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Abstract. In this paper we present a right version of the Buchberger algorithm over skew Poincaré-

Birkhoff-Witt extensions (skew PBW extensions for short) defined by Gallego and Lezama [5].

This algorithm is an adaptation of the left case given in [3]. In particular, we developed a right

version of the division algorithm and from this we built the right Gröbner bases theory over bijec-

tive skew PBW extensions. The algorithms were implemented in the SPBWE library developed

in Maple, this paper includes an application of these to the membership problem. The theory

developed here is fundamental to complete the SPBWE library and thus be able to implement var-

ious homological applications that arise as result of obtaining the right Gröbner bases over skew

PBW extensions.
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1. Skew PBW extensions

In this section we introduce the bijective skew PBW extensions whose are the fundamental topic in

this paper. Skew PBW extensions include well known classes of Ore algebras, operator algebras and

also a lot of quantum rings and algebras. The skew PBW extensions have been extensively studied,
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see [3], these are being implemented in the SPBWE library developed in Maple, see [1] and [4]. The

main purpose of this paper is to present the theory needed to develop the right Gröbner theory and gen-

erate their respective algorithms implemented in Maple through SPBWE library., i.e., implementing the

division algorithm and Buchberger algorithm in the right case, similar works have been implemented,

see Fajardo [1] and [4], Fajardo-Lezama [2], Gasiorek et al., [7], Simson-Wojewódzki [11], Simson

[12], [13] and [14].

Definition 1.1. Let R and A be rings, we say that A is a skew PBW extension of R (also called

σ-PBW extension), if the following conditions hold:

(i) R ⊆ A.

(ii) There exist finitely many elements x1, . . . , xn ∈ A such that A is a left R-free module with

basis

Mon(A) := Mon{x1, . . . , xn} = {xα := xα1

1 · · · x
αn
n |α = (α1, . . . , αn) ∈ Nn}.

(iii) For every 1 ≤ i ≤ n and r ∈ R− {0} there exists ci,r ∈ R− {0} such that

xir − ci,rxi ∈ R. (1)

(iv) For every 1 ≤ i, j ≤ n there exists ci,j ∈ R− {0} such that

xjxi − ci,jxixj ∈ R+Rx1 + · · ·+Rxn. (2)

In this case the extension is denoted by A = σ(R)〈x1, . . . , xn〉, and R is called the ring of coefficients

of the extension A.

Remark 1.2. Each element f ∈ A− {0} has a unique representation in the form f = c1X1 + · · · +
ctXt, with ci ∈ R− {0} and Xi ∈ Mon(A), 1 ≤ i ≤ t.

The following proposition (see [3], Proposition 1.1.3) justifies the notation given in Definition 1.1 of

the skew PBW extensions.

Proposition 1.3. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension of R. Then, for 1 ≤ i ≤ n,

there exist an injective ring endomorphism σi : R→ R and a σi-derivation δi : R→ R such that

xir = σi(r)xi + δi(r),

for every r ∈ R.

Definition 1.4. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension of R. A is called bijective if

σi is bijective for every 1 ≤ i ≤ n and ci,j is invertible for any 1 ≤ i, j ≤ n.

Definition 1.5. Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension of R, with endomorphisms

σi, 1 ≤ i ≤ n. We will use the following notation.

(i) For α = (α1, . . . , αn) ∈ Nn, σα := σα1

1 · · · σ
αn
n , |α| := α1 + · · · + αn and if A is bijective

σ−α :=σ−αn
n · · · σ−α1

1 .],Moreover, if β=(β1, ..., βn) ∈ Nn, then α+β :=(α1+β1, ..., αn+βn).
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(ii) For X = xα ∈ Mon(A), exp(X) := α and deg(X) := |α|.

(iii) Let 0 6= f ∈ A; if f = c1X1 + · · · + ctXt, with Xi ∈ Mon(A) and ci ∈ R − {0}, then

deg(f) := max{deg(Xi)}
t
i=1.

The following characterization of skew PBW extensions was given in [6].

Theorem 1.6. Let A be a ring of a left polynomial type over R with respect to {x1, . . . , xn}. A is a

skew PBW extension of R if and only if the following conditions hold:

(a) For every xα ∈ Mon(A) and every 0 6= r ∈ R there exist unique elements rα := σα(r) ∈
R− {0} and pα,r ∈ A such that

xαr = rαx
α + pα,r, (3)

where pα,r = 0 or deg(pα,r) < |α| if pα,r 6= 0. Moreover, if r is left invertible, then rα is left

invertible.

(b) For every xα, xβ ∈ Mon(A) there exist unique elements cα,β ∈ R and pα,β ∈ A such that

xαxβ = cα,βx
α+β + pα,β, (4)

where cα,β is left invertible, pα,β = 0 or deg(pα,β) < |α+ β| if pα,β 6= 0.

Remark 1.7.

(i) Let θ, γ, β ∈ Nn and c ∈ R. Then we have the following identities:

σθ(cγ,β)cθ,γ+β = cθ,γcθ+γ,β , (5)

σθ(σγ(c))cθ,γ = cθ,γσ
θ+γ(c). (6)

(ii) One concludes from Theorem 1.6 that ifA is bijective, then cα,β is invertible for any α, β ∈ Nn.

2. Orders on Mon(Am)

In this section we will compile some results taken from [3] that will be used in the theory of reduction

and the theory of Gröbner for the right case.

Definition 2.1. (a) We define in Mon(A) the deglex order by the formulas:

xα � xβ ⇐⇒





xα = xβ

or

xα 6= xβ but |α| > |β|

or

xα 6= xβ, |α| = |β| but ∃ i with α1 = β1, . . . , αi−1 = βi−1, αi > βi.

It is clear that the deglex order is a total order.
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(b) If xα � xβ and xα 6= xβ we write xα ≻ xβ .

(c) Assume that the element f ∈ A \ {0} has the unique form f = c1x
α1 + · · · + ctx

αt , with

ci ∈ R − {0}, 1 ≤ i ≤ t, and xα1 ≻ · · · ≻ xαt . We define the monomial xα1 to be the

leader monomial of f and we write lm(f) := xα1 ; c1 is the leader coefficient of f , lc(f) := c1
and c1x

α1 is the leader term of f denoted by lt(f) := c1x
α1 . If f = 0, we define lm(0) :=

0, lc(0) := 0, lt(0) := 0 and we set X ≻ 0 for any X ∈ Mon(A).

2.1. Monomial orders in skew PBW extensions

Let A = σ(R)〈x1, . . . , xn〉 be a skew PBW extension of R and let � be a total order defined on

Mon(A). If xα � xβ but xα 6= xβ we will write xα ≻ xβ . xβ � xα means that xα � xβ . Let f 6= 0
be a polynomial of A. If

f = c1X1 + · · ·+ ctXt,

with ci ∈ R − {0} and X1 ≻ · · · ≻ Xt are the monomials of f , then lm(f) := X1 is the leading

monomial of f , lc(f) := c1 is the leading coefficient of f and lt(f) := c1X1 is the leading term of

f . If f = 0, we define lm(0) := 0, lc(0) := 0, lt(0) := 0, and we set X ≻ 0 for any X ∈ Mon(A).
Thus, we extend � to Mon(A) ∪ {0}.

Definition 2.2. Let � be a total order on Mon(A), it is said that � is a monomial order on Mon(A)
if the following conditions hold:

(i) For every xβ, xα, xγ , xλ ∈ Mon(A)

xβ � xα⇒ lm(xγxβxλ) � lm(xγxαxλ).

(ii) xα � 1, for every xα ∈ Mon(A).

(iii) � is degree compatible, i.e., |β| ≥ |α| ⇒ xβ � xα.

Monomial orders are also called admissible orders. It is worth noting that every monomial order on

Mon(A) is a well order. Thus, there are not infinite decreasing chains in Mon(A). From now on we

will assume that Mon(A) is endowed with some monomial order.

Definition 2.3. Let xα, xβ ∈ Mon(A), we say that xα divides xβ , denoted by xα|xβ , if there exists

xγ , xλ ∈ Mon(A) such that xβ = lm(xγxαxλ). We will say also that any monomial xα ∈ Mon(A)
divides the polynomial zero.

The condition (iii) of Definition 2.2 is needed in the proof of the following proposition (see [3],

Proposition 13.1.4), and this one will be used in right Division Algorithm (Theorem 3.8).

Proposition 2.4. LetA be a bijective skew PBW extension and xα, xβ ∈ Mon(A) and f, g ∈ A−{0}.
Then,
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(a) lm(xαg) = lm(xα lm(g)) = xα+exp(lm(g)), i.e., exp(lm(xαg)) = α+exp(lm(g). In particular,

lm(lm(f) lm(g)) = xexp(lm(f))+exp(lm(g)), i.e.,

exp(lm(lm(f) lm(g))) = exp(lm(f)) + exp(lm(g))

and

lm(xαxβ) = xα+β, i.e., exp(lm(xαxβ)) = α+ β. (7)

(b) The following conditions are equivalent:

(i) xα|xβ .

(ii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xθxα) = xθ+α and hence β =
θ + α.

(iii) There exists a unique xθ ∈ Mon(A) such that xβ = lm(xαxθ) = xα+θ and hence β =
α+ θ.

(iv) βi ≥ αi for 1 ≤ i ≤ n, with β := (β1, . . . , βn) and α := (α1, . . . , αn).

Proof:

Apply [3; Proposition 13.1.4]. ⊓⊔

Remark 2.5.

(i) Let � be the monomial order on Mon(A). If there exists f = xγ1c1 + · · · + xγtct ∈ A − {0}
such that xβ = xαf or xβ = fxα, then by Proposition 2.4, xβ = xα+γ1 , i.e., xα|xβ.

(ii) We note that there exists a least common multiple of two elements of Mon(A): in fact, let

xα, xβ ∈ Mon(A), then lcm(xα, xβ) = xγ ∈ Mon(A), where γ = (γ1, . . . , γn) with γi :=
max{αi, βi} for each 1 ≤ i ≤ n.

2.2. Monomial orders on Mon(Am)

We will often represent the elements of Am also as row vectors, in case when if this does not causa

confusion. We recall that the canonical basis of the free A-module Am is

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , em = (0, 0, . . . , 1).

Definition 2.6. A monomial in Am is a vector X = Xei, where X = xα ∈ Mon(A) and 1 ≤ i ≤ m,

i.e.,

X = Xei = (0, . . . ,X, . . . , 0),

where X is in the i-th position, named the index of X, ind(X) := i. A term is a vector cX, where

c ∈ R. The set of monomials of Am will be denoted by Mon(Am). Let Y = Y ej ∈ Mon(Am), we

say that X divides Y if i = j and X divides Y . We will say that any monomial X ∈ Mon(Am) divides

the null vector 0. The least common multiple of X and Y, denoted by lcm(X,Y), is 0 if i 6= j, and

Uei, where U = lcm(X,Y ), if i = j. Finally, we define

exp(X) := exp(X) = α and deg(X) := deg(X) = |α|.
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We now define monomial orders on Mon(Am).

Definition 2.7. A monomial order on Mon(Am) is a total order � satisfying the following three

conditions:

(i) lm(xβxα)ei � xαei, for every monomial X = xαei ∈ Mon(Am) and any monomial xβ in

Mon(A).

(ii) If Y = xβej � X = xαei, then lm(xγxβ)ej � lm(xγxα)ei for every monomial xγ ∈ Mon(A).

(iii) � is degree compatible, i.e., deg(X) ≥ deg(Y)⇒ X � Y.

If X � Y and X 6= Y we write X ≻ Y. Y � X means that X � Y.

Definition 2.7 implies that every monomial order on Mon(Am) is a well order. Next we give a mono-

mial order � on Mon(A), we can define two natural orders on Mon(Am).

Definition 2.8. Let X = Xei and Y = Y ej ∈ Mon(Am).

(i) The TOP (term over position) order is defined by X � Y ⇐⇒





X � Y

or

X = Y and i > j.

(ii) The TOPREV order is defined by X � Y ⇐⇒





X � Y

or

X = Y and i < j.

Remark 2.9.

(i) Note that with TOP we have em ≻ em−1 ≻ · · · ≻ e1 and e1 ≻ e2 ≻ · · · ≻ em for TOPREV.

(ii) The POT (position over term) and POTREV orders defined in [10] and [8] for modules over

classical polynomial commutative rings are not degree compatible.

We fix a monomial order on Mon(A) and a non-zero vector f ∈ Am. Then we write f as a sum of

terms in the following form

f = c1X1 + · · ·+ ctXt,

where c1, . . . , ct ∈ R− 0 and X1 ≻ X2 ≻ · · · ≻ Xt are monomials of Mon(Am).

Definition 2.10. Let f := c1X1 + · · · + ctXt ∈ A
m where c1, . . . , ct ∈ R − 0, X1 ≻ X2 ≻ · · · ≻ Xt

monomials of Mon(Am) and Xi := xγieji with γi ∈ Nn. Given g ∈ A, we define

fg := c1x
γ1gej1 + · · ·+ ctx

γtgejt

and we view fg as an element of Am.
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Remark 2.11. In the notation of Definition 2.10, we have exp(lm(fxα)) = exp(lm(f )) + α. In fact,

as ≻ is monomial order on Mon(Am), then lm(xγ1xα)ej1 ≻ lm(xγkxα)ejk for each 2 ≤ k ≤ t,
thus, lm(fxα) = lm(xγ1xα)ej1 so, exp(lm(fxα)) = γ1 + α = exp(lm(f )) + α. Hence, lc(fxα) =
c1cγ1,α = lc(f )cγ1,α.

Definition 2.12. Under the notation introduced earlier, say that:

(i) lt(f ) := c1X1 is the leading term of f ,

(ii) lc(f ) := c1 is the leading coefficient of f ,

(iii) lm(f ) := X1 is the leading monomial of f .

For f = 0 we define lm(0) = 0, lc(0) = 0, lt(0) = 0, and if � is a monomial order on Mon(Am),
then we define X ≻ 0 for any X ∈ Mon(Am). So, we extend � to Mon(Am)

⋃
{0}.

3. Right reduction in Am

In this section we present the fundamental topics of reduction theory for right submodules of the free

A-module Am when A is a bijective skew PBW extension. This theory was studied in the bijective

general case for left modules. Here we adapt the ideas used in [3].

Throughout are assume that R satisfies some natural computational conditions.

Definition 3.1. A ring R is right Gröbner soluble (RGS) if the following conditions hold:

(i) R is right Noetherian.

(ii) Given a, r1, . . . , rm ∈ R there exists an algorithm which decides whether a is in the right ideal

r1R+ · · ·+ rmR, and if so, find b1, . . . , bm ∈ R such that a = r1b1 + · · ·+ rmbm.

(iii) Given r1, . . . , rm ∈ R there exists an algorithm which finds a finite set of generators of the right

R-module

SyzrR[r1 · · · rm] := {(b1, . . . , bm) ∈ Rm|r1b1 + · · ·+ rmbm = 0}.

Remark 3.2. The three conditions (i) - (iii)imposed on R are needed in order to guarantee a right

Gröbner theory in the rings of coefficients, in particular, to have an effective solution of the mem-

bership problem in R (see (ii) in Definition 3.3 below). From now on in this paper we will assume

that A = σ(R)〈x1, . . . , xn〉 is a skew PBW extension of R, where R is a RGS ring and Mon(A) is

endowed with some monomial order.

The reduction process in Am is defined as follows.

Definition 3.3. Let F be a finite set of non-zero vectors of Am, and let f ,h ∈ Am, we say that f

reduces to h by F in one step, denoted f
F
7−−→ h, if there exist elements f 1, . . . , f t ∈ F and r1, . . . , rt ∈

R such that

(i) lm(f i)| lm(f ), 1 ≤ i ≤ t, i.e., ind(lm(f i)) = ind(lm(f )) and there exists xαi ∈ Mon(A) such

that βi + αi = exp(lm(f )) with βi := exp(lm(f i)).
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(ii) lc(f ) = lc(f 1)σ
β1(r1)cf

1
,α1

+ · · ·+ lc(f t)σ
αt(rt)cf t,αt

, where cf i,αi
:= cβi,αi

.

(iii) h = f −
∑t

i=1 f irix
αi .

We say that f reduces to h by F , denoted f
F
7−−→+ h, if and only if there exist vectors h1, . . . ,ht−1 ∈

Am such that

f
F
7−−−−→ h1

F
7−−−−→ h2

F
7−−−−→ · · ·

F
7−−−−→ ht−1

F
7−−−−→ h.

f is reduced (also called minimal) with respect to F if f = 0 or there is no one step reduction of f by

F , i.e., one of the first two conditions of Definition 3.3 fails. Otherwise, we will say that f is reducible

with respect to F . If f
F
7−−→+ h and h is reduced with respect to F , then we say that h is a remainder

for f with respect to F .

Remark 3.4. Related to the previous definition we have the following remarks:

(i) By Theorem 1.6, the coefficients cf i,αi
in the previous definition are unique and satisfy

xexp(lm(f i))xαi = cf i,αi
xexp(lm(f i))+αi + pf i,αi

,

where pf i,αi
= 0 or deg(lm(pf i,αi

)) < | exp(lm(f i)) + αi|, 1 ≤ i ≤ t.

(ii) lm(f ) ≻ lm(h) and f − h ∈ 〈F 〉, where 〈F 〉 is the right submodule of Am generated by F .

(iii) The remainder of f is not unique.

(vi) By definition we will assume that 0
F
7−→ 0.

(v)

lt(f ) =

t∑

i=1

lt(lt(f i)rix
αi),

From the reduction relation we obtain the following interesting properties.

Proposition 3.5. Assume that A is a bijective skew PBW extension. Let f ,h ∈ Am, θ ∈ Nn and

F = {f 1, . . . , f t} be a finite set of non-zero vectors of Am.

(i) If f
F
7−−→ h, then there exists p ∈ Am with p = 0 or lm(fxθ) ≻ lm (p) such that fxθ+p

F
7−−→ hxθ.

(ii) If f
F
7−−→+ h and p ∈ A is such that p = 0 or lm(h) ≻ lm(p), then f + p

F
7−−→+ h + p.

(iii) If f
F
7−−→+ h, then there exists p ∈ Am with p = 0 or lm(fxθ) ≻ lm(p) such that fxθ + p

F
7−−→+

xθh.

(iv) If f
F
7−−→+ 0, then there exists p ∈ Am with p = 0 or lm(fxθ) ≻ lm(p) such that fxθ+p

F
7−−→+ 0.
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Proof:

(i) If f = 0, then h = 0 = p. Let f 6= 0 and lm(f ) := xλ; then there exist f 1, . . . , f t ∈ F and

r1 . . . , rt ∈ R such that lm(f i)| lm(f ), for 1 ≤ i ≤ t, i.e., ind(lm(f i)) = ind(lm(f )) and there

exists xαi ∈ Mon(A) such that λ = αi + exp(lm(f i)). Moreover,

lc(f ) = lc(f1)σ
β1(r1)cβ1,α1

+ · · ·+ lc(f t)σ
βt(rt)cβt,αt

with βi := exp(lm(f i)) and h = f −
∑t

i=1 f irix
αi . We note that ind(lm(f )) = ind(lm(fxθ))

and exp(fxθ) = θ + λ, so

lm(f i)| lm(fxθ), with θ + λ = (θ + αi) + βi;

we observe that

lc(fxθ) = lc(f )cλ,θ =
t∑

i=1

lc(f i)σ
βi(ri)cβi,αi

cλ,θ.

Hence Remark 1.7 yields:

lc(fxθ) =

t∑

i=1

lc(f i)σ
βi(ri)cβi,αi

cαi+βi,θ

=

t∑

i=1

lc(f i)σ
βi(ri)σ

βi(cαi,θ)cβi,αi+θ

=
t∑

i=1

lc(f i)σ
βi(ricαi,θ)cβi,αi+θ

=
t∑

i=1

lc(f i)σ
βi(r′i)cβi,αi+θ,

where r′i := ricαi,θ. Moreover,

hxθ = fxθ −
t∑

i=1

f irix
αixθ

= fxθ −
t∑

i=1

f iricαi,θx
αi+θ + p

= fxθ + p−
t∑

i=1

f ir
′
ix

αi+θ

where p :=
∑t

i=1(−f i)ripαi,θ; note that p = 0 or deg(p) < |θ+αi+βi| = |θ+λ| = deg(fxθ),
so lm(fxθ) ≻ lm(p). Moreover, lm(fxθ + p) = lm(fxθ) and lc(fxθ + p) = lc(fxθ), so by the

previous discussion xθf + p
F
7−−→ xθh.
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(ii) Let

f
F
7−−−−→ h1

F
7−−−−→ h2

F
7−−−−→ · · ·

F
7−−−−→ ht−1

F
7−−−−→ ht := h. (8)

We start with f
F
7−→ h1. If f = 0, then h1 = 0 = p and there is nothing to prove. Let f 6= 0. If

h1 = 0 then p = 0 and hence lm(f ) ≻ lm(p); if h1 6= 0, then lm(f ) ≻ lm(h1) ≻ lm(p), and

hence lm(f + p) = lm(f ), lc(f + p) = lc(f ). Now, as in the proof of the first part of (i), we

obtain h1 + p = f + p −
∑t

i=1 f irix
αi . Since lm(f + p) = lm(f ) and lc(f + p) = lc(f ), then

f + p
F
7−−→ h1 + p. Since lm(hi) ≻ lm(p) we can repeat this procedure for hi

F
7−−→ hi+1 with

1 ≤ i ≤ t− 1. This completes the proof of (ii).

(iii) By (i) and (8), there exists p1 ∈ Am with p1 = 0 or lm(fxθ) ≻ lm(p1) such that fxθ +

p1
F
7−−→ h1x

θ. Moreover there exists p2 ∈ A
m with p2 = 0 or lm(h1x

θ) ≻ lm(p2) such that

h1x
θ+p2

F
7−−→ h2x

θ. Hence, in view of (ii), we obtain fxθ+p1+p2
F
7−−→ h1x

θ+p2
F
7−−→ h2x

θ,

so the element p′′ := p1 + p2 ∈ A
m is such that

fxθ + p′′
F
7−−→+ h2x

θ,

with p′′ = 0 or lm(fxθ) ≻ lm(p′′), because we have lm(fxθ) ≻ lm(p1) and lm f (xθ) ≻ lm(p2).
By induction on t we find p′ ∈ Am such that

fxθ + p′
F
7−−→+ ht−1x

θ,

with p′ = 0 or lm(fxθ) ≻ lm(p′). By (i) there exists pt ∈ A
m such that ht−1x

θ + pt
F
7−−→ hxθ ,

with pt = 0 or lm(ht−1x
θ) ≻ lm(pt). By (ii), fxθ + p′+ pt

F
7−−→+ ht−1x

θ + pt
F
7−−→ hxθ. Thus,

fxθ + p
F
7−−→+ hxθ,

with p := p′ + pt = 0 or lm(fxθ) ≻ lm(p) since lm(fxθ) ≻ lm(p′) and lm(fxθ) ≻ lm(pt).

(iv) This is a direct consequence of (iii) taking h = 0. ⊓⊔

Definition 3.6. Let A := σ(R)〈x1, . . . , xn〉 a bijective skew PBW extension. Let θ1, θ2 ∈ Nn. We

define the following automorphism over R, ψθ1,θ2 : R→ R that assigns to each r ∈ R.

ψθ1,θ2(r) := σθ1+θ2(σ−θ2(r)).

Remark 3.7.

(i) The inverse function of ψ is given by ψ−1
θ1,θ2

(r) = σθ2σ−(θ1+θ2)(r).

(ii) Let A := σ(R)〈x1, . . . , xn〉 a bijective skew PBW extension. For α, β, γ ∈ Nn and r ∈ R,

using the identities of Remark 1.7, we obtain

σβ(r)cβ,α = cβ,αψβ,α(r) (9)

cβ,αr = σβ(ψ−1
β,α(r))cβ,α. (10)
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Moreover, we have

cβ,αrcβ+α,γ = σβ(ψ−1
β,α(r))cβ,αcα+β,γ

= σβ(ψ−1
β,α(r))σ

β(cα,γ)cβ,α+γ

= σβ(ψ−1
β,α(r)cα,γ)cβ,α+γ

= cβ,α+γψβ,α+γ(ψ
−1
β,α(r)cα,γ).

(11)

(iii) Under the notation used in proof of Proposition 3.5 (i); s1, . . . , st are solutions of the equation

lc(h) =
t∑

i=1

lc(f i)cβi,αi
si,

if and only if, ri = ψ−1
αi,βi

(si) for i = 1, . . . , t, are solutions of the equation

lc(h) =
t∑

i=1

lc(f i)cβi,αi
ψβi,αi

(ri).

The following theorem is a theoretical support of the right Division Algorithm (Algorithm 1) for

bijective skew PBW extensions.

Algorithm 1: Right division algorithm in Am

Input: f , f1, . . . , f t ∈ A
m with f j 6= 0 (1 ≤ j ≤ t)

Output: q1, . . . , qt ∈ A, h ∈ Am with f = f1q1 + · · ·+ f tqt + h, h reduce with respect to

{f1, . . . , f t} and lm(f) = max{lm(lm(f1) lm(q1)), . . . , lm(lm(f t) lm(qt)), lm(h)}
Initialization: q1 ← 0, q2 ← 0, . . . , qt ← 0, h← f ;

while h 6= 0 and there exists j such that lm(fj) divides lm(h) do
J ← {j | lm(f j) divides lm(h)};

for i ∈ J do
βj ← exp(lm(f j));
αj ← exp(lm(h))− βj ;

end

if the equation lc(h) =
∑

j∈J lc(fj)cfj ,αj
sj is soluble then

Calculate one solution (sj)j∈J ;

for j ∈ J do

rj ← ψ−1

βj ,αj
(sj);

qj ← qj + rjx
αj ;

h← h− f jrjx
αj ;

end

else
Break;

end

end
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Theorem 3.8. Let F = {f 1, . . . , f t} be a set of non-zero vectors of Am and f ∈ Am, then the right

division algorithm (Algorithm 1) produces polynomials q1, . . . , qt ∈ A and a reduced vector h ∈ Am

with respect to F such that f
F
7−−→+ h and

f = f 1q1 + · · ·+ f tqt + h

with

lm(f ) = max{lm(lm(f 1) lm(q1)), . . . , lm(lm(f t) lm(qt)), lm(h)}.

Proof:

We first note that Algorithm 1 is the iteration of the reduction process. If f is reduced with respect to

F := {f 1, . . . , f t}, then h = f , q1 = · · · = qt = 0 and lm(f ) = lm(h). If f is not reduced, then we

make the first reduction, f
F
7−−→ h1, with f =

∑
j∈J1

f jrj1x
αj + h1, with J1 := {j | lm(f j) divides

lm(f )} and rj1 ∈ R. If h1 is reduced with respect to F , then the cycle While ends and we obtain qj =
rj1x

αj for j ∈ J1 and qj = 0 for j /∈ J1. Moreover, lm(f ) ≻ lm(h1) and lm(f ) = lm(lm(f j) lm(qj))
for j ∈ J1 such that rj1 6= 0, hence, lm(f ) = max1≤j≤t{lm(lm(f j)) lm(qj), lm(h1)}. If h1 is not

reduced, so we make the second reduction with respect to F , h1
F
7−−→ h2, with h1 =

∑
j∈J2

f jrj2x
αj +

h2, J2 := {j | lm(f j) divides lm(h1)} and rj2 ∈ R. We have

f =
∑

j∈J1
f jrj1x

αj +
∑

j∈J2
f jrj2x

αj + h2

If h2 is reduced with respect to F the procedure ends and we get qj = qj for j /∈ J2 and qj =
qj + rj2x

αj for j ∈ J2. Since lm(f ) ≻ lm(h1) ≻ lm(h2), then the algorithm produces polynomi-

als qj with monomials ordered according to the monomial order fixed, and again we have lm(f ) =
max1≤j≤t{lm(lm(qj) lm(f j)), lm(h2)}. If we continue this way, the algorithm ends since Mon(Am)
is well ordered. ⊓⊔

4. Gröbner bases for right submodules of Am

In this section we present the general theory of Gröbner bases for right submodules of Am, m ≥ 1,

where A = σ(R)〈x1, . . . , xn〉 is a bijective skew PBW extension of R, with R a RGS ring (see

Definition 3.1) and Mon(A) endowed with some monomial order (see Definition 2.2). Am is the right

free A-module of column vectors of length m ≥ 1; since A is a right Noetherian ring, then A is an

IBN ring (Invariant Basis Number, see [9]), and hence, all bases of the free module Am have m
elements. Note moreover that Am is right Noetherian, and hence, any submodule of Am is finitely

generated.

The plan is to define and calculate Gröbner bases for right submodules of Am, we will present

some equivalent conditions in order to define right Gröbner bases, and finally, we will compute right

Gröbner bases using a procedure similar to right Buchberger’s algorithm over bijective skew PBW
extensions. This theory was studied in the bijective general case for left modules. Here we adapt the

ideas and technique used in [3].

Our next purpose is to define Gröbner bases for right submodules of Am.
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Definition 4.1. LetM 6= 0 be a right submodule ofAm and letG be a non-empty finite subset of non-

zero vectors of M , we say that G is a Gröbner basis for M if each element 0 6= f ∈ M is reducible

with respect to G. We will say that {0} is a Gröbner basis for M = 0.

Theorem 4.2. Let M 6= 0 be a right submodule of the free A-module Am and let G be a finite subset

of non-zero vectors of M . Then the following conditions are equivalent:

(i) G is a Gröbner basis for M .

(ii) For any vector f ∈ Am,

f ∈M if and only if f
G
7−−→+ 0.

(iii) For any 0 6= f ∈ M there exist g1, . . . , gt ∈ G such that lm(gj)| lm(f ), 1 ≤ j ≤ t, (i.e.,

ind(lm(gj)) = ind(lm(f )) and there exist αj ∈ Nn such that exp(lm(gj))+αj = exp(lm(f )))
and

lc(f ) ∈ {lc(g1)cg1,α1
, . . . , lc(gt)cgt,αt〉.

(iv) For α ∈ Nn and 1 ≤ v ≤ m, let {α, I〉v be the right ideal of R defined by

{α,M〉v := {{lc(f ) | f ∈M, ind(lm f) = v, exp(lm(f )) = α}〉.

Then, {α, I〉v = Jv, with

Jv := {{lc(g)cg,β | g ∈ G, ind(lm g) = v and exp(lm(g)) + β = α}〉.

Proof:

(i)⇒ (ii): Let f ∈M , if f = 0, then by definition f
G
7−−→+ 0. If f 6= 0, then there exists h1 ∈ A

m such

that f
G
7−−→ h1, with lm(f ) ≻ lm(h1) and f − h1 ∈ {G〉 ⊆ M , hence h1 ∈ M ; if h1 = 0, so we end.

If h1 6= 0, then we can repeat this reasoning for h1, and since Mon(Am) is well ordered, therefore

f
G
7−−→+ 0.

Conversely, if f
G
7−−→+ 0, then by the Theorem 3.8, there exist g1, . . . , gt ∈ G and q1, . . . , qt ∈ A

such that f = g1q1 + · · · + gtqt, i.e., f ∈M .

(ii)⇒ (i): evident.

(i)⇔ (iii): this is a direct consequence of Definition 3.3 and the equation (9).

(iii) ⇒ (iv) Since R is a right Noetherian ring, there exist r1, . . . , rs ∈ R, f1, . . . , fn ∈ M such

that {α,M〉v = {r1, . . . , rs〉, ind(lm(f i)) = v, lm(fi) = xα, 1 ≤ i ≤ n, with {r1, . . . , rs〉 ⊆
{lc(f1), . . . , lc(fn)〉, then {lc(f 1), . . . , lc(fn)〉 = {α,M〉v . Let r ∈ {α,M〉v , there exist a1, . . . , an ∈
R such that r = lc(f 1)a1+ · · ·+lc(fn)an; by (iii), for each i there exist g1i, . . . , gtii ∈ G and bji ∈ R
such that

lc(f i) = lc(g1i)cg
1i,α1i

b1i + · · ·+ lc(gtii)cgtii
,αtii

btii,

with v = ind(lm f i) = ind(lm(gji)) and α = exp(lm(f i)) = αji+exp(lm(gji)), thus {α,M〉v ⊆ Jv .
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Conversely, if r ∈ Jv, then r = lc(g1)cg1,β1
b1+ · · ·+lc(gt)cgt,βt

bt, with bi ∈ R, βi ∈ Nn, gi ∈ G
such that ind(lm(gi)) = v, βi + exp(lm(gi)) = α for any 1 ≤ i ≤ t.

Note that gix
βi ∈M , ind(gix

βi) = v, exp(lm(gix
βi)) = α, lc(gix

βi) = lc(gi)cgi,βi
, for 1 ≤ i ≤

t, thus r = lc(g1x
β1)b1 + · · ·+ lc(gtx

βt)bt, i.e., r ∈ {α,M〉v .

(iv)⇒ (iii): let 0 6= f ∈ M and let α = exp(lm(f )) and v = ind(lm(f )), then lc(f ) ∈ {α,M〉v ;

by (iv) lc(f ) = lc(g1)cg1,β1
b1 + · · · + lc(gt)cgt,βt

bt, with bi ∈ R, βi ∈ Nn, gi ∈ G such that

= ind(lm(gi)) = v and βi + exp(lm(gi)) = α for any 1 ≤ i ≤ t. From this we conclude that,

lm(gi)| lm(f ). ⊓⊔

Some useful consequences of Theorem 4.2 are the following results.

Corollary 4.3. Let M 6= 0 be a right submodule of Am. Then,

(i) If G is a Gröbner basis for M , then M = 〈G〉.

(ii) Let G be a Gröbner basis for M. If f ∈M and f
G
7−−→+ h, with h reduced, then h = 0.

(iii) Let G = {g1, . . . , gt} be a set of non-zero vectors of M with lc(gi) = 1 for each 1 ≤ i ≤ t. If

given 0 6= r ∈M there exists i such that lm(gi)| lm(r), then G is a Gröbner basis of M.

Proof:

(i) Apply Theorem 4.2.

(ii) Assume that f ∈ M and f
G
7−−→+ h, with h reduced. Since f − h ∈ 〈G〉 = M , then h ∈ M ; if

h 6= 0 then h can be reduced by G, but this is not possible since h is reduced.

(iii) Assume that f ∈ Am. By Theorem 3.8 there exists r reduced such that f
G
7−−→+ r. If f ∈M then

r ∈ M ; if r 6= 0, then by hypothesis there exists gi ∈ G such that lm(gi) divides lm(r), thus,

since lc(gi) = 1, then r is reducible, which is a contradiction and therefore, f
G
7−−→+ 0. On the

other hand, if f
G
7−−→+ 0, then f ∈ M . Now Theorem 4.2 (ii) implies that G is Gröbner basis

of M. ⊓⊔

Corollary 4.4. Let G be a Gröbner basis for a right submodule M of Am. Given g ∈ G, if g is

reducible with respect to G′ = G− {g}, then G′ is a Gröbner basis for M .

Proof:

According to Theorem 4.2, it is enough to show that every f ∈M is reducible with respect to G′. Let

f be a nonzero vector in M ; since G is a Gröbner basis for M , f is reducible with respect to G and

there exist elements g1, . . . , gt ∈ G satisfying the conditions (i), (ii) and (iii) in the Definition 3.3. If

g 6= gi for each 1 ≤ i ≤ t, then we finished. Suppose that g = gj for some j ∈ {1, . . . , t} and let

βi = exp(lm(gi)) for i 6= j, β = exp(lm(g)), and αi, α ∈ Nn such that αi + βi = exp(lm(f )) =
α+ β. Thus,

lc(f) = lc(g1)cβ1,α1
r1 + · · ·+ lc(g)cβ,αrj + · · ·+ lc(gt)cβt,αt

rt.
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On the other hand, since g is reducible with respect to G′, there exist g′1, . . . , g
′
s ∈ G′ such that

lm(g′l) | lm(g) and lc(g) =
∑s

k=1 lc(g
′
k)cβ′

k
,α′

k
r′k, where β′k = exp(lm(g′k)), α

′
k ∈ Nn and α′

k+β
′
k =

exp(lm(g)) = β. Thus, lm(g′k) | lm(f ) for 1 ≤ i ≤ s; moreover, using the equation (11) of Remark

3.7, we have

cβ′

k
,α′

k
r′kcβ,α = cβ′

k
,α′

k
r′kcβ′

k
+α′

k
,α = cβ′

k
,α′

k
+αr

′′
k ,

where r′′k = ψβ′

k
,α′

k
+α(ψ

−1
β′

k
,α′

k

(r)cα′

k
,α). Therefore,

lc(g)cβ,α =

s∑

k=1

lc(g′k)cβ′

k
,α′

k
r′kcβ,α =

s∑

k=1

lc(g′k)cβ′

k
,α′

k
+αr

′′
k .

Since α+β = exp(lm(f )), then α+α′
k+β

′
k = exp(lm(f )). Further, if there exists gw ∈ {g1, . . . , gt}

such that gw = g′z for some z ∈ {1, . . . , s}, then βw = β′z and α + α′
z = αw; therefore, in the

representation of lc(f ) would appear the term lc(gw)cβw ,αw
(rw + r′′zrj). Hence we conclude that f is

reducible with respect to G′ and consequently G′ is a Gröbner basis for M . ⊓⊔

5. Buchberger’s algorithm for right modules

Recall that we are assuming that A is a bijective skew PBW extension, we will prove in the present

section that every submodule M of Am has a Gröbner basis, and also we will construct the Buch-

berger’s algorithm for computing such bases.

We start this section by fixing some notation and by proving a couple of preliminary results used

later.

Definition 5.1. LetF := {g1, . . . , gs} ⊆ A
m, XF the least common multiple of {lm(g1), . . . , lm(gs)},

θ ∈ Nn, βi := exp(lm(gi)) and γi ∈ Nn such that γi + βi = exp(XF ), 1 ≤ i ≤ s. BF,θ will denote a

finite set of generators in Rs of right R-module

SF,θ := SyzrR[lc(g1)cβ1,γ1+θ · · · lc(gs)cβs,γs+θ].

For θ = 0 := (0, . . . , 0), SF,θ will be denoted by SF and BF,θ by BF .

Remark 5.2. Let (b1, . . . , bs) ∈ SF,θ. Since A is bijective, then there exists an unique (b′1, . . . , b
′
s) ∈

SF such that

bi = ψβi,γi+θ(ψ
−1
βi,γi

(b′i)cγi,θ), for each 1 ≤ i ≤ s. (12)

In fact, the existence and uniqueness of (b′1, . . . , b
′
s) follows from the bijectivity of A. Now, since

(b1, . . . , bs) ∈ SF,θ, then
∑s

i=1 lc(gi)cβi,γi+θbi = 0. Replacing bi of (12) in the last equation, we

obtain
s∑

i=1

lc(gi)cβi,γi+θψβi,γi+θ(ψ
−1
βi,γi

(b′i)cγi,θ) = 0.

The equation (11) of Remark 3.7, yields

cβi,γi+θψβi,γi+θ(ψ
−1
βi,γi

(b′i)cγi,θ) = cβi,γib
′
icβi+γi,θ.
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Thus,
∑s

i=1 lc(gi)cβi,γib
′
icβi+γi,θ = 0, and since cβi+γi,θ = cXF ,θ is invertible, then∑s

i=1 lc(gi)cβi,γib
′
i = 0, i.e., (b′1, . . . , b

′
s) ∈ SF .

Lemma 5.3. Let g1, . . . , gs ∈ A , c1, . . . , cs ∈ R − {0} and α1, . . . , αs, β1, . . . , βs ∈ Nn such that,

Xδ := lm(lm(gi)x
αi) and βi := exp(gi), for each 1 ≤ i ≤ s. If lm(

∑s
i=1 gicix

αi) ≺ Xδ, then there

exist r1, . . . , rk ∈ R and z1, . . . , zs ∈ A such that

s∑

i=1

gicix
αi =

k∑

j=1

( s∑

i=1

giψ
−1
βi,γi

(bji)x
γi

)
rjx

δ−exp(XF ) +
s∑

i=1

gizi,

where XF is the least common multiple of lm(g1), . . . , lm(gs), γi ∈ Nn is such that γi + βi =
exp(XF ), for each 1 ≤ i ≤ s, and

BF = {b1, . . . , bk} := {(b11, . . . , b1s), . . . , (bk1, . . . , bks)}.

Moreover, lm(
∑s

i=1 giψ
−1
βi,γi

(bji)x
γirjx

δ−exp(XF )) ≺ Xδ for every 1 ≤ j ≤ k, and lm(gizi) ≺ Xδ for

every 1 ≤ i ≤ s.

Proof:

Since Xδ = lm(lm(gi)x
α
i ), then lm(gi) | Xδ and hence XF | Xδ, so there exists θ ∈ Nn such that

exp(XF ) + θ = δ. On the other hand, γi + βi = exp(XF ) and αi + βi = δ, so αi = γi + θ for each

1 ≤ i ≤ s. Now, lm(
∑s

i=1 gicix
αi) ≺ Xδ implies that

∑s
i=1 lc(gi)σ

βi(ci)cβi,αi
= 0. The equation

(9) of Remark 3.7, yields
∑s

i=1 lc(gi)cβi,αi
di = 0, with di = ψβi,αi

(ci), for each 1 ≤ i ≤ s. So,∑s
i=1 lc(gi)cβi,γi+θdi = 0. This implies that (d1, . . . , ds) ∈ SF,θ. By Remark 5.2, there exists a

unique (d′1, . . . , d
′
s) ∈ SF such that di = ψβi,γi+θ(ψ

−1
βi,γi

(d′i)cγi,θ). Then,

ci = ψ−1
βi,αi

(di) = ψ−1
βi,γi+θ(di) = ψ−1

βi,γi
(d′i)cγi,θ,

and therefore, we have

s∑

i=1

gicix
αi =

s∑

i=1

giψ
−1
βi,γi

(d′i)cγi,θx
αi

=

s∑

i=1

giψ
−1
βi,γi

(d′i)cγi,θx
γi+θ

=

s∑

i=1

giψ
−1
βi,γi

(d′i)(x
γixθ − pγi,θ)

=
s∑

i=1

giψ
−1
βi,γi

(d′i)x
γixθ +

s∑

i=1

gipi

with pi = 0 or lm(pi) ≺ xθ+γi . Hence, gipi = 0 or lm(gipi) ≺ xθ+γi+βi = Xδ. On the other hand,

since (d′1, . . . , d
′
s) ∈ SF , then there exist r′1, . . . , r

′
k ∈ R such that (d′1, . . . , d

′
s) = b1r

′
1+ · · ·+bkr

′
k =

(b11, . . . , b1s)r
′
1 + · · · + (bk1, . . . , bks)r

′
k, thus d′i =

∑k
j=1 bjir

′
j .
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Therefore

s∑

i=1

giψ
−1
βi,γi

(d′i)x
γixθ =

s∑

i=1

giψ
−1
βi,γi

( k∑

j=1

bjir
′
j

)
xγixθ

=
s∑

i=1

gi

( k∑

j=1

ψ−1
βi,γi

(bji)ψ
−1
βi,γi

(r′j)
)
xγixθ

=
s∑

i=1

gi

( k∑

j=1

ψ−1
βi,γi

(bji)(x
γiσ−γi(ψ−1

βi,γi
(r′j)) + q′ij)

)
xθ,

with q′ij = 0 or lm(q′ij) ≺ xγi . Since ψ−1
βi,γi

(r) = σγi(σ−(γi+βi)(r)) = σγi(σ− exp(XF )(r)), then we

obtain

s∑

i=1

giψ
−1
βi,γi

(d′i)x
γixθ =

s∑

i=1

gi

( k∑

j=1

ψ−1
βi,γi

(bji)(x
γiσ− exp(XF )(r′j) + q′ij)

)
xθ

=

k∑

j=1

s∑

i=1

giψ
−1
βi,γi

(bji)x
γirjx

θ +

s∑

i=1

k∑

j=1

giqijx
θ

=

k∑

j=1

( s∑

i=1

giψ
−1
βi,γi

(bji)x
γi
)
rjx

θ +

s∑

i=1

giqi,

where qij := ψ−1
βi,γi

(bji)q
′
ij, rj := σ− exp(XF )(r′j) and so, qi :=

∑k
j=1 qijx

θ = 0 or lm(qi) ≺ xθ+γi .

Finally we get,

s∑

i=1

gicix
αi =

k∑

j=1

( s∑

i=1

giψ
−1
βi,γi

(bji)x
γi

)
rjx

δ−exp(XF ) +

s∑

i=1

gizi,

with zi := pi + qi for 1 ≤ i ≤ s. Is easy to see that lm(
∑s

i=1 giψ
−1
βi,γi

(bji)x
γirjx

θ) ≺ Xδ since

lm(
∑s

i=1 giψ
−1
βi,γi

(bji)x
γi) ≺ xγi+βi , and lm(gizi) = lm(gipi + giqi) ≺ Xδ. ⊓⊔

Under the notation used in Definition 5.1 and Lemma 5.3, we will prove the main result of the

present section.

Theorem 5.4. Let M 6= 0 be a right submodule of Am and let G be a finite subset of non-zero

generators of M . Then the following conditions are equivalent.

(i) G is a Gröbner basis of M .

(ii) For all F := {g1, . . . , gs} ⊆ G, with XF 6= 0 and for any (b1, . . . , bs) ∈ BF , we have

s∑

i=1

giψ
−1
βi,γi

(bi)x
γi G
7−−→+ 0.
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Proof:

(i)⇒ (ii): We observe that f :=
∑s

i=1 giψ
−1
βi,γi

(bi)x
γi ∈M. Then Theorem 4.2 yields f

G
7−−→+ 0.

(ii) ⇒ (i): Assume that 0 6= f ∈ M. We will prove that the condition (iii) of Theorem 4.2 holds. If

G := {g1, . . . , gt}, then there exist h1, . . . , ht ∈ A such that f = g1h1+ · · ·+gtht and we can choose

{hi}
t
i=1 such that Xδ := max{lm(lm(gi) lm(hi))}

t
i=1 is minimal. Let lm(hi) := xαi , ci := lc(hi),

lm(gi) := xβi for 1 ≤ i ≤ t and F := {gi ∈ G | lm(lm(gi) lm(hi)) = Xδ}. Up to a renumbering the

elements of G, we can assume that F = {g1, . . . , gs}. We will consider two possible cases.

Case 1: lm(f ) = Xδ. Then lm(gi) | lm(f ) for 1 ≤ i ≤ s and

lc(f ) =
s∑

i=1

lc(gi)σ
βi(ci)cβi,αi

=
s∑

i=1

lc(gi)cβi,αi
ψβi,αi

(ci).

i.e., the condition (iii) of Theorem 4.2 holds.

Case 2: lm(f ) ≺ Xδ. We will prove that this yields a contradiction. To begin, note that f can be

written as

f =
s∑

i=1

gicix
αi +

s∑

i=1

gi(hi − cix
αi) +

t∑

i=s+1

gihi. (13)

We have lm(gi(hi − cix
αi)) ≺ Xδ for each 1 ≤ i ≤ s and lm(gihi) ≺ Xδ for each s + 1 ≤ i ≤ t.

Hence

lm(

s∑

i=1

gi(hi − cix
αi)) ≺ Xδ and lm(

t∑

i=s+1

gihi) ≺ Xδ,

and lm(
∑s

i=1 gicix
αi) ≺ Xδ. Under the notation used in Lemma 5.3 (and its notation), we have

s∑

i=1

gicix
αi =

k∑

j=1

( s∑

i=1

giψ
−1
βi,γi

(bji)x
γi
)
rjx

δ−exp(XF ) +

s∑

i=1

gizi, (14)

where lm(
∑s

i=1 giψ
−1
βi,γi

(bji)x
γixδ−exp(XF )) ≺ Xδ for each 1 ≤ j ≤ k and lm(gizi) ≺ Xδ for

1 ≤ i ≤ s. By the hypothesis,
∑s

i=1 giψ
−1
βi,γi

(bji)x
γi G
7−−→+ 0, whence, by Theorem 3.8, there exist

q1, . . . , qt ∈ A such that
s∑

i=1

giψ
−1
βi,γi

(bji)x
γi =

t∑

i=1

giqi,

with lm(
∑s

i=1 giψ
−1
βi,γi

(bji)x
γi) = max{lm(lm(gi) lm(qi))}

t
i=1. Since (bj1, . . . , bjs) ∈ BF , then us-

ing the equation (10) of Remark 3.7, we get

lc(
s∑

i=1

giψ
−1
βi,γi

(bji)x
γi) =

s∑

i=1

lc(gi)σ
βi(ψ−1

βi,γi
(bji))cβi,γi =

s∑

i=1

lc(gi)cβi,γibji = 0.
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Hence lm
(∑s

i=1 giψ
−1
βi,γi

(bji)x
γi

)
≺ XF and lm(lm(gi) lm(qi)) ≺ XF for each 1 ≤ i ≤ t. There-

fore,

k∑

j=1

( s∑

i=1

giψ
−1
βi,γi

(bji)x
γi
)
rjx

δ−exp(XF ) =

k∑

j=1

( t∑

i=1

giqi

)
rjx

δ−exp(XF )

=

t∑

i=1

k∑

j=1

giqirjx
δ−exp(XF )

=

t∑

i=1

giq̃i,

with q̃i :=
∑k

j=1 qirjx
δ−exp(XF ) and lm(giq̃i) ≺ Xδ for each 1 ≤ i ≤ t. Substituting

∑s
i=1 gicix

αi =∑t
i=1 giq̃i +

∑s
i=1 gizi into equation (13), we obtain

f =

t∑

i=1

giq̃i +

s∑

i=1

gi(hi − cix
αi) +

s∑

i=1

gizi +

t∑

i=s+1

gihi,

and so we have expressed f as a combination of vectors g1, . . . , gt, where each of its terms has leading

monomial ≺ Xδ. This contradicts the minimality of Xδ and finishes the proof. ⊓⊔

Corollary 5.5. Let F = {f 1, . . . , f s} be a set of non-zero vectors of Am. The algorithm below

(Algorithm 2) produces a Gröbner basis for the right submodule 〈F 〉 of Am, where P (X) denotes the

set of subsets of the set X.

Algorithm 2: Right Buchberger’s algorithm in Am

Input: F := {f1, . . . , fs} ⊆ A
m, f i 6= 0, 1 ≤ i ≤ s

Output: G = {g1, . . . , gt} a Gröbner basis for 〈F 〉
Initialization: G← ∅, G′ ← F ;

while G′ 6= G do
D ← P (G′)− P (G);
G← G′;

for each S := {gi1 , . . . , gik} ∈ D with XS 6= 0 do
Compute BS ;

for each b = (b1, . . . , bk) ∈ BS do

Reduce
∑k

j=1
gijψ

−1

βij
,γj

(bj)x
γj

G′

7−−→+ r; # with r reduced with respect to G′; βij , γj as in Def 5.1

if r 6= 0 then
G′ ← G′ ∪ {r};

end

end

end

end
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We finish this section by the following useful result.

Corollary 5.6. Every right submodule of the free A-module Am has a Gröbner basis.

Proof:

Apply Theorem 5.4 and Corollary 5.5. ⊓⊔

6. Examples implemented in SPBWE library

The extensions skew PBW extensions were implemented in Maple with the development of the

SPBWE library (see [1]), which allows to make important computations with this type of rings and can

also provide answers to several homological problems such as the computation of syzygies; within the

library are already developed the algorithms that we present in this paper: the right division algorithm

and the right Buchberger algorithm, below here we will present only a brief view of its execution.

Example 6.1. Consider the diffusion algebra A := σ(Q[x1, x2])〈D1,D2〉 subject to relation:

D2D1 = 2D1D2 + x2D1 − x1D2.

Taking the following polynomials in A

f := x1x
2
2D

2
1D2 + x21x2D2 : f1 := x21x2D1D2 : f2 := x2D1 : f3 := x2D1 :

We use the right division algorithm over these polynomials as follow and we get polynomials g1 =
1
2x2D1 +

1
2x1x2, g2 = −

x1x
2

2
D1

2 and g3 = x1x2, such that

f = f1g1 + f2g2 + f3g3.

Therefore,

x1x
2
2D

2
1D2 + x21x2D2 ∈ 〈x

2
1x2D1D2, x2D1, x2D1〉A

with

x1x
2
2D

2
1D2 + x21x2D2 = x21x2D1D2(

1
2x2D1 +

1
2x1x2) + x2D1

(
−

x1x
2

2
D1

2

)
+ x2D1(x1x2).

The following example is a non-trivial instance of applicability of the SPBWE library. In particular, it

is possible to define iterated skew PBW extensions in the library and compute left or right Gröbner

bases over theses.

Example 6.2. Let A = C[w,ϕ] the skew polynomial ring of endomorphism type with ϕ(q) = q, for

q ∈ C. Using the SPBWE, we can to define the extension C = σ(A)〈x, y, z〉, subjects to relations

yx = 2xy, zx = 4xz − x, zy = 4yz − y,

with A-endomorphisms σi : σ1(w) = 2w, σ2(w) = 3w, σ3(w) = w, and σi-derivations δi = 0 for

i = 1, 2, 3.
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Consider the right submodule M := 〈f1, f2, f3, f4〉C ⊆ C
4, with

f1 = (−y2,−wy + y, y, wx− xy),

f2 = (−wy − y, xy + y2 − w,w2, w2 + wx+ wy),

f3 = (−x+ 1,−wy + x2 + xy,w2 + wx+ w, x),

f4 = (y2 + x,wx+ 1, 0, w2 + wy − y2).

Let v := f1p1+ f2p2+ f3p3+ f4p4 ∈M, with p1 := 76x+95z, p2 := xz, p3 := w− iy and p4 := iz,
next, we will use the SPBWE library, in particular, the right division algorithm and the Buchberger

algorithm over C, to verify that v lies in M.

First, we use the right division algorithm on V and M as follow

V :=




−304xy2+(−2w−2)xyz+(−95+I)y2z+Ixy+Ixz−2wx−Iy+w

2x2yz+4xy2z−Ix2y−Ixy2+4wx2+(−146w+152)xy+(−1−I)wxz−Iwy2+(−95w+95)yz−3w2y+Iz

(Iw+152)xy+w2xz+95yz+2w2x+(−Iw2+Iw)y+w3+w2

−152x2y+wx2z+(2w−95)xyz−Iy2z+76wx2−Ixy+(w2+95w)xz−Iwyz+2wx+Iw2z


 :

M :=




−y2 −wy + y y wx− xy

−wy − y xy + y2 − w w2 w2 + wx+wy

−x+ 1 −wy + x2 + xy w2 + wx+ w x

y2 + x wx+ 1 0 w2 + wy − y2



:

> DivisionAlgorithm(V, M, gradlexrev, TOP, C, right)

We obtain four polynomials q1 = 76x+ 95z, q2 = xz − 1
2Ix+ Iy, q3 = q4 = 0 and a vector

h =




Iy2z + Iwxy + Ixz + (−Iw + I)y2 − 2wx− Iy + w

−Iy3 + 4wx2 + 6wxy − Iwxz − Iwy2 + 1
2Iwx+ (−3w2 − Iw)y + Iz

Iwxy +
(
2 + 1

2I
)
w2x+ (−2Iw2 + Iw)y + w3 + w2

−Iy2z − 1
2Iwx

2 − Ixy + Iwy2 − Iwyz +
(
1
2Iw

2 + 2w
)
x− Iw2y + Iw2z



∈ C4

such that

f = f1q1 + f2q2 + f3q3 + h.

Since h 6= 0, we have a second option. For this purpose, we use the following statement in Maple

> G := BuchbergerAlgSkewPoly(M, gradlex, TOP, C, right)

We obtain a Gröbner basis of M, G = {h1,h2,h3,h4,h5,h6,h7,h8}, with

h1 = f1, h2 = f2, h3 = f3, h4 = f4,
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h5 =




−xy2−y3−
1
4x

2

−
1
4wx2+(−w+1)y2−

1
4x

y2

1
2wxy−

1
4w

2x


, h6 =




−2wxy+(2w+2)y2−2y

−2y3+2wy2−wx+2wy

−2wxy+w2x+(−4w2−2w)y

wx2−2xy−2wy2+w2x−2w2y


,

h7 =




−
1
4wx2y+(−

1
2w+

1
2)xy

2−
1
4xy−y2

1
2wxy2+wy3−

1
16wx2−

1
4wxy

−
1
4wx2y−wxy2+

1
16w

2x2−
1
4wxy+(−w2−w)y2

1
16wx3+(

1
2w−

1
4 )x

2y+(
1
2w−1)xy2+

1
16w

2x2+
1
4w

2xy


,

h8 =




5
4wx2y2+(4w−2)xy3+

1
2xy

2+2y3

−wxy3−2wy4+(
1
16w

2+
1
16w)x2y+(

1
2w

2−
1
2w+

1
2)xy

2

1
2wx2y2+2wxy3+(−

1
8w

2−
1
16w)x2y+

1
2xy

2+(2w2+2w)y3

(−w+2)xy3−
1
96w

2x3+(−
7
24w

2+
1
4w)x2y−

1
2w

2xy2


.

Finally, using the statement

> DivisionAlgorithm(V, G, gradlex, TOP, C, right)

we obtain eight polynomials q1 = 76x + 95z, q2 = xz − 1/2Ix + Iy, q3 = w, q4 = iz, q6 = 1/2i
and q5 = q7 = q8 = 0 such that

h = h1q1 + h2q2 + h3q3 + h4q4 + h5q5 + h6q6 + h7q7 + h8q8.

Consequently, the vector h lies in M.

7. Future perspective

As consequence of the algorithms presented in this paper over a bijective skew PBW extension A, we

can respond to problems of homological algebra such as: computation of the right module of syzygies

of a right A-module M ; computation of a right inverse of rectangular matrix on A; computation of the

intersection and quotient for ideals or modules over A; computation of the ExtrA(M,N), where M is

a finitely generated left A-submodule ofAm and N is a finitely generated centralizing A-subbimodule

of Al; among another applications. Now is possible to complete the SPBWE library and provide

support in areas of non-commutative algebra that have not yet implemented computationally.
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