£—>+ h+p.

(iii) Iff »inr h, then there exists p € A™ with p = 0 or Im(fz%) = Im(p) such that fz% +p »inr
0
z’h.

@iv) Iff r—£—>+ 0, then there exists p € A™ withp = 0 or lm(fz?) = lm(p) such that f2%+p FE—>+ 0.
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Proof:

() Iff = 0,thenh = 0 = p. Letf # 0 and Im(f) := x; then there exist f1,...,.f, € I and
r1...,7¢ € Rsuch that Im(f;)| lm(f), for 1 < < ¢, 1ie., ind(lm(f;)) = ind(Im(f)) and there
exists % € Mon(A) such that A = a; + exp(lm(f,)). Moreover,

le(f) = le(f1)o™ (r1)esy ar + -« +1e(f)o™ (r)cs, o

with 8; := exp(Im(f;)) and h = f — >_'_, firiz® . We note that ind(Im(f)) = ind(Im(fz?))
and exp(fz?) = 0 + X, so

Im(f;)| Im(fz%), with @ + X\ = (0 + o) + Bs;
we observe that

t
le(fz?) =1c(f)eng = D 1e(f)o” (ri)es, a,cn0-
i=1

Hence Remark 1.7 yields:
t
lc(fxe) = Z IC(fz')Oﬁi (rs)CB; .01 Cas+B:,0
i=1
t
= Z lc(fi)oﬁi (Ti)oﬁi (Ca;,6)¢8;,0:46
i=1
¢
= Z lc(fi)oﬁi (TiCai,0)CB10,40
i=1

t
= Z lc(fi)aﬁi (T;)Cﬁiyai-l—@a
=1

where 7 := r;c,, p. Moreover,

t
hat = faf — Zfimxo‘ixe

i=1

t
_ 0 i +0
=fa’ = firica, 02 +p
=1

t
=faz’ +p - Zfﬁgxaiw

i=1

where p := Zle(—fi)ripaiﬁ; note that p = 0 or deg(p) < |0+a;+ ;| = |0+ \| = deg(fz?),
so Im(fz?) = Im(p). Moreover, Im(fz% + p) = Im(fz?) and lc(f2% + p) = lc(f2?), so by the
previous discussion zf + p L 20,
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(i) Let

F F F _F

hiy —2— hy:=h. (8)

f
We start with f KN hy. If f = 0, then hy = 0 = p and there is nothing to prove. Let f # 0. If
h; = 0 then p = 0 and hence Im(f) > lm(p); if by # 0, then Im(f) > lm(h;) > lm(p), and
hence Im(f + p) = lm(f), le(f + p) = lc(f). Now, as in the proof of the first part of (i), we
obtain by +p =f +p — S i, firix®. Since Im(f + p) = Im(f) and lc(f + p) = lc(f), then
S+p iy + p. Since lm(h;) > lm(p) we can repeat this procedure for h; i h;y1 with
1 <¢ <t — 1. This completes the proof of (ii).

hl# h2=

(iii) By (i) and (8), there exists p; € A™ with p; = 0 or lIm(fz%) = Im(p;) such that fz? +
)2 5 h12%. Moreover there exists py € A™ with p, = 0 or Im(h12%) = Im(py) such that

hix? +ps »L> hox?. Hence, in view of (ii), we obtainfac‘9 +p,+p, »L> hix? +py »L> hott,
so the element p” := p, + p, € A™ is such that

fa¥ +p” FE—Nr hoa?,

withp” = 0 or Im(fz?) = Im(p"), because we have Im(fz%) > Im(p;) and Imf (%) >~ lm(p,).
By induction on ¢ we find p’ € A™ such that

fx? +p' 'L)_i_ hy_q12?,
with p’ = 0 or Im(f2?) = Im(p’). By (i) there exists p, € A™ such that k;_12° + p, —— ha?,
with p, = 0 or lIm(h;_12%) = Im(p,). By (i), fz? +p' +p, r—£—>+ hi 12 +p, s haf. Thus,
2 +p 'L>+ ha?,
with p :=p’ +p, = 0 or Im(fz?) = Im(p) since Im(fz?) = Im(p’) and Im(f2%) = Im(p,).
(iv) This is a direct consequence of (iii) taking h = 0.

Definition 3.6. Let A := o(R)(x1,...,x,) a bijective skew PBW extension. Let 61,02 € N". We
define the following automorphism over R, g, 9, : & — R that assigns to each r € R.

¢91792 (T) = 061+92 (0_62 (T))
Remark 3.7.
i) The inverse function of v is given by ¥, L, (r) = o205~ (01+02) (1),
(1) Ypisg y ¢91 92( )

(i) Let A := o(R){(x1,...,z,) a bijective skew PBW extension. For a, 5,7 € N" and r € R,
using the identities of Remark 1.7, we obtain

o (r)epa = cgatbp.alr) )
cgar =0 (Y5 (r))cs.a- (10)
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Moreover, we have

Oﬁ (¢57; (T))Oﬁ (Ca,’y)CB,OH—V

(11
—1
= 07 (V50 (r)can) .04
= Cﬁya+v¢67a+v(¢ﬁi}x(T)Cow)-
(iii) Under the notation used in proof of Proposition 3.5 (i); s1, ..., s; are solutions of the equation

¢
le(h) = Zlc(fi)cﬁuaisiv
i=1
if and only if, r; = zpa_il Bi(si) fori =1,...,t, are solutions of the equation
¢
le(h) = Z le(f;)¢s;,0:08:,0: (74)-
i=1

The following theorem is a theoretical support of the right Division Algorithm (Algorithm 1) for
bijective skew P BW extensions.

Algorithm 1: Right division algorithm in A™
Input: f.f,....f, € A" withf, #0(1 < j <t)
Output: ¢1,...,9: € A, h € A™ with f =f,q1 + - - - +fq: + h, h reduce with respect to
{f1s---.f:and Im(f) = max{lm(Im(f;) lm(q1)), . .., Im(lm(f,) Im(q:)), lm(k)}
Initialization: ¢; < 0,q2 < 0,...,q: < 0,h < f;
while h # 0 and there exists j such that Im(f;) divides Im(h) do
J + {j | Im(f;) divides Im(h)};
foric Jdo
Bj < exp(Im(f;)):
a; < exp(lm(h)) — fj;
end
if the equationlc(h) = 3, ;lc(f;)cy; o, 85 is soluble then
Calculate one solution (s; ) c.7;
for j € J do
s e U3l ()
qj < q5 T 1Ty
h<h—frjz%;
end

else
| Break;

end

end
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Theorem 3.8. Let F' = {f,,....f,} be a set of non-zero vectors of A™ and f € A™, then the right
division algorithm (Algorithm 1) produces polynomials ¢1,...,q € A and a reduced vector h € A™

with respect to F' such that f 'i>+ h and

f=fian+ --+fiqu+h

with
Im(f) = max{lm(Im(f;)Im(q1)), ..., lm(lm(f,) Im(q;)), lm(h)}.
Proof:
We first note that Algorithm 1 is the iteration of the reduction process. If f is reduced with respect to
F:={f,,....f,},thenh =f,q = --- = ¢ = 0 and Im(f) = lm(h). If f is not reduced, then we

make the first reduction, f L b, with f = > . ; firja® + hy, with Jy = {j | Im(f;) divides
Im(f)} and rj; € R. If by is reduced with respect to F', then the cycle While ends and we obtain g; =
rj12% for j € Jy and g; = 0 for j ¢ J1. Moreover, Im(f) > Im(k1) and Im(f) = Im(Im(f;) Im(q;))
for j € Jy such that rj; # 0, hence, Im(f) = maxi<j<;{lm(lm(f;)) Im(q;), lm(h1)}. If hy is not

reduced, so we make the second reduction with respect to F', by AN hy, withh; = jeds firjox®i +
ha, Jo := {j | Im(f;) divides Im(h1)} and 7j2 € R. We have

F=22enfirina® + 3 e, firj2x% + hy

If hy is reduced with respect to F' the procedure ends and we get ¢; = ¢; for j ¢ Jo and ¢; =
qj + rjox for j € Jy. Since Im(f) > lm(hy) > Im(hz), then the algorithm produces polynomi-
als ¢; with monomials ordered according to the monomial order fixed, and again we have Im(f ) =
maxi<j<t{Im(Im(g;) Im(f;)), Im(h2)}. If we continue this way, the algorithm ends since Mon(A™)
is well ordered. O

4. Grobner bases for right submodules of A™

In this section we present the general theory of Grobner bases for right submodules of A™, m > 1,
where A = o(R)(x1,...,z,) is a bijective skew PBW extension of R, with R a RGS ring (see
Definition 3.1) and Mon(A) endowed with some monomial order (see Definition 2.2). A™ is the right
free A-module of column vectors of length m > 1; since A is a right Noetherian ring, then A is an
IBN ring (Invariant Basis Number, see [9]), and hence, all bases of the free module A have m
elements. Note moreover that A™ is right Noetherian, and hence, any submodule of A™ is finitely
generated.

The plan is to define and calculate Grébner bases for right submodules of A™, we will present
some equivalent conditions in order to define right Grobner bases, and finally, we will compute right
Grobner bases using a procedure similar to right Buchberger’s algorithm over bijective skew PBW
extensions. This theory was studied in the bijective general case for left modules. Here we adapt the
ideas and technique used in [3].

Our next purpose is to define Grobner bases for right submodules of A™.
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Definition 4.1. Let M # 0 be a right submodule of A™ and let G be a non-empty finite subset of non-
zero vectors of M, we say that GG is a Grobner basis for M if each element 0 # f € M is reducible
with respect to G. We will say that {0} is a Grobner basis for M = 0.

Theorem 4.2. Let M # 0 be a right submodule of the free A-module A™ and let GG be a finite subset
of non-zero vectors of M. Then the following conditions are equivalent:

(i) G is a Grobner basis for M.
(ii) For any vector f € A™,

f e Mifand only if f +& 0.

(iii) For any 0 # f € M there exist g,...,8; € G such that Im(g;)[Im(f), 1 < j < ¢, (e,
ind(Im(g;)) = ind(Im(f)) and there exist a; € N" such that exp(lm(g;)) + a;; = exp(Im(f)))
and

le(f) € {le(g1)cg, a1s - - - lc(8r) gy o)

(iv) Fora € N"and 1 < v < m, let {«a, I), be the right ideal of R defined by

{a, M)y, == {{lc(f) | f € M, ind(Imf) = v, exp(Im(f)) = a}).

Then, {a, I), = J,, with

Jy = {{lc(g)cg s | &g € G,ind(lmg) = v and exp(lm(g)) + B = a}).

Proof:
(1) = (ii): Letf € M, if f = 0, then by definition f 'inr 0. If f # 0, then there exists #; € A™ such
that f +< hy, with Im(f) = Im(hy) and f — hy € {G) C M, hence hy € M; if by = 0, so we end.
If hy # 0, then we can repeat this reasoning for k1, and since Mon(A™) is well ordered, therefore
.

Conversely, if f 'inr 0, then by the Theorem 3.8, there existg,,...,8, € Gandqy,...,q € A
such that f =g,q1 + - - + g, q1. i.e.. f € M.

(i) = (i): evident.

(i) < (iii): this is a direct consequence of Definition 3.3 and the equation (9).

(iii) = (iv) Since R is a right Noetherian ring, there exist r1,...,rs € R, f,...,f,, € M such
that {a, M), = {r1,...,rs), ind(Im(f;)) = v, lm(f;) = 2%, 1 < i < n, with {r,...,rs) C
{Ie(f1),...,1c(fn)), then {lc(fy), ... ,1c(f,)) = {a, M),. Letr € {a, M),, there exist ay, . .., a, €

R such that r = Ic(fy )ay + - - - +1c(f,, ) an; by (iii), for each i there exist gy;,...,g;; € Gand bj; € R
such that

lc(fz') = lc(glz')cgmaubli et lc(gtiz’)cgtii,atiibtiiv
withv = ind(Imf;) = ind(Im(g;;)) and & = exp(Im(f;)) = a;;+exp(Im(g;;)), thus {c, M), C J.
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Conversely, if r € J,, then r = lc(gq)cg, 5,01+ - - +1c(gy)cq, 5,0, With b; € R, B; € N", g, € G
such that ind(Im(g;)) = v, 8; + exp(lm(g;)) = aforany 1 <i <t.

Note that g;z% € M, ind(g;z") = v, exp(lm(g;z")) = a, le(g;z”) = lc(g;)cq, 5, for 1 < i <
t, thus 7 = lc(gy2™)by + - - - + le(g, )by, ie., r € {a, M),.

(iv)= (iii): let 0 # f € M and let a = exp(lm(f)) and v = ind(Im(f)), then lc(f) € {a, M),;
by (iv) le(f) = lc(gy)cg, 8,01 + - + lc(gy)cq, .0t With b; € R, 3; € N, g; € G such that
= ind(lm(g;)) = v and §; + exp(lm(g;)) = « for any 1 < ¢ < ¢. From this we conclude that,

Im(g;)[ Im(f). O

Some useful consequences of Theorem 4.2 are the following results.

Corollary 4.3. Let M # 0 be a right submodule of A™. Then,
(i) If G is a Grobner basis for M, then M = (G).

(i) Let G be a Grobner basis for M. If f € M and f . h, with h reduced, then h = 0.

(iii) Let G = {g;,...,8;} be a set of non-zero vectors of M with lc(g;) = 1 foreach 1 < i < ¢. If
given 0 # r € M there exists 7 such that Im(g;)| lm(r), then G is a Grobner basis of M.

Proof:
(i) Apply Theorem 4.2.

(ii) Assume that f € M and f F§—>+ h, with h reduced. Since f —h € (G) = M, then h € M; if
h # 0 then h can be reduced by G, but this is not possible since £ is reduced.

(iii) Assume thatf € A™. By Theorem 3.8 there exists r reduced such that f r—§—>+ r. If f € M then
r € M; if r # 0, then by hypothesis there exists g; € G such that Im(g;) divides Im(r), thus,

since lc(g;) = 1, then r is reducible, which is a contradiction and therefore, f »—§—>+ 0. On the

other hand, if f 'inr 0, then f € M. Now Theorem 4.2 (ii) implies that GG is Grobner basis
of M.
O

Corollary 4.4. Let G be a Grobner basis for a right submodule M of A™. Given g € G, if g is
reducible with respect to G’ = G — {g}, then G’ is a Grobner basis for M.

Proof:

According to Theorem 4.2, it is enough to show that every f € M is reducible with respect to G’. Let
f be a nonzero vector in M; since G is a Grobner basis for M, f is reducible with respect to G and
there exist elements g4, ...,g, € G satisfying the conditions (i), (ii) and (iii) in the Definition 3.3. If
g # g; foreach 1 < i < ¢, then we finished. Suppose that g = g; for some j € {1,...,t} and let
Bi = exp(lm(g;)) for i # j, B = exp(Im(g)), and a;, & € N such that a; + 5; = exp(lm(f)) =
a + B. Thus,

IC(f) = lc(gl)cﬁhourl +-+ lc(g)cﬁ,arj +F lc(gt)cﬁt,at’rt'
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On the other hand, since g is reducible with respect to G’, there exist g7,...,g. € G’ such that

Im(g}) | Im(g) and le(g) = >3, lc(g)es; o) 7y Where B = exp(lm(g}.)), o), € N" and o + 5}, =
exp(lm(g)) = B. Thus, Im(g}) | Im(f) for 1 < i < s; moreover, using the equation (11) of Remark
3.7, we have

! o / o "
Csy,a4 TkCBa = CB1 o ThCB, +al 0 = €8y, +aTks

where 1} = g o +a(zp[§;ja; (r)ca; a)- Therefore,

S S
1c(8)cp.a = Y 1c(@h) o ar ThCB.a = D 1c(8h)Car af 4alh-
k=1 k=1

Since o+ 8 = exp(lm(f)), then a+ o} + 3}, = exp(lm(f)). Further, if there exists g,, € {g1,...,8:}

such that g,, = g’ for some z € {1,...,s}, then 5, = [, and a + o, = «,; therefore, in the
representation of lc(f) would appear the term lc(g,,)ca,, .a, (Tw + 727;). Hence we conclude that f is
reducible with respect to G’ and consequently G’ is a Grobner basis for M. 0

S. Buchberger’s algorithm for right modules

Recall that we are assuming that A is a bijective skew PBW extension, we will prove in the present
section that every submodule M of A™ has a Grobner basis, and also we will construct the Buch-
berger’s algorithm for computing such bases.

We start this section by fixing some notation and by proving a couple of preliminary results used
later.

Definition 5.1. Let F' := {g{,...,g,} € A™, Xp the least common multiple of {Im(g),...,lm(g,)},
0 € N", ; := exp(lm(g;)) and v; € N" such that ; + 3; = exp(Xr), 1 < i < s. Bpg will denote a
finite set of generators in R® of right R-module

SF,G = SerR[lC(gl)cﬁlnﬂ-f—G T 1C( s)cﬁs,’ys-f-e]'

For 6 =0 := (0,...,0), Spp will be denoted by S and Br by Bp.

Remark 5.2. Let (by,...,bs) € Spy. Since A is bijective, then there exists an unique (b, ..., b)) €
SF such that

bi = U ir0(5) (b1)cy, ), foreach 1 <i <. (12)
In fact, the existence and uniqueness of (b,...,b.) follows from the bijectivity of A. Now, since

(bi,...,bs) € Spp, then > 7, lc(g;)cp, n+obi = 0. Replacing b; of (12) in the last equation, we
obtain

S
Z lc(gz‘)cﬁi,%+9wﬂim+9(¢@£ﬁ(b;)C%ﬁ) = 0.
i=1

The equation (11) of Remark 3.7, yields

—1 / /
CBi i +0V B, i+0 (¢51 i (bl-)cw 79) = 8,7, iCB,+,.,0-
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Thus, >°7 , le(g;)ea, %bl%ﬁ% = 0, and since cg,4~,0 = Cxpp is invertible, then
Yoy le(gi)es, b =0, ie., (b],...,0,) € Sp.

Lemma 5.3. Letg,,...,g, € A,c1,...,cs € R—{0}and oy, ..., s, 1,...,3s € N” such that,
X5 := lm(Im(g;)z) and 3; := exp(g;), foreach 1 <14 < s. If Im(>_7_; g;c;x®) < Xy, then there
exist r1,...,r; € Rand z1,...,zs € A such that

s k s s
S = 3 (gt e Jriat ) 4 S g
i=1 j=1 ti=1 =1

where X7 is the least common multiple of lm(g;),...,lm(g,), v € N™ is such that v; + 3; =
exp(Xp), foreach 1 <i < s, and

BF = {bl, e ,bk} = {(blla- .. ,bls),- cey (bkla .. -,bks)}-

Moreover, lm(ZEZIgiwﬁ_ilw(bji)x“firjx‘S*eXp(XF)) < Xs forevery 1 < j < k,and lm(g,z;) < X; for
every 1 <17 <s.

Proof:

Since X5 = Im(Im(g;)z$), then Im(g;) | X5 and hence X | X5, so there exists § € N" such that
exp(Xr) +60 = 4. On the other hand, ; + 3; = exp(Xr) and o; + 5; = 4, so o; = ; + 0 for each
1 <4 < s Now, Im(>;_, g;ciz®) < X, implies that "7, le(g;)0% (c;)cs, .0, = 0. The equation
(9) of Remark 3.7, yields > > lc(g;)cs,.0,di = 0, with d; = g, o,(¢;), for each 1 < i < s. So,
>oi_ i le(gi)es, yivodi = 0. This implies that (dy,...,ds) € Spy. By Remark 5.2, there exists a
unique (d},...,d.) € Sp such that d; = wgmﬁg(wg:%(dé)c%g). Then,

¢5“al( i) = ¢5“%+9( i) = Vg, a,( 1,0,

and therefore, we have

S
Zgici Zglwﬁz Yi ny“@x
=1
- Zg2¢61 i di)ey, 27t
_ -1 I\ (i 0
= Zgi%,%(di)(w e )
=1

—Zgz% J(d)aria? +Zglpz

=1

with p; = 0 or Im(p;) < 2977, Hence, glpl = 0 or Im(g;p;) < /%P = X5. On the other hand,
since (d},...,d,) € Sp, then there exist r},..., 7, € Rsuchthat (d},...,d,) =byr|+---+byr), =
(blla - ,bls)’l“ll + -+ (bkla ceey bks)T‘];, thus d; = Z?:l bjﬂ‘;».
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Therefore

s s &
Zgﬁﬁjw (d;)xyixe = Zgingw (Z bjﬂ’})f“:ﬂe
i=1 prt st
- Zgl (Z 1/15“% i wﬁz ’Yz( ))m'%

—Z&(Z% )@ Wk () +dlp))a?,
Jj=

with ¢j; = 0 or Im(q;;) < 27%. Since ¢§¢17¢ (r) = o%i(o=OitBi(r)) = o7 (o~ *PXF) (1)), then we
obtain

Zgz% (d)aa —&(Z% L) (@0 D (1) 4 ) )
=1 7j=1

k s
Zzg wﬁm( i m“/'r]x + ZZ&%J
j=1i=1 =1 =1
k s
= Z( gzwﬁjw(b]z ;c%)r x + Zgqu,

=1 =1

<
Il

where ¢;; = ngi}%(bﬁ)qgj, rji=0" eXp(XF)(r}) and so, ¢; 1= Zle gijz’ = 0 orIm(g;) < 29+,
Finally we get,

k

S S S
St = 3 (St e o)+ Y g
=1

7j=1 Mi=1 =1

with z; == p; + ¢; for 1 < ¢ < s. Is easy to see that Im(D>_;_; giwﬁ_f%(bji)x%rjx@) < Xj since
(327, &5, (bji)a™) < &P and Im(g;2;) = lm(gp; + &;4i) < Xs. O

Under the notation used in Definition 5.1 and Lemma 5.3, we will prove the main result of the
present section.

Theorem 5.4. Let M # 0 be a right submodule of A™ and let G be a finite subset of non-zero
generators of M. Then the following conditions are equivalent.

(i) G is a Grobner basis of M.
(ii) Forall F' :={gq,...,g,} C G, with X # 0 and for any (by,...,bs) € Bp, we have

Zgz%m bi)a" 0.



100 W. Fajardo | Right Buchberger Algorithm over Bijective Skew P BW Extensions

Proof:

(i) = (ii): We observe that f := Zleging:%(bi)m“ﬂ € M. Then Theorem 4.2 yields f 'inr 0.

(i1) = (i): Assume that 0 £ f € M. We will prove that the condition (iii) of Theorem 4.2 holds. If
G:={gy,...,8},then there exist hy,..., h; € Asuchthatf =g h;+---+g,h; and we can choose
{hi}t_; such that X5 := max{lm(Im(g;) Im(h;))}t_; is minimal. Let lm(h;) := z%, ¢; := lc(h;),
Im(g;) := 2% for 1 <i < tand F := {g;, € G | Im(Im(g;) Im(h;)) = X5}. Up to a renumbering the
elements of G, we can assume that ' = {g,,...,g,}. We will consider two possible cases.

Case I: Im(f) = X;s. Then Im(g;) | lm(f) for 1 < ¢ < s and

lc(‘f Z 1C ﬂl CZ Cﬁz g Z 1C gz Cﬂl7al¢617al (CZ)

i.e., the condition (iii) of Theorem 4.2 holds.

Case 2: Im(f) < X;5. We will prove that this yields a contradiction. To begin, note that f can be
written as

s s t
f=) giex® +> gi(hi—cx®)+ > ghi (13)
i=1 i=1 i=s+1
We have lm(g;(h; — ¢;z®)) < X5 foreach 1 < i < s and Im(g;h;) < X5 foreach s +1 < i < ¢.
Hence
Zgl 1)) < Xg and Im( Z g:hi) < Xs,
i=s5+1

and Im (37, g;c;z®) < Xs. Under the notation used in Lemma 5.3 (and its notation), we have

k

Zsjgicimai =y (Zsjging%<bﬁ>x’“)w5exp("” + Zsjgizi, (14)
=1

=1 =1 =1

where Im(>>7_, g5 %( bji)xViad~PXr)) < X; for each 1 < j < k and Im(g;2;) < X; for

1 < i < s. By the hypothesis, Y ;_; gWB*il%(bji)x% ;_§_>+ 0, whence, by Theorem 3.8, there exist
q1,---,q; € Asuch that

s t
>80, (bi)T™ = > _gidi
i=1 i=1

with Im(>~7 giwﬁ_:%(bji)m%) = max{lm(Im(g;) Im(g;))}'_;. Since (bj1,...,bjs) € Bp, then us-
ing the equation (10) of Remark 3.7, we get

Zglwﬁu'ﬁ jl 1‘7 ZIC 61 wﬁ ’y, jl CBzy'Yz ZIC gl CBZv'Yz =0.
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Hence Im (Zle gﬂ%_il%(bji)w%) < Xp and Im(Im(g;) Im(g;)) < X for each 1 < ¢ < ¢. There-
fore,

i(Zgiwﬁ_j%(bji)w%) 2P Xr) — Z(Zgqu) LO—exp(XF)

j=1 i=1 j=1 i=1

t k
=53 gigiryat e )

i=1 j=1
t
i=1

with g; := z;?zl qir;a?~PXr) and Im(g,G;) < X foreach 1 < i < t. Substituting >°°_, g;c;z% =
S &G + >5_, g2 into equation (13), we obtain

t s
F=Yg@i+Y gilhi—c +Zgzzz + Z gihi,
i=1 i=1

1=s+1
and so we have expressed f as a combination of vectors g4, . .., g,, where each of its terms has leading
monomial < Xs. This contradicts the minimality of X5 and finishes the proof. ad

Corollary 5.5. Let F' = {f,,....f,} be a set of non-zero vectors of A™. The algorithm below
(Algorithm 2) produces a Grobner basis for the right submodule (F') of A™, where P(X) denotes the
set of subsets of the set X.

Algorithm 2: Right Buchberger’s algorithm in A"
Imput: F:={f,,....f,} CA™f, #0,1<i<s
Output: G = {g,,...,g,} a Grobner basis for (F')
Initialization: G < 0, G’ + F;
while G’ # G do

D+ P(@) - P(G);

G+ G,
for each S :={g; ,...,g; } € D withXg # 0 do
Compute Bg;

for eachb = (by,...,b;) € Bg do
Reduce Z?:l 8 wg; - (bj)xi IG—,>+ r; # with 7 reduced with respect to G'; 8;;, y; as in Def 5.1
if r # 0 then
| G+ G uirh
end
end

end
end
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We finish this section by the following useful result.
Corollary 5.6. Every right submodule of the free A-module A™ has a Grébner basis.

Proof:
Apply Theorem 5.4 and Corollary 5.5. ad

6. Examples implemented in SPBWE library

The extensions skew PBW extensions were implemented in Maple with the development of the
SPBWE library (see [1]), which allows to make important computations with this type of rings and can
also provide answers to several homological problems such as the computation of syzygies; within the
library are already developed the algorithms that we present in this paper: the right division algorithm
and the right Buchberger algorithm, below here we will present only a brief view of its execution.

Example 6.1. Consider the diffusion algebra A := o(Q[z1,x2]){D1, D2) subject to relation:
DyDy =2D1Dy + 29Dy — 21 Ds.
Taking the following polynomials in A
f= $1$%D%D2 + x%ngQ o fi= x%ngng i foi=x9D: fygi=ax0D1

We use the right division algorithm over these polynomials as follow and we get polynomials g; =

2
1 1 r1x5D1
522D + 57172, g2 = ———5— and g3 = x1x2, such that

[ = fig1 + fag2 + f393.

Therefore,
ZClng%DQ —+ $%$2D2 S <$%I2D1D2, ZCle, $2D1>A
with

$1$%D1

ZClng%DQ + l‘%x2D2 = x%l‘2D1D2(%x2D1 + %$1I2) + x9D1 (—T) + x9D1 (Zﬂlxg).

The following example is a non-trivial instance of applicability of the SPBWE library. In particular, it
is possible to define iterated skew P BW extensions in the library and compute left or right Grobner
bases over theses.

Example 6.2. Let A = C[w, ¢] the skew polynomial ring of endomorphism type with ¢(q) = g, for
g € C. Using the SPBWE, we can to define the extension C' = o(A)(x,y, z), subjects to relations

yr =2zxy, zxr=4xz-—x, z2y=4yz—v,

with A-endomorphisms o; : 01(w) = 2w, o2(w) = 3w, o3(w) = w, and o;-derivations J; = 0 for
i=1,23.
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Consider the right submodule M := (f1, f2, f3, fa)c € C*, with

—y%, —wy + Y, y, wr — xY),

2

fi=(

fo=(—wy =y, 2y + 3 — w,w’, w* + wz + wy),
(
(

Let v := fip1 +fop2 +f3p3 +fups € M, with py := 762+ 952, ps := x2, p3 1= w — 1y and py := iz,
next, we will use the SPBWE library, in particular, the right division algorithm and the Buchberger
algorithm over C, to verify that v lies in M.

First, we use the right division algorithm on V and M as follow

—304xy? +(—2w—2)zyz+(—95+1)y? 2+ Txy+Trz—2wr—Ty+w
Vo= 222 yz+dzy? 2 —Tx2y— Iy +dwr? +(—146w+152)zy+(—1—Dwrz—Twy? +(—95w+95)y 2z —3w2y+1 2
T (Tw+152)zy+w?z2+95y 2+ 2wz +(—Tw?+Tw)y-+w? +w?
—15222y+wa? 2+ (2w—95)xyz— Iy 2+ T6wa? — Ixy+ (w2 +95w) zz— Twyz+2wz+Tw?z

2

-y —wy +y Y wr — Y
Mo —wy — Y :Uy+y2—w w? w2—{—wx—|—wy
' —z+1 —wy+zP+ay wtwr+uw T
v+ wx + 1 0 w? + wy — y?

> DivisionAlgorithm(V, M, gradlexrev, TOP, C, right)

We obtain four polynomials ¢; = 76z + 95z, qgo = xz — %I z + Iy, g3 = g4 = 0 and a vector

Iy?z + Twry + Tzz + (—ITw + Iy? — 2wz — Iy +w
—Ivy? + dwz? 4 6wry — Twrz — Twy? + %wa + (=3w? — Tw)y + Iz
Twzy + (2+ 31w’z + (—2Iw? + Tw)y + w® + w?
—Iyz — %waQ — Izy + Twy? — Twyz + (%Iw2 + 2w)x — Iw?y + Tw’z

h= ect

such that
S=fia1 +f2q2 +f3q3 + h.

Since h # 0, we have a second option. For this purpose, we use the following statement in Maple
> (G := BuchbergerAlgSkewPoly (M, gradlex, TOP, C, right)

We obtain a Grobner basis of M, G = {hq,ho,h3,hy, hs, hg,h7,hg}, with

hl :fla h2 :f2a h3 :f3a h4 :f4a
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1 o

23 _ =
L TY Y gt 1 —2wzy+(2w+2)y? —2y
he — fzwmQJr(warl)nyZ:v he — 72y3+2wy27wx+2wy
5 2 » 16 72w:vy+w er( 4w272w)y ’
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Finally, using the statement
> DivisionAlgorithm(V, GG, gradlex, TOP, C, right)

we obtain eight polynomials ¢; = 76z + 95z, g2 = xz — 1/2lx + 1y, q3 = w, q4 = iz, qs = 1/2i
and g5 = g7 = gs = 0 such that

h = hy1q1 + haga + h3q3 + haqa + hsqs + hegs + h7q7 + hggs.

Consequently, the vector A lies in M.

7. Future perspective

As consequence of the algorithms presented in this paper over a bijective skew P BW extension A, we
can respond to problems of homological algebra such as: computation of the right module of syzygies
of aright A-module M ; computation of a right inverse of rectangular matrix on A; computation of the
intersection and quotient for ideals or modules over A; computation of the Ext’, (M, N), where M is
a finitely generated left A-submodule of A™ and N is a finitely generated centralizing A-subbimodule
of A!; among another applications. Now is possible to complete the SPBWE library and provide
support in areas of non-commutative algebra that have not yet implemented computationally.
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