
ar
X

iv
:2

11
1.

00
21

8v
2

 [
cs

.L
O

]
 1

0
Ja

n
20

22

Fundamenta Informaticae 184(2) : 141–180 (2021) 141

DOI 10.3233/FI-2021-2095

IOS Press

A Non-Deterministic Multiset Query Language

Bartosz Zieliński*

Department of Computer Science

Faculty of Physics and Applied Informatics, University of Łódź

Pomorska 149/153 90-236 Łódź, Poland

bartosz.zielinski@fis.uni.lodz.pl

Abstract. We develop a multiset query and update language executable in a term rewriting sys-

tem. Its most remarkable feature, besides non-standard approach to quantification and introduc-

tion of fresh values, is non-determinism — a query result is not uniquely determined by the

database. We argue that this feature is very useful, e.g., in modelling user choices during simula-

tion or reachability analysis of a data-centric business process — the intended application of our

work. Query evaluation is implemented by converting the query into a terminating term rewrit-

ing system and normalizing the initial term which encapsulates the current database. A normal

form encapsulates a query result. We prove that our language can express any relational algebra

query. Finally, we present a simple business process specification framework (and an example

specification). Both syntax and semantics of our query language is implemented in Maude.

Keywords: term rewriting, query languages, business process modelling

1. Introduction

In a data-centric approach to business process modelling (see, e.g., [1, 2]), specification of data trans-

formation during case execution is an integral part of the business process model. This new paradigm

requires new tools and formalisms for effective specification, simulation and validation. Task-centric

*Address for correspondence: Department of Computer Science, Faculty of Physics and Applied Informatics, University of

Łódź, Pomorska 149/153 90-236 Łódź, Poland.

Received November 2021; revised November 2021.

http://arxiv.org/abs/2111.00218v2

142 B. Zieliński / A Non-deterministic Multiset Query Language

models are commonly formalized using Petri nets (see, e.g., [3, 4]). Adapting Petri net-based formal-

izations to data-centric models is, however, problematic: While simple transformations on data can be

represented directly within a coloured Petri net, Petri nets lack facilities for complex data processing

and querying. Even so, there exists a large amound of literature (see e.g., [5, 6, 7]) devoted to enriching

Petri nets with with data processing capabilities and automated verification of their properties. Recent

paper [8] introduced DB-Nets — an attempt to integrate coloured Petri nets with relational databases.

The use of two separate formalisms complicates verification and simulation (though it corresponds to

actual implementations of BPM systems). In the following paper [9] a subset of database operations

was implemented inside coloured Petri nets with name creation and transition priorities.

Conditional term rewriting [10] was proposed as an alternative (if less popular) generic framework

for specification of dynamic systems [11]. It subsumes a variety of Petri nets [12] and their simulation

is one of popular applications of the term rewriting system Maude [13, 14]). More precisely, it is

well known (see e.g., [12]) that coloured Petri nets can be implemented by multiset rewriting systems,

and, conversely, rewriting systems which rewrite multisets of terms representing colour tokens can be

interpreted as Petri nets: just identify places with colour tokens, and each rewriting rule of the form

a1a2 . . . an ⇒ b1b2 . . . bm

with a transition with input arcs from a1, a2, . . ., an and output arcs to b1, b2, . . ., bm. Other constructs,

such as inhibitor arcs can be easily implemented with conditional rewriting rules. Rewriting systems

are more general than Petri Nets since they are not limited to rewriting multisets (on the other hand,

Petri nets are much better supported by tools and programming libraries). However, rewriting systems

still share with Petri nets the limitation and inconvenience of not directly supporting bulk, complex

operations on data which involve some kinds of quantification. For example, suppose that the state of a

data driven business process related to e-commerce is represented by a multiset of terms. In particular,

terms of the form item(p, c) denote the presence of a product p in the basket of a customer c. Suppose

now that c cancels the case, and so we need to remove all c’s items from the multiset. Describing

removal of a single (nondeterministically chosen) item is easy with the rule item(c, x) ⇒ ∅ where x
is a variable, but specifiying in a rewriting system (or a Petri net) that all of them need to be removed

before the next business step is more complex (though clearly possible) and would require auxilliary

tokens and conditional rewrite rules corresponding to inhibitor arcs in a Petri net preventing other

transitions as long as there are still some c’s items present in the rewritten multiset. Thus, a high-level

query language adding quantifier constructs on top of conventional rewriting system or a Petri net is

clearly desirable, particularly if rewriting systems or Petri nets are to become convenient formalisms

to model data driven business processes.

In this paper we present an expressive multiset query and update language QΣ,D, designed to be

executable in a term rewriting system, useful for a unified and somewhat “Petri nettish” formalization

of data-centric business processes. The connection with Petri nets is admittedly tenuous and follows

from the fact that the language acts on data represented as multisets of terms which could be viewed

as tokens (see the discussion above). Since this language specifies changes to data, instead of being

a reimplementation of relational calculus, it contains linear-like features fitting a term rewriting im-

plementation. Most remarkably, QΣ,D is non-deterministic — the result of a query or update is not,

B. Zieliński / A Non-deterministic Multiset Query Language 143

in general, uniquely determined by the database. This permits modelling user choices, just like in the

case of Petri nets. QΣ,D consists of three sublanguages, parametrized with respect to a signature Σ
and Σ-algebra of facts D:

1. Language Qcnd
Σ,D of conditions (Boolean queries) which can be used independently as con-

straints, or as components of queries in Qqry
Σ,D and Qdml

Σ,D .

2. Data manipulation languageQdml
Σ,D . A DML query Q in Qdml

Σ,D defines new facts to be added to

the database. Some of the old facts used in constructing the new ones may be deleted.

3. Language Qqry
Σ,D of queries which only return facts but do not change the database. Both syntax,

and to some extent semantics of Qqry
Σ,D is a restriction of syntax and semantics of Qdml

Σ,D .

A query Q in QαΣ,D, α ∈ {cnd,qry,dml}, is given semantics by assignment of a rewriting sys-

tem RαΣ,D(Q). To evaluate Q in a database F we start with an initial term IQ(F). A normal form of

IQ(F) wraps a result of Q’s evaluation: a Boolean value indicating validity of a condition, a query an-

swer or a new database resulting from execution of a DML query. As remarked above, whileRαΣ,D(Q)
is always terminating (i.e., there are no infinite execution paths, so we always do get some result from

evaluating Q), it is not confluent (i.e., divergent execution paths may not eventually converge) in gen-

eral, hence we may get distinct results depending on nondeterministic choices. We identify syntactic

constraints on queries in each of the sublanguages which ensure confluence for the rewriting system,

and hence determinism for the results of the query. QΣ,D shares with the language introduced in

[15] a non-standard approach to variable binding. The approach avoids problems with capture-free

substitutions without dispensing with explicit variables, but at the price of non-compositionality: The

surrounding context may determine whether a variable in a subterm is free or bound in this subterm.

Qdml
Σ,D supports introduction of fresh values to the database, which is used, e.g., to generate identifiers

for newly created artifacts or to simulate user input (cf. [7]).

Since queries in QΣ,D are converted to a term rewriting system, verification of a business process

specified as a set of DML queries (see Section 7) can be assisted with symbolic reachability analysis

techniques based on narrowing (see e.g., [16]) . We plan to expand on this idea in future research. Note

that our results in this article regarding the confluence of the rewriting systems to which a particular

subclass of queries compiles to, may be relevant for narrowing (see e.g., [17, 18], c.f. [19]). E.g.,

narrowing a confluent system may provide a more efficient search procedure than in the case of a

non-confluent one.

1.1. Prior work

The present paper builds on the previous paper [15] (cf. [20]) where a multiset query language exe-

cuted in Maude was proposed. QΣ,D shares many similarities with the language described in [15],

particularly the treatment of quantification. It has, however, distinct syntax (with, e.g., fact markings

in quantifiers) and distinct semantics. We consider both languages to be alternatives, each of which

with its own strengths. A side-by-side comparison is presented in Table 1. Observe that while the lan-

guage described in [15] can be defined both in the set and multiset setting (in the former case we match

multisets of facts modulo idempotence in addition to commutativity, associativity and identity), here

144 B. Zieliński / A Non-deterministic Multiset Query Language

we assume exclusively multiset setting. This is because the language described here is implemented

through multiset rewriting. Making multiset constructor idempotent would make it impossible to con-

sistently replace matched terms, a feature which is crucial for our formalism to behave sensibly. E.g.,

given a rule a ⇒ b, term ab =A aab rewrites in one step both to bb =A b (intended) and abb =A ab
(not intended).

Table 1. Comparison between QΣ,D and CFΣ,D(X) from [15]

QΣ,D CFΣ,D(X)

Semantics of (possibly) non-deterministic queries is

based on translation into term rewriting systems.

Semantics of queries is based on term matching on the

metalevel. Queries are always deterministic.

Queries return facts in the same signature as the database

against which the query is evaluated.

Queries return objects of an arbitrary signature (as long

as it contains a “union” operator).

DML queries construct multisets of facts to be added to

the current database. Some of the current facts used in

the construction may be deleted.

DML expressions construct a pair of sets or multisets of

facts — those to be deleted from and those to be added to

the current database.

Fresh values are introduced through “virtual fresh facts”.

Actual freshness in ensured through rewrite rules which

define the semantics of DML query.

Attributes of input facts can be marked by special sorts

as fresh. Testing framework ensures that values injected

in those columns are actually fresh.

It is assumed that the database is a multiset of facts The language can be defined both in set and multiset set-

ting

Treatment of variable binding is identical in both languages

QΣ,D, has some similarities to matching logic [21, 22], as both are based on term matching.

They have different purposes, however, and different syntax and semantics. Unlike matching logic

statements, QΣ,D queries are non-deterministic. Matching logic is used for software verification,

whileQΣ,D is a query language intended to be a component of the system. Finally, matching logic has

conventional quantifiers, whereas we use a non-standard quantification over “relation patterns”.

CINNI [23] is a generic calculus of substitutions implemented in Maude which combines de Bruijn

indices with explicit names to solve the problem of capture-free substitutions. To avoid the associated

complexity, we decided not to use conventional variable binding implemented, e.g., using CINNI.

Our quantification over “relation patterns” instead of variables, resembles quantifier constructs in

description logic 1 [24]. Our syntactic construct, however, uses explicit variable names and is not

limited to binary relations where only the second column is bound by the quantifier.

Data-centric business process models are formalized in a variety of ways. First-order logic and

its restricted variations (see e.g., [25, 26, 27, 28]), datalog [29], and UML [30], are popular choices.

Those formalisms are excellent for the specification of data models, and they come with expressive

query languages; they are, however, not so ideally suited for modelling change, because of frame

problems [31], where it is not always obvious what information is modified and what stays the same.

Rewriting formalisms [10], which are explicit about scope of change have a clear advantage here. On

the other hand, a great deal of work has been devoted to formal verification of logic based business

1We are grateful to Prof. Andrzej Tarlecki for this observation.

B. Zieliński / A Non-deterministic Multiset Query Language 145

process formalism, see e.g., [32, 33] in the context of hierarchical artifact systems. For another exam-

ple see [34] where a data aware extension of BPMN was proposed together with SMT (satisfiability

modulo theories) based verification techniques.

In [35] a language called Reseda, was introduced for specification of data driven business process.

The language integrates data description with behaviour. What makes it relevant as a prior work to the

present paper is that Reseda’s semantics is defined by associating with a Reseda program a transition

system. Such a program can then be executed by rewriting data in accordance with the transition rules,

similarly to the execution of the language described here.

As we remarked earlier, a recent paper [8] introduced DB-Nets which integrate coloured Petri

nets with relational databases. Since the use of two separate formalisms complicates verification and

simulation in the following paper [9] a subset of database operations was implemented inside coloured

Petri nets with name creation and transition priorities. Thus, the motivation of [9] is analogous to the

motivation of this paper, but in the world of Petri nets instead of term rewriting systems. There are

however two important differences: First, our language is meant to provide complete specification of

data driven business processes, whereas in [9] the business process is still specified as a Petri net, and

there is just an interface between relational queries (perhaps implemented inside the net itself) and the

main net describing the process. Secondly (and this is what makes the first point possible) we do not

simply implement a conventional relational dml and query language in a rewriting system. Instead, we

implement a linear and non-deterministic query language which can emulate user choices and creation

of new objects.

1.2. Preliminaries on term rewriting

We recall basic notions related to term rewriting [10, 11], and many sorted equational logic [36].

Let S be a poset (partially ordered set). A family X = {Xs | s ∈ S} of sets is called an S-sorted

set if Xs ⊆ Xs′ whenever s ≤ s′. We abbreviate x ∈ ⋃

X as x ∈ X. We write x : s iff x ∈ Xs.

An algebraic signature Σ = (ΣS ,ΣF) consists of a finite poset of sorts ΣS and a finite set ΣF of

function symbols. The set of function symbols ΣF is Σ+
S -sorted, where Σ+

S is the set of finite, non-

empty sequences of elements of ΣS partially ordered with s0 · · · sn ≤ t0 · · · tm iffm = n, s0 ≤ t0 and

si ≥ ti for all i ∈ {1, . . . , n}. Traditionally we write f : s1 . . . sn → s0 when f ∈ (ΣF)s0...sn , where

we denote by (ΣF)s0...sn the set of function symbols of sort s0 . . . sn. This explains the somewhat

confusing ordering on Σ+
S : we are covariant on return value and contravariant on arguments. Symbols

c :→ s are called constants of sort s. A Σ-algebra A is an assignment of a set JsKA to each s ∈ ΣS
such that JsKA ⊆ Js′KA if s ≤ s′, and a function JfKA : Js1KA × · · · × JsnKA → JsKA to each

f : s1 . . . sn → s in ΣF . Let V := {Vs | s ∈ ΣS} be a ΣS-sorted set of variables. A term algebra

TΣ(V) has “sort-safe” terms as elements and function symbols interpreted by themselves. We denote

by TΣ the algebra of ground Σ-terms. We often use mixfix syntax where underscores in the function

name correspond to consecutive arguments. Thus, if ΣF contains + : A A → A and 0 :→ A
then 0 + 0 is a ground term of sort A. Positions in a term are denoted by strings of positive integers.

Denote by ε the empty string, and by t|κ the subterm of t ∈ TΣ(V) at position κ ∈ Z∗
+ (if defined),

i.e., t|ε := t, and f(t1, . . . , tn)|kκ := tk|κ. Let Pos(t) := {κ ∈ Z∗
+ | t|κ is defined}. If κ ∈ Pos(t)

and u is a term of the same sort as t|κ, then we denote by t[u]κ the result of replacing t|κ in t with u.

146 B. Zieliński / A Non-deterministic Multiset Query Language

We use a standard notation for substitutions. Let ~a = a1, . . . , an be a list of terms, ~v = v1, . . . , vn
a list of distinct variables. Then we denote σ = {~a/~v} = {a1/v1, . . . , an/vn} when σ(vi) = ai,
i ∈ {1, . . . , n}, and σ(v) = v for any variable v /∈ {v1, . . . , vn}.

A Σ-algebra may be defined as a quotient of TΣ by a congruence generated by a set A ∪ E of

equalities, where equalities in A, referred to as equational attributes, define structural properties such

as associativity, commutativity, or identity, and E consists of conditional equalities interpreted as

directed simplification rules on TΣ. It is assumed that simplifications terminate and are confluent,

hence each t has the unique (modulo A) irreducible form t↓E/A ∈ TΣ representing a class of t in

TΣ/=A∪E .

Simplification with respect to equalities computes values. The behaviour is represented with

rewritings. A rewriting system R = (Σ, A,E,R) consists of a signature Σ, a set of equations A ∪ E
were E defines confluent and terminating (modulo A) simplifications on TΣ , and a finite set R of

conditional rewriting rules of the form λ : t1 ⇒ t2 if C , where optional condition C is a conjunction

of equalities, and λ is the rule’s label. A one-step rewrite u
λ−→R u′ from u to u′ using such a rule

is possible if there exists a position κ, term v, and a substitution σ such that u =A v, v|κ =A σ(t1),
u′ =A v[σ(t2)]κ and σ(C) is satisfied. We write u→R u′ iff there exist terms s, s′ ∈ TΣ and a label λ

of a rule in R such that u↓E/A =A s, s
λ−→R s′, and s′↓E/A =A u

′↓E/A. We denote by→+
R and→∗

R
the transitive and reflexive-transitive closures of→R. We also write u→!

R u′ if u→∗
R u′ and there is

no u′′ such that u′ →R u′′. IfR is implied by the context, we omitR from arrows.

Variants of the following definition and easy to prove lemma appear in the literature (see, e.g., [37]):

Definition 1.1. Let (X,→), where→⊆ X ×X, be a transition system. Assume that ≡ is an equiv-

alence on X which is a bisimulation on (X,→). We call→ semiconfluent at x ∈ X modulo ≡ if for

all y, y′ ∈ X such that y ← x →∗ y′ there exist z, z′ ∈ X such that y →∗ z ≡ z′ ∗← y′. We call→
semiconfluent modulo ≡ if→ is semiconfluent at all x ∈ X. We call→ confluent at x ∈ X modulo

≡ if for all y, y′ ∈ X such that y ∗← x→∗ y′ there exist z, z′ ∈ X such that y →∗ z ≡ z′ ∗← y′. We

call→ confluent modulo ≡ if→ is confluent at all x ∈ X.

Lemma 1.2. Semiconfluence modulo equivalence implies confluence modulo equivalence.

2. Multisets of facts, fresh facts and patterns

Our queries are evaluated against, or act on, finite multisets of facts. Duplicate facts can be genuinely

useful and removing them is computationally expensive. If necessary, duplicates can be removed

explicitly or, better, one can ensure that no duplicates are introduced in the first place by judicious

choice of DML operations. In fact, SQL is a multiset query language as well, hence by using multisets

we are closer to the actual relational database practice than formal systems based on sets.

QΣ,D is parametrized with respect to a signature of facts Σ and a Σ-algebra of facts D. ΣS must

contain sorts Fact and Bool for facts and Booleans, respectively. All constructors for facts are con-

tained in ΣF . Facts are reifications of predicate instances. A typical fact has the form f(a1, . . . , an),
where f : s1 . . . sn → Fact is a fact constructor. D defines all the data types used in facts and is

B. Zieliński / A Non-deterministic Multiset Query Language 147

specifiable in terms of directed equations and equational attributes. D must define Boolean connec-

tives and Boolean-valued equality = : s s → Bool for all s ∈ ΣS,K . We assume that all ground

terms of sort Bool simplify to either t or f. This is non-trivial: Define a function f : Nat → Bool

with a single equation f(0) = t. Then f(1) is fully reduced and distinct from both t and f.

Multisets of facts. The signature of multisets extends ΣS with sorts (Ne)FSet of finite (non-

empty) multisets of facts. The subsort ordering is given by Fact < NeFSet < FSet. In particular,

each fact is a non-empty multiset of facts. Finite multisets of facts are constructed with an associative

and commutative binary operator ◦ : FSet FSet → FSet (cf. [38]) with identity element ∅ :→
FSet. Operator ◦ is subsort overloaded with the additional declaration ◦ : FSet NeFSet →
NeFSet. Thus, a multiset constructed from a multiset and a non-empty multiset is non-empty.

Freshness and nominal sorts. Support for creation of fresh values is a common requirement

(cf. [7]): Identifiers for new objects must not belong to the present nor any past active domain of the

database. To understand why reusing identifiers from past domains is bad consider situation where a

new business object is created with the identifier of a previously deleted one. In this case the attempt

to verify if the deleted object is present in the final database may yield an incorrect affirmative answer.

We support creation of fresh values of nominal sorts only. Usually this suffices, and freshness for non-

nominal data types is problematic (cf. [39]). A sort s is nominal (relative to Σ-algebra D) if values of

this sort have no non-trivial algebraic or relational structure beside equality. In particular, for nominal

s, s′ ≤ s ≤ s′′ if and only if s′ = s = s′′. To create values of each nominal sort s we have constructor

ıs : Nat→ s which belongs neither to Σ nor to the signature of QΣ,D.

Example 2.1. Consider a client basket database. Identifiers of customers, products and baskets have

sorts c, p, and b, respectively. We use two fact constructors: owns : c b → Fact and in : p b →
Fact. Multiset of facts (ıc1 owns ıb1) ◦ (ıp2 in ıb1) ◦ (ıp3 in ıb1) denotes the state in which customer ıc1
is the owner of basket ıb1 containing products ıp2 and ıp3. Using multisets instead of sets can be useful:

multiset (ıp3 in ı
b
1) ◦ (ıp3 in ıb1) denotes the situation where basket ıb1 contains two items of ıp3.

Constructing values of nominal sorts from natural numbers simplifies creation of fresh values: to

ensure freshness one can construct the new value with the smallest natural number which was not used

so far. To keep track of those “smallest unused naturals”, and to make retrieval of fresh values similar

to retrieval of data we use fresh facts of sort Factn unrelated to Fact. For each nominal sort s we

have a single-argument constructor of the form Cs : s→ Factn which wraps value ısn such that for all

m ≥ n, ısm was never used before. When fresh value of sort s is requested, we return ısn and update the

fresh fact to Cs(ı
s
n+1). Fresh facts are combined into (non-empty) multisets of sort (Ne)FSetn using

commutative and associative operator ◦ : FSetn FSetn → FSetn with identity ∅ :→ FSetn. To

facilitate bulk updates of fresh facts needed in the semantics of DML queries, we define the following

function:

υ : FSetn → FSetn, υ
(

Cs1(ı
s1
m1

) ◦ · · · ◦ Csn(ısnmn
)
)

= Cs1(ı
s1
m1+1) ◦ · · · ◦ Csn(ısnmn+1). (1)

Patterns. Quantifiers in QΣ,D quantify over patterns (of sort Pat) containing non-ground mul-

tisets of facts and fresh facts marked by modalities, which control retention of matched facts (i.e.,

whether upon matching they are removed temporarily, permanently, or not at all from the database),

148 B. Zieliński / A Non-deterministic Multiset Query Language

and syntactically wrap fresh facts (i.e., fresh facts can appear in the pattern only inside specialized

modality). Patterns can be preserving (of sort Patp), semi-terminating (of sort Patst), terminating (of

sort Patt), terminating and preserving (of sort Pattp), or neither. The subsort relation is defined by

Pattp < Patt < Patst < Pat and Pattp < Patp < Pat. Patterns are constructed with modalities

[]! : NeFSet→ Patp, []? : NeFSet→ Pattp, []0 : NeFSet→ Patst, []n : NeFSetn → Pat.

and associative and commutative, subsort overloaded operator:

◦ : Pat Pat→ Pat. ◦ : Pat Patt → Patt, ◦ : Patp Patp → Patp,

◦ : Patp Pattp → Pattp, ◦ : Patst Pat→ Patst.

Thus, a terminating (resp. a semi-terminating) pattern has to contain at least one fact wrapped with

[]? (resp. with either []? or []0). A terminating and preserving pattern consists of facts marked only

with []! or []?, and it contains at least one fact wrapped with []?. Directed equalities [F1]m ◦ [F2]m =
[F1 ◦ F2]m, where m ∈ {!, ?, 0,n}, and F1, F2 are non-empty multisets of (fresh) facts guarantee that

fully reduced patterns have facts gathered in groups of the same modality.

Example 2.2. Let Id be a sort, let f, g : Id Nat→ Fact and h : Id→ Fact be fact constructors and

let x, y, z and t be variables. Then

[f(x, y) ◦ h(x)]? ◦ [g(x, y)]! ◦ [CId(t)]n ◦ [g(x, 1)]0

is a pattern. It is terminating because of a presence of [f(x, y) ◦ h(x)]? subpattern. It is not, however,

preserving since it contains facts wrapped in []0 and []n.

The informal meaning of modalities is as follows: Facts matched by those marked by []? can

be considered at most once during quantifier evaluation, but they are not removed from the database.

Facts marked by []0 are removed from the database when matched, but they are returned if the com-

putation branch this matching leads to is unsuccessful. Thus, the presence of facts marked by []0 in

the pattern may not guarantee termination, unless one can prove that the formula under quantifier is

always successful. Facts marked by []! are always retained in the database, and []n wraps fresh facts.

Remark 2.3. In what follows we use the following notation. Let P be a pattern. We denote by P0,

P!, P?, Pn the multisets of facts consisting of those facts in P which are wrapped by modalities []0,

[]!, []?, and []n, respectively. Thus, e.g., ([F1]! ◦ [F2]?)? := F2 and ([F1]! ◦ [F2]?)n := ∅.

3. Query and condition languages

This section introduces the three sublanguages of QΣ,D, their syntax and informal semantics. Formal

semantics based on conditional term rewriting is provided in the subsequent sections.

B. Zieliński / A Non-deterministic Multiset Query Language 149

3.1. Conditions

The language Qcnd
Σ,D of conditions on finite multisets of facts is analogous to first-order logic with

quantification restricted to the active domain.

Definition 3.1. Let Σ be a signature and let D be a Σ-algebra of facts. Formulas of Qcnd
Σ,D are (gener-

ally non-ground) terms of sort Cnd constructed with

⊥ :→ Cnd, { } : Bool→ Cnd, ¬ : Cnd→ Cnd, ∨ : Cnd Cnd→ Cnd, ∃ . : Pattp Cnd→ Cnd.

Thus, ⊥, {B}, ¬ψ, ψ ∨ ψ′ and ∃P . ψ are conditions if B is a term of sort Bool, P is a terminating

and preserving pattern, and ψ and ψ′ are conditions. Consider condition T := ∃P . ψ. Existential

quantifier ∃ binds in ψ all the variables appearing in P which were not bound by the term surrounding

T . Thus, the meaning of the formula may change when it is placed in a different context.

Example 3.2. LetR : Nat Nat→ Fact, and suppose that terms R(t1, t2) represent rows of a relation

R ⊆ N×N. Let x, y, and z be distinct variables. Then condition ¬∃[R(x, y)]?.∃[R(x, z)]?.¬{y = z}
expresses functional dependency from the first to the second column of R. The first quantifier binds x
and y, the second one binds z. The condition is closed. The subcondition ∃[R(x, z)]?.¬{y = z} taken

on its own is open, but only y is free and the quantifier now binds both x and z.

Closed formulas in Qcnd
Σ,D are called sentences in Qcnd

Σ,D. Let Var(t) be the set of variables of t,

and let cl?(φ) iff φ in Qcnd
Σ,D is closed. To define cl?(φ) by structural recursion we need to keep track

of variables bound by the context of φ. Thus, cl?(φ) := cl?(φ, ∅), where, for any set of variables V ,

cl?(⊥, V) = t, cl?(¬φ, V) = cl?(φ, V), cl?({t}, V) = Var(t) ⊆ V
cl?(φ1 ∨ φ2, V) = cl?(φ1, V) ∧ cl?(φ2, V), cl?(∃P . φ, V) = cl?

(

φ, V ∪ Var(P)
)

. (2)

As the syntactic sugar we define operators ⊤ :→ Cnd, ∧ : Cnd Cnd→ Cnd, ∀ . : Pattp Cnd→
Cnd. with equalities ⊤ = ¬⊥, φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2), ∀P . φ = ¬∃P . ¬φ. Later we prove that,

for any condition φ, ¬¬φ is logically equivalent to φ. Then the functional dependency in Example 3.2

can be equivalently written as ∀[R(x, y)]?.∀[R(x, z)]?.{y = z}.

Definition 3.3. A subcondition ψ of φ in Qcnd
Σ,D is a subterm of φ of sort Cnd.

3.2. Syntax of queries and DML queries

Syntactically Qqry
Σ,D is a restriction of Qdml

Σ,D . Therefore, we define their syntax jointly as follows:

Definition 3.4. Queries in Qqry
Σ,D are terms of sort Qy. DML queries in Qdml

Σ,D are terms of sort DQy.

Success assured (DML) queries are terms of sorts DQys. The sorts are ordered with Fact < Qy < DQy

and Fact < DQys < DQy. Thus, every query in Qqry
Σ,D can be also interpreted as DML query (which

150 B. Zieliński / A Non-deterministic Multiset Query Language

inserts but doesn’t delete). Every fact is also a query. Success assured DML queries are DML queries

guaranteed to return some facts (or at least
√

). Terms of sort DQy are constructed with

√
:→ DQys, ⊲ : DQy DQy→ DQy, ⊲ : Qy Qy→ Qy, ⊲ : DQys DQy→ DQys,

⊲ : DQy DQys → DQys, ∅ :→ Qy, ⇒ : Cnd DQy→ DQy, ⇒ : Cnd Qy→ Qy,

∇ . : Patt DQy→ DQy, ∇ . : Pattp Qy→ Qy, ∇ . : Patst DQys → DQy.

Thus, ∅, f , Q ⊲ Q′, φ ⇒ Q, and ∇P . Q are queries in Qqry
Σ,D if f is a fact, P is a terminating and

preserving pattern, Q and Q′ are queries in Qqry
Σ,D, and φ is a condition. Similarly, ∅, √, f , D ⊲D′,

φ ⇒ D, and ∇P . D are DML queries in Qdml
Σ,D if f is a fact, P is a terminating pattern, D and

D′ are DML queries in Qqry
Σ,D, and φ is a condition. In addition, ∇P . D is a DML query if P is a

more general semi-terminating pattern, but D is success-assured, i.e., either
√

, a fact, or of the form

D1 ⊲D2 where at least one of D1, D2 is success assured. We force D to be success assured when P
is semi-terminating, but not terminating because quantification over semi-terminating pattern may not

terminate if the quantified expression can fail. Informal semantics of (DML) queries is given by:

1. Let f : Fact. A query f returns f . A DML query f adds f to the current database.

2.
√

is used to mark a branch of a DML query as successful even if it does not add any facts.

3. ∅ is a query returning the empty multiset of facts or a DML query which does nothing.

4. A query Q⊲Q′ returns the multiset union of results of Q and Q′. A DML query D⊲D′ adds to

and removes from the database a multiset union of whatD and D′ add and remove, respectively.

Since facts are removed immediately, ⊲ is not commutative for DML queries.

5. A query φ ⇒ Q returns what Q returns if φ is satisfied. It returns ∅ otherwise. A DML query

φ⇒ D does what D does if φ is satisfied. It does nothing otherwise.

6. Quantifier ∇P.Q denotes iteration over facts in the database matching P . At each iteration step

σ(Q) is executed, where σ is the matching substitution. If P contains fresh facts, execution of

a DML query ∇P . Q may introduce fresh values.

Let cl?(Q) if and only if the query φ in Qdml
Σ,D (or Qqry

Σ,D) is closed. Similarly as in the case of

conditions, cl?(Q) := cl?(Q, ∅), where, for any set of variables V ,

cl?(∅, V) = cl?(
√
, V) = t, cl?(φ⇒ Q,V) = cl?(φ, V) ∧ cl?(Q,V),

cl?(f, V) = Var(f) ⊆ V if f : Fact

cl?(Q1 ⊲Q2, V) = cl?(Q1, V) ∧ cl?(Q2, V), cl?(∇P . Q, V) = cl?
(

Q,V ∪ Var(P)
)

.

Definition 3.5. A (DML) subquery of a (DML) query Q is a subterm of Q of sort (D)Qy.

Example 3.6. The following query in Qqry
Σ,D is closed:

∇[f(x) ◦ g]? ◦ [h(x)]! .
(

{x > 5} ⇒ f(x+ 1)
)

.

B. Zieliński / A Non-deterministic Multiset Query Language 151

It returns a multiset of facts consisting of facts of the form f(x+ 1) where f(x) and h(x) belong to

the multiset we query and x > 5. When evaluating the query each source fact f(x) (such that h(x)
is in the multiset and x > 5) and some fact g are matched only once during the evaluation of this

query (on the other hand, facts of the form h(x) can be matched multiple times). Thus, we return at

most n facts f(x + 1), where n is the number of g facts in the database. For example, for multiset

f(7) ◦ f(8) ◦ f(7) ◦ f(4) ◦ h(8) ◦ h(7) ◦ g ◦ g the query returns either f(7) ◦ f(8) or f(7) ◦ f(7)
depending on whether we match f(7) ◦ g and f(8) ◦ g or we match f(7) ◦ g twice (and then, in both

cases, we run out of g-facts).

Example 3.7. The following (closed) “DML query” is not syntactically correct (it cannot be assigned

sort DQy):

∇[f(x)]0 .
(

{x > 5} ⇒ g(x)
)

This is because the pattern [f(x)]0 is only semiterminating, but not terminating. In this case the

subquery in the scope of ∇[f(x)]! . should be success assured, but {x > 5} ⇒ g(x) clearly isn’t (if

x ≤ 5 then it fails). If we would execute this query against a multiset f(1)◦f(6) it would loop forever

matching f(1), removing it, failing when executing {1 > 5} ⇒ g(1), returning f(1) to the multiset,

matching it again, and so on.

As the following example demonstrates, some incorrect DML queries of the form ∇P . ψ, where

P is semiterminating but not terminating and φ is not success assured, provably always terminate.

Nevertheless, we prefer to reject them regardless, since usually making them syntactically correct is

not difficult:

Example 3.8. Assume that x is a variable of sort Nat (natural numbers). Execution of the following

syntactically incorrect DML query always terminates (it replaces each fact of the form f(x) where

x > 5 with fact g(x), and returns to the multiset all other f(x)’s unchanged):

∇[f(x)]0 .
(

({x > 5} ⇒ g(x)) ⊲ ({x ≤ 5} ⇒ f(x))
)

.

Termination follows from the fact that ({x > 5} ⇒ g(x)) ⊲ ({x ≤ 5} ⇒ f(x)
)

always succeeds

regardless of which natural number is bound to x: depending on whether x > 5 or x ≤ 5 (and one of

these must be true) either left or right argument of ⊲ succeeds and hence the whole subquery succeeds.

Unfortunately, neither {x > 5} ⇒ g(x) nor {x ≤ 5} ⇒ f(x) is syntactically success assured

and hence ({x > 5} ⇒ g(x)) ⊲ ({x ≤ 5} ⇒ f(x)
)

is also not success assured. However, it is very

easy to modify the above query so that it describes the same modification to the database, but is now

syntactically correct and can be assigned sort DQy:

∇[f(x)]0 .
(

({x > 5} ⇒ g(x)) ⊲ ({x ≤ 5} ⇒ f(x))⊲
√)
.

4. Rewriting semantics ofQcnd
Σ,D

Semantics of a sentence φ in Qcnd
Σ,D is given by the rewriting system Rcnd

Σ,D(φ). Terms rewritten by

Rcnd
Σ,D(φ) are of the form {F, S}c, where { , }c : FSet Stkc → Statec, F is the database of facts on

152 B. Zieliński / A Non-deterministic Multiset Query Language

which φ is checked, and S is a stack of sort Stkc implementing structural recursion. Normal forms,

constructed with s : Bool → Statec, encapsulate the result of φ’s evaluation. Sort Statec of terms

holding the full state of evaluation must be distinct from all the other sorts and it must not have any

super- or sub-sort relation to other sorts. This guarantees that there are no constructors accepting terms

of sort Statec as arguments. Consequently, if all rewrite rules have terms of this sort on the left-hand

side, then no subterms can be rewritten, i.e., the defined rewriting system is top-level. Terms of sort

Stkc are built from frames of sort Frmc, where Frmc < Stkc, using an associative binary operator

: Stkc Stkc → Stkc with identity ∅. Most constructors of frames are indexed by subconditions ψ
of φ, and lists of distinct variable names ~v := v1, . . . , vn of respective sorts s1, . . . , sn (~v can be of

any length, even be empty, as long as {~v} ⊆ Var (φ) and it contains free variables of ψ):

r : Bool→ Frmc, ¬ :→ Frmc, [, . . . ,]
~v|c
ψ , [, . . . ,]

~v|c,↓
ψ : s1 . . . sn → Frmc,

[| , . . . ,]
~v|c
∃P.ψ : FSet s1 . . . sn → Frmc

As ~v can be empty, the above signature templates include []
|c
ψ , []

|c,↓
ψ :→ Frmc and [|]|cψ : FSet→ Frmc.

r(B) encapsulates the result of evaluation of a subcondition. Frame ¬ negates the result of the next

frame on the stack. Frames of the form [~a]
~v|c
ψ , [~a]

~v|c,↓
ψ , or [F ′|~a]~v|cψ are called (ψ, σ)-frames, where

σ := {~a/~v} is the current substitution. They are related to evaluation of σ(ψ). Marked frames [~a]
~v|c,↓
ψ

occur in evaluation of disjunctions ∨ . Iterator frames [F ′|~a]~v|c∃P.ψ represent iterative evaluation of

quantifiers. Multiset F ′, called iterator state, contains facts available for matching with P! ◦P?. Given

a database F , to evaluate sentence φ we rewrite a state term Iφ(F) := {F, []|cφ } until a normal form

s(B) is reached. If B then φ is satisfied in F .

Now we present rule schemata forRcnd
Σ,D(φ) instantiated for a given formula φ inQΣ,D. It is impor-

tant to distinguish between object variables substituted when applying actual rules, and metavariables

used to define rule templates. Below, F,F ′ : FSet, S : Stkc, and B : Bool are object variables.

We also denote by ~v := v1, . . . , vn and ~w = w1, . . . , wm sequences of object variables in Var (φ).
Metavariables, ψ, ψ1, and ψ2 stand for arbitrary subconditions of φ, metavariable B stands for Boolean

subterms of φ. Metavariable P stands for arbitrary patterns in φ, and P! and P? denote multisets of

facts in the instance of pattern P marked by respective modalities (see Remark 2.3).

Constant ⊥ evaluates to f, and {B} evaluates to σ(B), where σ is the current substitution of

variables ~v (σ(B) is ground since {~v} contains all free variables (i.e., all variables) of B, hence, by

assumption, it simplifies to either f or t):

λ⊥ : {F, S[~v]~v|c⊥ }c ⇒ {F, Sr(f)}c, λ{ } : {F, S[~v]~v|c{B}}
c ⇒ {F, Sr(B)}c. (3)

To evaluate σ(¬ψ), we “unfold” by replacing the (¬ψ, σ)-frame with ¬ and (ψ, σ)-frame. When σ(ψ)
is evaluated we “fold” by negating the result:

λunf
¬ : {F, S[~v]~v|c¬ψ} ⇒ {F, S¬[~v]

~v|c
ψ }c, λfld

¬ : {F, S¬r(B)} ⇒ {F, Sr(¬B)}c. (4)

B. Zieliński / A Non-deterministic Multiset Query Language 153

Remark 4.1. In our notation the same symbols often play a dual role — as subterms, and as part of

function symbols (in sub- and super-scripts). Consider the following instantiation of schema λunf
¬ :

λunf
¬ : {F, S[x, y]x,y|c¬{x=y}}

c ⇒ {F, S¬[x, y]x,y|c{x=y}}
c

Variables in sub- and super-scripts are never substituted: with the above rule we have a one step rewrite

of ground terms {∅, [0, 1]x,y|c¬{x=y}}c
λunf
¬−−→ {∅,¬[0, 1]x,y|c{x=y}}c. In schema λ{ } metavariable B occurs both

as part of a name and as a subterm. An instantiation λ{ } : {F, S[x, y]x,y|c{x=y}}c ⇒ {F, Sr(x = y)}c

yields (with S = ¬, x = 0, and y = 1) a one step rewrite {∅,¬[0, 1]x,y|c{x=y}}c
λ{ }−−→ {∅,¬r(0 = 1)}c =

{∅,¬r(f)}c.

To evaluate disjunction ψ1 ∨ ψ2 we create two frames corresponding to the disjuncts. If ψ2 evalu-

ates to t, the frame marked by ↓ is dropped (disjunctions are short circuited). If ψ2 evaluates to f, the

frame corresponding to ψ1 drops ↓ and is evaluated normally.

λunf
∨ : {F, S[~v]~v|cψ1∨ψ2

}c ⇒ {F, S[~v]~v|c,↓ψ1
[~v]

~v|c
ψ2
}c,

λfld
∨;t : {F, S[~v]~v|c,↓ψ r(t)}c ⇒ {F, Sr(t)}c, λfld

∨;f : {F, S[~v]
~v|c,↓
ψ r(f)}c ⇒ {F, S[~v]~v|cψ }c, (5)

Quantifier evaluation is initialized with the whole database available for matching:

λinit
∃ : {F, S[~v]~v|c∃P.ψ}c ⇒ {F, S[F | ~v]

~v|c
∃P.ψ}c. (6)

Let ~w be a sequence of all the distinct variables in Var(P) \ {~v}. Let σ be the current substitution.

Rule λunf
∃ pushes onto the stack a (σ′, ψ)-frame, where σ′ = σ ∪ {~b/~w} is defined by matching

F ′ ◦ σ(P! ◦ P?) with iterator state, and it removes σ′(P?) from the iterator state. We keep applying

λunf
∃ until σ′(ψ) evaluates to t or we cannot match σ(P! ◦ P?) with iterator state:

λunf
∃ :

{

F, S[F ′ ◦ P! ◦ P? | ~v]~v|c∃P.ψ
}c ⇒

{

F, S[F ′ ◦ P! | ~v]~v|c∃P.ψ[~v, ~w]
~v, ~w|c
ψ

}c
, (7)

λfld
∃;f :

{

F, S[F ′|~v
]~v|c
∃P.ψr(f)

}c ⇒
{

F, S[F ′|~v]~v|c∃P.ψ
}c
, λfld

∃;t :
{

F, S[F ′|~v
]~v|c
∃P.ψr(t)

}c ⇒ {F, Sr(t)
}c
.

Let Yes? be a sort and let yes :→ Yes?. For all ~v ⊆ Var(φ) and patterns P occurring in φ we define

a function µP,~v : Pat
tp s1 . . . sn → Yes? with the single equation

µP,~v(F
′ ◦ P! ◦ P?, ~v) = yes. (8)

Thus, µP,~v(F,~a) = yes if and only if F matches with F ′ ◦ {~a/~v}(P? ◦ P0). Since facts matched

by σ(P?) are removed from the iteration state, λunf
∃ cannot be applied infinitely many times. The

following rule schema makes σ(∃P . ψ) evaluate to f when λunf
∃ can no longer be applied:

λend
∃ :

{

F, S[F ′ | ~v]~v|c∃P.ψ}c ⇒ {F, Sr(f)}c if (µP,~v(F
′, ~v) = yes) = f. (9)

Finally, the rule λsat : {F, r(B)}c ⇒ s(B) finishes evaluation of φ.

154 B. Zieliński / A Non-deterministic Multiset Query Language

Theorem 4.2. Rcnd
Σ,D(φ) is a terminating rewriting system.

Proof:

It suffices to define a partial well-order <c on terms of sort Statec which makes rewriting strictly

monotonic, i.e., such that t1 → t2 implies t2 <c t1 for all t1, t2 : State
c. The order is defined by

s(B) <c {F, S}c, {F, S}c <c {F, S′}c iff S <s S
′,

for all F , S, S′,B. Here <s is the lexicographic order on stacks derived from partial order <f on

frames, i.e., for all framesD1, . . . ,Dn,E1, . . . , Em,D1 . . . Dn <s E1 . . . Em iff either (1) for some k,

Dk <f Ek and Di = Ei for i ∈ {1, . . . , k−1}, or (2) n < m and Di = Ei for i ∈ {1, . . . , n}. Frame

ordering is defined by r(B) <f ¬ <f [F | ~a]~v|cψ <f [F ′ | ~a]~v|cψ <f [~b]
~w|c
ψ <f [~b]

~w|c,↓
ψ <f [F ′′ | ~c]~x|cψ′ ,

for all F , F ′, F ′′, ψ, ψ′, B, ~v, ~w, ~x, ~a, ~b, ~c such that F (F ′ and ψ is a proper subcondition of

ψ′. Partial order <f is Noetherian because multisets of facts F , F ′ and conditions ψ, ψ′ are finite

terms. Hence, if the stacks are of bounded size, also <c is Noetherian. The size of stacks is bounded

because each stack size increasing rule is of the form {F, S[. . .]...ψ1
}c → {F, SA[. . .]...ψ2

}c, where A is

a frame and ψ2 is a proper subterm of ψ1. Since rules inRcnd
Σ,D(φ) are topmost, the rewriting is strictly

monotonic because t2 <c t1 for each rule schema t1 ⇒ t2 if C in Rcnd
Σ,D(φ). ⊓⊔

The following useful observation can be trivially verified by examining the rule schemas:

Lemma 4.3. Let ψ be a subcondition of φ. For any finite multiset of facts F , stack S, Boolean B,

variables ~v = v1, . . . , vn and values ~a = a1, . . . , an, {F, S[~a]~v|cψ }c →∗ {F, Sr(B)}c in Rcnd
Σ,D(φ) iff

{F, []|cσ(ψ)}c →∗ s(B) inRcnd
Σ,D(σ(ψ)), where substitution σ := {~a/~v}.

The following example shows verification of a condition in Qcnd
Σ,D for a given multiset of facts

using rewriting semantics. It also shows non-confluence of the resulting rewrite system.

Example 4.4. Suppose p, q : Nat → Fact. Let ψ := ∃ [q(z)]? . {z = x}, K := p(1) ◦ q(0),
L := p(0) ◦ q(0), and M := p(0) ◦ p(0) ◦ p(1). To check if condition

φ := ∃[p(x) ◦ p(y)]? ◦ [q(y)]! .
(

¬ψ ∨ {x = y}
)

.

is satisfied in a multiset H := p(0) ◦ p(0) ◦K = L ◦ p(0) ◦ p(1) =M ◦ q(0) we normalize

Iφ(H)
λinit
∃−−→

{

H, [H|]|cφ
}c λunf

∃−−→
{

H, [K|]|cφ [0, 0]
x,y|c
¬ψ∨{x=y}

}c λunf
∨−−→

{

H, [K|]|cφ [0, 0]
x,y|c,↓
¬ψ [0, 0]

x,y|c
{x=y}

}c

λ{ }−−→
{

H, [K|]|cφ [0, 0]
x,y|c,↓
¬ψ r(0 = 0)

}c λfld
∨;t−−→

{

H, [K|]|cφ r(t)
}c λfld

∃;t−−→
{

H, r(t)
}c λsat−−→ s(t).

Thus, φ is satisfied in H . However, we have also a normalizing sequence ending with s(f):

Iφ(H)
λinit
∃−−→

{

H, [H |]|cφ
}c λunf

∃−−→
{

H, [L |]|cφ [0, 1]
x,y|c
¬ψ∨{x=y}

}c →∗ {H, [L |]|cφ [0, 1]
x,y|c
¬ψ

}c

→∗{H, [L |]|cφ¬[H | 0, 1]
x,y|c
ψ

}c λunf
∃−−→

{

H, [L |]|cφ¬[M | 0, 1]
x,y|c
ψ [0, 1, 0]

x,y,z|c
{z=x}

}c

→∗{H, [L |]|cφ¬r(t)
}c →! s(f).

B. Zieliński / A Non-deterministic Multiset Query Language 155

Thus, evaluation of conditions does not necessarily lead to a unique result (the rewriting system is

not confluent). This requires making the definition of logical equivalence bisimulation-like:

Definition 4.5. Let φ1 and φ2 be conditions in Qcnd
Σ,D. We say that φ1 is logically equivalent to φ2,

writing φ1 ≡ φ2, if and only if for all ground multisets of facts F , ground substitutions σ such that

σ(φ1) and σ(φ2) are closed, and a Boolean B ∈ {t, f} we have

Iσ(φ1)(F)→! s(B) if and only if Iσ(φ2)(F)→! s(B).

The following result is an immediate consequence of Lemma 4.3:

Lemma 4.6. Logical equivalence on conditions inQcnd
Σ,D is an equivalence and a congruence, i.e., if κ

is a position in a condition φ in Qcnd
Σ,D such that φ|κ is a condition, and ψ ≡ φ|κ, then φ ≡ φ[ψ]κ.

A renaming is an injective substitution σ mapping variables to variables.

Lemma 4.7. For any closed condition φ in Qcnd
Σ,D, and any renaming σ, φ ≡ σ(φ).

The following result clarifies elements of rewriting semantics of sentences in Qcnd
Σ,D:

Lemma 4.8. For each ground multiset of facts F , and all sentences φ, φ1, φ2 and ∃P . ψ :

1. Iφ(F)→! s(t) or Iφ(F)→! s(f), and these are the only possible normal forms of Iφ(F).

2. I⊥(F)→! s(f) and never I⊥(F)→! s(t).

3. Iφ(F)→! s(B) iff I¬φ(F)→! s(¬B) for all B : Bool.

4. Iφ1∨φ2(F)→! s(t) iff Iφ1(F)→! s(t) or Iφ2(F)→! s(t).

5. Iφ1∨φ2(F)→! s(f) iff Iφ1(F)→! s(f) and Iφ2(F)→! s(f).

6. I∃P.ψ(F)→! s(t) iff there exists a substitution σ, and a multiset F ′ such that F ′◦σ(P?◦P!) = F
and Iσ(ψ)(F)→! s(t).

7. I∃P.ψ(F) →! s(f) iff there exist two sequences of ground multisets of facts F0, F1, . . . , Fn and

G0, G1, . . . , Gn−1, and a sequence of substitutions σ0, σ1, . . . , σn−1 such that

(a) F0 = F , Fi+1 = Gi ◦ σi(P!), and Fi = Gi ◦ σi(P! ◦ P?), for all i ∈ {0, . . . , n− 1},
(b) Iσi(ψ)(F)→! s(f), for all i ∈ {0, . . . , n − 1},
(c) there exists no substitution σn and multiset of facts Gn such that Fn = Gn ◦ σn(P! ◦ P?).

8. Iφ∨¬φ(F)→! s(t). If both Iφ(F)→! s(t) and Iφ(F)→! s(f) then also Iφ∨¬φ(F)→! s(f).

Proof:

The first point is verified by structural recursion using Lemma 4.3 and rules in Equations (3)–(9).

Points 2–7 are verified using rules in Equations (3)–(9). Point 8 is verified using points 3-5. ⊓⊔

156 B. Zieliński / A Non-deterministic Multiset Query Language

Lemma 4.9. The following logical equivalences hold between conditions in Qcnd
Σ,D:

φ ∨⊥ ≡ φ, φ1 ∨ φ2 ≡ φ2 ∨ φ1, φ1 ∨ (φ2 ∨ φ3) ≡ (φ1 ∨ φ2) ∨ φ3,
¬¬φ ≡ φ, ∃P . (φ1 ∨ φ2) ≡ (∃P . φ1) ∨ (∃P . φ2).

Proof:

The above equivalences can be proven using points 1-7 in Lemma 4.8. Only the last equivalence’s

proof is non-trivial. Let F be a ground multiset of facts and let σ be a ground substitution such

that σ(∃P . (φ1 ∨ φ2)) (or, equivalently, σ((∃P . φ1) ∨ (∃P . φ2))) is closed. Denote Q := σ(P),
ψi := σ(φi), for i ∈ {1, 2}. Using Lemma 4.8, p. 6, we see that I∃Q.(ψ1∨ψ2)(F)→! s(t) iff there exists

a substitution σ′, and a multiset of facts F ′ such that F ′ ◦ σ′(Q? ◦Q!) = F and Iσ′(ψ1)∨σ′(ψ2)(F)→!

s(t). The latter holds iff there exists i ∈ {1, 2} such that Iσ′(ψi)(F) →! s(t), by Lemma 4.8, p. 4.

It follows, again using Lemma 4.8, point 6, that I∃Q.(ψ1∨ψ2)(F) →! s(t) iff I∃Q.ψi
(F) →! s(t) for

some i ∈ {1, 2}, i.e., iff (by Lemma 4.8, p. 4) I(∃Q.ψ1)∨(∃Q.ψ2)(F) →! s(t). The part of the proof

with falsity is more complex. Using Lemma 4.8, p. 7, we see that I∃Q.(ψ1∨ψ2)(F) →! s(f) iff there

exist two sequences of ground multisets of facts F0, . . . , Fn and G0, . . . , Gn−1, and a sequence of

substitutions σ0, . . . , σn−1 such that (a) F0 = F , Fi+1 = Gi ◦ σi(Q!) and Fi = Gi ◦ σi(Q! ◦ Q?),
for all i ∈ {0, . . . , n − 1}, (b) Iσi(ψ1)∨σi(ψ2)(F) →! s(f), for all i ∈ {0, . . . , n − 1}, (c) there

exists no substitution σn and multiset of facts Gn such that Fn = Gn ◦ σn(Q! ◦ Q?). Then by

Lemma 4.8, p. 5, (b) iff, for j ∈ {1, 2}, (bj) Iσi(ψj)(Fi)→! s(f), for all i ∈ {0, . . . , n− 1}. Then (by

Lemma 4.8, p. 7) (a), (b1), (b2) and (c) iff I∃Q.ψj
(F) →! s(f) for j ∈ {1, 2} iff, by Lemma 4.8, p. 5,

I(∃Q.ψ1)∨(∃Q.ψ2)(F)→! s(f). ⊓⊔

Non-confluence ofRcnd
Σ,D(φ) in Example 4.4 depended on patterns in φ with more than one fact. It

turns out that Rcnd
Σ,D(φ) may be non-confluent even if φ contains only single-fact patterns:

Example 4.10. Let r : Nat Nat→ Fact be commutative. Consider condition φ := ∃[r(x, y)]? .{x =
1} evaluated in a database F = r(1, 2). Since r is commutative, there are two distinct substitutions

{1/x, 2/y} and {2/x, 1/y} which match r(x, y) with r(1, 2). Consequently, there are two distinct

paths of evaluating φ: Iφ(F)→∗ {F, [F |]|cφ
}c λunf

∃−−→
{

{

F, [∅|]|cφ [1, 2]
x,y|c
{x=1}

}c →! s(t)
{

F, [∅|]|cφ [2, 1]
x,y|c
{x=1}

}c →! s(f)
.

Definition 4.11. A fully reduced term t : Fact is said to have a unique matching property iff for any

ground, fully reduced term t′ : Fact there exists at most one substitution σ such that σ(t) =A t
′.

Definition 4.12. A condition φ inQcnd
Σ,D is called deterministic if and only if all quantification patterns

in φ contain only single facts with unique matching property.

The following theorem states that while evaluation of a deterministic condition is not itself deter-

ministic, but its results are.

Theorem 4.13. Let φ be a deterministic condition inQcnd
Σ,D. ThenRcnd

Σ,D(φ) is confluent. In particular,

given a ground multiset of facts F , there is a unique B ∈ {t, f} such that Iφ(F)→! s(B).

B. Zieliński / A Non-deterministic Multiset Query Language 157

Proof:

We argue by induction on the complexity of formulas indexing frames on the top of a stack. First

observe that only terms of the form t :=
{

F, S[F ′ | ~a]~v|c∃P.ψ
}c

can be rewritten in a single step into two

distinct terms. As semiconfluence implies confluence it suffices to prove that if t′ ← t →+ t′′ then

there exists s such that t′ →∗ s ∗← t′′. By Lemmas 4.3 and 4.8, p. 1, a rewrite sequence t →+ t′′

must (1) contain {F, Sr(B)}c, or (2) can be extended to the sequence ending in {F, Sr(B)}c. If we

prove that t′ →∗ {F, Sr(B)}c then we can set s = t′′ (if (1)) or s = {F, Sr(B)}c (if (2)). It remains

to prove that t′ →∗ {F, Sr(B)}c. Under the theorem’s assumption, P = [f]?, where f is a fact with a

unique matching property (Definition 4.11). Thus, if for some fact g in F ′ there exists a substitution σg
extending {~a/~v} such that g = σg(f) and Iσg(ψ)(F)→ r(t) (which implies, by inductive assumption,

that Iσg(ψ)(F) 6→∗ r(f)), it is unique, and cannot be missed during evaluation of the iterator frame.

Either such g exists, and then t →∗ {F, Sr(t)}c but t 6→∗ {F, Sr(f)}c (hence necessarily both B = t

and t′ →∗ {F, Sr(t)}c), or it doesn’t, and hence, both B = f and t′ →∗ {F, Sr(f)}c ⊓⊔

Example 4.14. Suppose p : Nat → Fact, q :→ Fact, and let r : Nat Nat → Fact be a com-

mutative operator (i.e., r(x, y) =A r(y, x)). Clearly, p(x) and q have unique matching property

(Definition 4.11), while r(x, y) does not, since, e.g., if σ1 := {0/x, 1/y} and σ2 := {1/x, 0/y} then

σ1(r(x, y)) =A σ2(r(x, y)) =A r(0, 1). Let

φ1 := ∃[p(x)]? . {x = 0}, φ2 := ∃[p(x) ◦ q]? . {x = 0}, φ3 := ∃[r(x, y)]? . {x = 0}.

Then φ1 is deterministic (Definition 4.12), while φ2 and φ3 are not deterministic. Let F := p(0) ◦
p(1) ◦ q ◦ r(0, 1). We now consider evaluation of all the φi’s on F . First, the reader will easily

verify that while evaluating the existential quantifier in φ1 we can either first match p(x) with p(1)
and then, upon failure, with p(0), or first match with p(0). Eventually, both paths yield satisfaction of

φ1 on F (although the first path is is longer). On the other hand, evaluation of φ2 and φ3 demonstrate

two ways in which non-determinism occurs in evaluation of conditions in Qcnd
Σ,D. First, consider two

non-convergent paths of rewriting Iφ2(F):

{

F, [p(1) ◦ r(0, 1)|]|cφ2 [0]
x|c
{x=0}

}c λ{ } //
{

F, [p(1) ◦ r(0, 1)|]|cφ2r(t)
}c ∗ // s(t)

{

F, [p(0) ◦ p(1) ◦ q ◦ r(0, 1)|]|cφ2
}c

λunf
∃

OO

λunf
∃

��

Iφ2(F)
λinit
∃oo s(f)

{

F, [p(0) ◦ r(0, 1)|]|cφ2 [1]
x|c
{x=0}

}c λ{ } //
{

F, [p(0) ◦ r(0, 1)|]|cφ2r(f)
}c λend

∃ //
{

F, r(f)
}c

∗

OO

Here the reason for non-determinism which ultimately leads to non-convergent paths of execution is

that when evaluating the existential quantifier at each attempt we have to consume both p(x)-fact and

q-fact: since there is only one q fact, if we start from wrong p(x)-fact (i.e., p(1)), we do not get the

second chance.

158 B. Zieliński / A Non-deterministic Multiset Query Language

Denote for brevity K := p(0) ◦ p(1) ◦ q. Recall that r(x, y) =A r(y, x). In particular, r(0, 1) =A

r(1, 0). Consider now two non-convergent paths of rewriting Iφ3(F):

{

F, [K|]|cφ3 [0, 1]
x,y|c
{x=0}

}c λ{ } //
{

F, [K|]|cφ3r(t)
}c ∗ // s(t)

{

F, [K ◦ r(0, 1)|]|cφ3
}c

λunf
∃

OO

λunf
∃

��

Iφ3(F)
λinit
∃oo s(f)

{

F, [K|]|cφ3 [1, 0]
x,y|c
{x=0}

}c λ{ } //
{

F, [K|]|cφ3r(f)
}c λend

∃ //
{

F, r(f)
}c

∗

OO

Thus, in this case the reason of non-determinism leading to non-convergent paths was the possibility

of two distinct matchings of r(0, 1) with r(x, y) given by {0/x, 1/y} and {1/x, 0/y}.

5. Rewriting semantics ofQqry
Σ,D

Let Q be a query in Qqry
Σ,D. We associate with Q the rewriting system Rqry

Σ,D(Q). Terms rewrit-

ten with the rules of the rewriting system Rqry
Σ,D(Q) are of the form {F,F ′, S}q , where { , , }q :

FSet FSet Stkq → Stateq, F is a database of facts against which we issue the query, F ′ is a

partial answer (i.e., an answer built so far in the rewriting process), and S is a stack of sort Stkq

which simulates structural recursion. Normal forms encapsulating an answer to Q are constructed

with a : FSet → Stateq. Terms of sort Stkq are constructed from local computation frames of sort

Frmq, where Frmq < Stkq, using an associative binary operator : Stkq Stkq → Stkq with identity

element ∅. Constructors of frames are indexed by sub-queries R of Q, and lists of distinct variable

names ~v := v1, . . . , vn of respective sorts s1, . . . , sn (~v can be of any length as long as {~v} ⊆ Var (Q)
and it contains all free variables of R):

[, . . . ,]
~v|q
R : s1 . . . sn → Frmq, [, . . . , |]~v|qR : s1 . . . sn Stkc → Frmq,

[| , . . . ,]
~v|q
R : FSet s1 . . . sn → Frmq if R = ∇P . R′.

As ~v can be empty, the above signature templates include []
|c
R :→ Frmq, etc. As in the case of Qcnd

Σ,D,

variables in super- and sub-scripts are part of function names and are never matched or substituted —

Remark 4.1 applies here and in the next section. Frames of the form [~a]
~v|q
R , [~a|S]~v|qR , or [F ′|~a]~v|qR are

called (R,σ)-frames, where σ := {~a/~v} is the current substitution. They indicate evaluation of σ(R).

Conditional frames [~a|S]~v|qR are used in evaluation of conditionals φ⇒ R, where S : Stkc represents

evaluation of φ. Iterator frames [F ′|~a]~v|q∇P.R, represent iterative evaluation of σ(∇P . R). Multiset F ′,
called iterator state, contains facts available for matching with P! ◦P?. Given a database F , to evaluate

a closed query Q we rewrite a state term IQ(F) := {F, ∅, []|qQ}q until a normal form a(F ′) is reached.

Then we conclude that evaluation of Q on F yields F ′ as an answer.

B. Zieliński / A Non-deterministic Multiset Query Language 159

Now we are ready to define the rules of Rqry
Σ,D(Q). Literal facts are added to the partial answer

multiset after applying the current substitution, and empty queries return nothing:

λfact :
{

F,F ′, S[~v]~v|qf
}q ⇒

{

F,F ′ ◦ f, S
}q
, λ∅ :

{

F,F ′, S[~v]~v|q∅
}q ⇒

{

F,F ′, S
}q
. (10)

Evaluation of “union” ⊲ is implemented by replacing the frame corresponding to R1⊲R2 with

two frames corresponding to R1 and R2, respectively:

λunf
⊲

:
{

F,F ′, S[~v]~v|qR1⊲R2

}q ⇒
{

F,F ′, S[~v]~v|qR2
[~v]

~v|q
R1

}q
(11)

To compute a conditional φ⇒ R we first embed a stack representing computation of condition φ
within the frame corresponding to the conditional. Once this condition is evaluated, we either evaluate

R if the condition is satisfied, or drop the conditional if it is not:

λunf
cond :

{

F,F ′, S[~v]~v|qφ⇒R

}q ⇒
{

F,F ′, S
[

~v | [~v]~v|cφ
]~v|q
R

}q
,

λunf
cond;f :

{

F,F ′, S[~v | r(f)]~v|qR
}q ⇒ {F,F ′, S}q,

λunf
cond;t :

{

F,F ′, S[~v | r(t)]~v|qR
}q ⇒

{

F,F ′, S[~v]~v|qR
}q
. (12)

To compute φ we add, for every rule λ : {F, S′}c ⇒ {F, S′′}c if C inRcnd
Σ,D(φ) the rule schema

λq : {F,F ′, S[~v | S′]~v|qR }q ⇒ {F,F ′, S[~v | S′′]~v|qR }q if C (13)

Evaluation of ∇ . subquery is initialized with the whole database available for matching:

λinit
∇ :

{

F,F ′, S[~v]~v|q∇P.R
}q ⇒

{

F,F ′, S[F | ~v]~v|q∇P.R
}q

(14)

Let ~w be a sequence of all the distinct variables in Var(P) \ {~v}. Let σ be the current substitution.

Rule λunf
∇ pushes onto the stack a (σ′, R)-frame, where σ′ = σ ∪ {~b/~w} is defined by matching

F ′′ ◦ σ(P! ◦ P?) with iterator state, and it removes σ′(P?) from the iterator state:

λunf
∇ :

{

F,F ′, S
[

F ′′ ◦ P! ◦ P? | ~v
]~v|q
∇P.R

}c ⇒
{

F,F ′, S
[

F ′′ ◦ P! | ~v
]~v|q
∇P.R[~v, ~w]

~v, ~w|q
R

}q
(15)

We keep applying λunf
∇ until we cannot match F ′′ ◦ σ(P! ◦ P?) with iterator state. Then we remove

the iterator frame from the stack. To prevent premature application, rule schema λend
∇ is conditional,

where the condition uses functions µP,~v : Pattp s1 . . . sn → Yes? defined for each ~v ⊆ Var (Q) and

pattern P occurring in Q with the single equation µP,~v(F ◦ P! ◦ P?, ~v) = yes (cf. Equation (8)):

λend
∇ : {F,F ′, S[F ′′ | ~v]~v|q∇P.R}q ⇒ {F,F ′, S}q if (µP,~v(F

′′, ~v) = yes) = f. (16)

Finally, the rule λans : {F,F ′, ∅}c ⇒ a(F ′) finishes evaluation of Q.

The following result can be proven similarly to Theorem 4.2:

Theorem 5.1. Rqry
Σ,D(R) is a terminating rewriting system.

160 B. Zieliński / A Non-deterministic Multiset Query Language

The following useful observation can be trivially verified by examining the rule schemas:

Lemma 5.2. Let R be a subcondition of Q. Then, for all multisets of facts F , F ′, F ′′, stacks S, lists

of variables ~v = v1, . . . , vn and values ~a = a1, . . . , an, {F,F ′, S[~a]~v|qR }q →∗ {F,F ′ ◦ F ′′, S}q in

Rqry
Σ,D(Q) if and only if {F, ∅, []|qσ(R)}q →! a(F ′′) in Rqry

Σ,D(σ(R)), where substitution σ := {~a/~v}.

The following example shows that evaluation of queries in Qqry
Σ,D does not, in general, return a

unique answer, and, in particular, that Rqry
Σ,D(Q) for general queries Q is not confluent.

Example 5.3. Let ♯ :→ Fact and b : Nat → Fact. Consider the query Q := ∇[♯]? ◦ [b(x)]! . b(x)
executed against database F := ♯ ◦ b(1) ◦ b(2). Then IQ(F) can normalized in two ways:

IQ(F)
λinit
∇−−→

{

F, ∅, [F |]|qQ
}q λunf

∇−−→
{

{

F, ∅, [b(1) ◦ b(2) |]|qQ[1]
x|q
b(x)

}q →! a(b(1))
{

F, ∅, [b(1) ◦ b(2) |]|qQ[2]
x|q
b(x)

}q →! a(b(2))
.

Queries like Q are useful as a simulation of a non-deterministic choice (say, by a human agent) of a

subset of values stored in the database with a fixed maximal cardinality. E.g., ∇[b(x)]? . b(x) returns

all “b-facts” stored in the database. Query Q defined above, however, chooses (with repetitions) at

most as many b-facts as there are tokens ♯. Query ∇[♯ ◦ b(x)]? . b(x) avoids repetitions.

The following is the bisimulation-like definition of logical equivalence between queries in Qqry
Σ,D:

Definition 5.4. Let Q1 and Q2 be two conditions inQqry
Σ,D. Recall that IQ(F) := {F, ∅, []|qQ}q. We say

that Q1 is logically equivalent to Q2, writing Q1 ≡ Q2, if and only if, for all ground multisets of facts

F and F ′, and ground substitutions σ such that σ(Q1) and σ(Q2) are closed, we have

Iσ(Q1)(F)→! a(F ′) iff Iσ(Q2)(F)→! a(F ′).

In other words, queries are equivalent if they can match each other’s answers. The following result

is an immediate consequence of Lemma 5.2:

Lemma 5.5. Logical equivalence on queries in Qqry
Σ,D is an equivalence relation and a congruence,

i.e., if κ is a position in a query Q in Qqry
Σ,D such that Q|κ is a query, and R ≡ Q|κ, then Q ≡ Q[R]κ.

We leave proof of the next observation to the reader:

Lemma 5.6. For any closed query Q in Qqry
Σ,D, and any renaming σ, Q ≡ σ(Q).

The following clarification of semantics of queries in Qqry
Σ,D is proven similarly to Lemma 4.8:

Lemma 5.7. For all ground multisets of facts F , F ′ and F ′′, all closed queries Q,Q1, Q2, and∇P .R
in Qqry

Σ,D, and all closed conditions φ in Qcnd
Σ,D, the following statements hold:

1. If IQ(F)→! Γ then Γ = a(G) for some ground multiset of facts G.

2. Let f be a fact. If If (F)→! Γ then Γ = a(f). If I∅(F)→! Γ then Γ = a(∅).

B. Zieliński / A Non-deterministic Multiset Query Language 161

3. Let F ′ 6= ∅. In this case Iφ⇒Q(F)→! a(F ′) iff Iφ(F)→! s(t) and IQ(F)→! a(F ′).

4. Iφ⇒Q(F)→! a(∅) iff either (non-exclusively) Iφ(F)→! s(f) or IQ(F)→! a(∅).

5. IQ1⊲Q2(F)→! a(F ′) iff IQ1(F)→! a(F1) and IQ2(F)→! a(F2) for some multisets F1 and F2

such that F ′ = F1 ◦ F2.

6. I∇P.R(F) →! a(F ′) iff there exist lists of ground multisets of facts F0, . . . , Fn, G0, . . . , Gn−1,

and H0, . . . ,Hn−1, and a sequence of substitutions σ0, σ1, . . . , σn−1 such that

(a) F0 = F , Fi+1 = Gi ◦ σi(P!), and Fi = Gi ◦ σi(P! ◦ P?), for all i ∈ {0, . . . , n− 1},
(b) Iσi(R)(F)→! a(Hi), for all i ∈ {0, . . . , n− 1},
(c) there exists no substitution σn and multiset of facts Gn such that Fn = Gn ◦ σn(P! ◦ P?),

(d) F ′ = H0 ◦H1 ◦ · · ·Hn−1.

Lemma 5.8. The following logical equivalences hold between conditions in Qqry
Σ,D:

∅⊲Q ≡ Q, Q1 ⊲Q2 ≡ Q2 ⊲Q1, Q1 ⊲ (Q2 ⊲Q3) ≡ (Q1 ⊲Q2)⊲Q3,

⊥ ⇒ R ≡ ∅, ¬⊥ ⇒ R ≡ R, ∃P . ∅ ≡ ∅

The next results show that non-confluence of queries makes some natural equivalences invalid:

Lemma 5.9. Let φ be a condition inQcnd
Σ,D and letQ1,Q2 be queries inQqry

Σ,D. For all ground multisets

of facts F , F ′ and all substitutions σ such that σ(φ), σ(Q1) and σ(Q2) are closed, we have

Iσ((φ⇒Q1)⊲(φ⇒Q2))(F)→! a(F ′) if Iσ(φ⇒(Q1⊲Q2))(F)→! a(F ′), (17)

however, the inverse implication does not hold in general. If φ is deterministic (Definition 4.12), then

(φ⇒ Q1)⊲ (φ⇒ Q2) ≡ φ⇒ (Q1 ⊲Q2). (18)

Proof:

To prove the implication (17) assume Iσ(φ⇒(Q1⊲Q2))(F) →! a(F ′). Either F ′ 6= ∅ or F ′ = ∅. In the

first case, by Lemma 5.7, p. 3 , our assumption is equivalent to Iφ(F) →! r(t) and Iσ(Q1⊲Q2)(F) →!

a(F ′), the latter of which, in turn, is equivalent, by Lemma 5.7, p. 5, to Iσ(Q1)(F) →! a(F1) and

Iσ(Q2)(F) →! a(F2) for some multisets F1 and F2 such that F ′ = F1 ◦ F2. But this is equivalent, by

Lemma 5.7, p. 3 and 5, to Iσ((φ⇒Q1)⊲(φ⇒Q2))(F)→! a(F ′). The case F ′ = ∅ is dealt with similarly.

To show that, in general, the inverse implication does not hold, consider φ := ∃[a◦b(x)]? .{x = 1},
Q := φ ⇒ (c ⊲ d), Q′ := (φ ⇒ c) ⊲ (φ ⇒ d), where a, c, d :→ Fact and b : Nat → Fact. Let

F := a ◦ b(1) ◦ b(2). Since Iφ(F) →! s(B) for B ∈ {t, f}, IQ(F) →! a(F ′) iff F ′ ∈ {∅, c ◦ d},
whereas IQ′(F)→! a(F ′) iff F ′ ∈ {∅, c, d, c ◦ d}.

Assume that φ is deterministic. By Theorem 4.13, either Iσ(φ)(F) →! s(t) or Iσ(φ)(F) →! s(f),

but not both. Let R1 := σ
(

(φ⇒ Q1)⊲ (φ⇒ Q2)
)

, R2 := σ
(

φ⇒ (Q1 ⊲Q2)
)

. If Iσ(φ)(F)→! s(f)

then IRi
(F) → a(F ′) iff F ′ = ∅ for i ∈ {1, 2}. If Iσ(φ)(F) →! s(t) then, for i ∈ {1, 2}, IRi

(F) →
a(F ′) iff F ′ = F1 ◦ F2 for some multisets F1 and F2 such that IQj

(F)→ a(Fj), j ∈ {1, 2}. ⊓⊔

162 B. Zieliński / A Non-deterministic Multiset Query Language

Example 5.10. In general, equivalence ∇P . (Q1 ⊲ Q2) ≡ (∇P . Q1) ⊲ (∇P . Q2) is not valid.

Indeed, let a :→ Fact and b, c : Nat → Fact, and let P := [a ◦ b(x)]?, Q := ∇P . (b(x) ⊲ c(x)),
Q′ := (∇P . b(x)) ⊲ (∇P . c(x)). Suppose that F := a ◦ b(1) ◦ b(2). Then IQ(F) →! r(F ′) iff

F ′ ∈
{

b(i) ◦ c(i) | i ∈ {1, 2}
}

. However, IQ′(F)→! r(F ′) iff F ′ ∈
{

b(i) ◦ c(j) | i, j ∈ {1, 2}
}

.

Here we define a class of queries in Qqry
Σ,D which evaluate to unique answers:

Definition 5.11. A query Q in Qqry
Σ,D is called deterministic if all quantification patterns in Q (includ-

ing those inside conditions) contain only single facts with unique matching property.

Theorem 5.12. Let Q be a deterministic query in Qqry
Σ,D. ThenRΣ,D(Q) is confluent, and, in particu-

lar, given a ground multiset of facts F , there is a unique multiset of facts F ′ such that IQ(F)→! a(F ′).

Proof:

As semiconfluence implies confluence, to show confluence at t : Stateq it suffices to prove that if

t′ ← t →+ t′′ for some t′ and t′′, then there exists s such that t′ →∗ s ∗← t′′. Semiconfluence is

immediate at irreducible terms a(F ′), as well as terms {F,F ′, ∅}q which can only rewrite to a(F ′).
Let t := {F,F ′, SA}q where S : Stkq, and A : Frmq. If there exists a unique multiset of facts K such

that every rewrite sequence starting with t either (1) contains h := {F,F ′ ◦ K,S}q or (2) it can be

extended to reach h, then semiconfluence holds at t. Indeed, in this case, either s = t′′ witnesses the

semiconfluence (if (1) holds for t→+ t′′) or s = h does (if (2) holds for t→+ t′′). It remains to prove

the existence of the unique multiset K . We argue by induction on the structure of formulas indexing

the frame A on the top of the stack. Most cases are dealt by trivial application of Lemmas 5.7 and 5.2.

For frames related to conditionals ⇒ we have to also use Lemma 4.13. The only non-trivial part of

the proof concerns frames A of the form [F ′′ | ~a]~v|q∇P.R.

Under the theorem’s assumption, P = [f]?, where f is a fact with unique matching property

(Definition 4.11). Let ~w be a sequence of all variables in Var (f) \ {~v}. If there is no fact f ′ in F ′

such that f ′ matches {~a/~v}(f) then necessarily K = ∅. Otherwise F ′ = G ◦ f1 ◦ · · · fn for some

n > 0, where (1) for all i ∈ {1, . . . , n} there exists a unique substitution σi = {~a/~v, ~bi/~w} such that

fi = σi(f), (2) there is no fact f ′ in G such that f ′ matches {~a/~v}(f). In this case, necessarily, by

Lemma 5.7, p. 6, K = K1 ◦ · · · ◦Kn, where, for all i ∈ {1, . . . , n}, Ki is the unique multiset of facts

(uniqueness and existence follows from inductive assumption) such that Iσi(R)(F)→! a(Ki). ⊓⊔

There is a useful relationship between queries and conditions:

Lemma 5.13. Let r : s1 . . . sn → Fact, let Q be a query in Qqry
Σ,D, and let ~x := x1, . . . , xn be a list

of n distinct variables such that {~x}∩Var (Q) = ∅ and xi : si for i ∈ {1, . . . , n}. Then, there exists a

condition φ
~x|r
Q in Qcnd

Σ,D such that, for all ground multisets of facts F , and for all ground substitutions

σ := {~t/~x,~a/~v} such that {~a/~v}(Q) is closed, σ(φ
~x|r
Q) is closed, and, moreover,

I
σ(φ

~x|r
Q)

(F)→! s(t) iff ∃F ′ .
(

IQ(F)→! a(F ′ ◦ r(~t))
)

,

I
σ(φ

~x|r
Q)

(F)→! s(f) iff ∃F ′ .
(

r(~t) /∈ F ′ ∧ IQ(F)→! a(F ′)
)

, (19)

B. Zieliński / A Non-deterministic Multiset Query Language 163

i.e., σ(φ
~x|r
Q) evaluates to t (resp. f) on F if and only if there is some F ′ returned by Q when evaluated

against F , such that r(~t) ∈ F ′ (resp. r(~t) /∈ F ′). Moreover, if Q is deterministic, then so is φ
~x|r
Q

Proof:

We define φ
~x|r
Q by recursion on the structure of a query Q:

φ
~x|r
∅ = ⊥, φ~x|r

h(~t)
= {r(~x) = h(~t)}, φ~x|rQ1⊲Q2

= φ
~x|r
Q1
∨ φ~x|rQ2

, φ
~x|r
ψ⇒R = ψ ∧ φ~x|rR , φ

~x|r
∇P.R = ∃P.φ~x|rR .

The easy if laborious proof that φ
~x|r
Q really satisfies all the conditions in the statement is left to the

reader. ⊓⊔

Example 5.14. Consider the following query in Qqry
Σ,D (where x and y are distinct variables):

Q := ∇[f(x, y)]? .
(

({x = y} ⇒ r(x))⊲ r(s(x))
)

.

Thus, for any fact of the form f(x, y) in the database, Q will output r(s(x)), and, if x = y, also r(x).
Using the recursive formula from the proof of Lemma 5.13 we easily see that

φ
z|r
Q := ∃[f(x, y)]? .

(

({x = y} ∧ {r(z) = r(x)}) ∨ {r(z) = r(s(x))}
)

.

The next result shows that Qqry
Σ,D can emulate relational algebra.

Theorem 5.15. Denote by RelAlg(S,D) the relational algebra over the relational schema S and the

domain D of atomic values (which we silently identify with its algebraic representation, where types

are sorts and predicates are represented with equationally defined operators into the Bool sort). Fur-

thermore, assume that for each relational algebra expression R in RelAlg(S,D) a function symbol

RR : s1 . . . sn → Fact is in ΣF , where si is the sort (domain) of the i-th column of R and n is the

arity of R. For any relational database I with schema S , let tr(I) be a multiset corresponding to the

database I . More precisely,

tr(I) := ◦{Rr(~t) | r is a relation symbol in S and (~t) ∈ rI},

where rI is the set of tuples of r in I . Then, for all formulas R in RelAlg(S,D), there exists a closed

query tr(R) in Qqry
Σ,D such that for all relational databases I with schema S ,

∃F .
(

Itr(R)(tr(I))→! a(F ◦ RR(~t))
)

iff (~t) ∈ evalI(R), (20)

where eval I(R) is the set of tuples obtained by evaluation of relational query R against the relational

database I . Furthermore, for any relational expression R, tr(R) is deterministic.

Proof:

To prove the theorem we define tr(R) by recursion on the structure of R. We consider relational

algebra expressions to be constructed with base relations, projections, selections, set unions, Cartesian

products, and set differences. Other well known relational operators such as joins can be defined in

164 B. Zieliński / A Non-deterministic Multiset Query Language

terms of basic operators mentioned above. Attribute renaming is not relevant in our case, since we

represent relations with positional arguments only. We denote set unions, Cartesian products, and set

differences with the usual mathematical notation (e.g., R∪S,R×S andR\S, respectively). Notation

for projections and selections is less standardised (and needs to be adapted to relations with positional

arguments). We denote by πi1,...,ik(R) the projection of R onto i1’th, i2’th, . . ., and ik’th “leg” (i.e.,

on a single tuple, πi1,...,ik((t1, t2, . . . , tn)) := (ti1 , ti2 , . . . , tik)). We denote by σφ(R) the selection

with condition φ applied to R (i.e., it returns those tuples of R which satisfy φ). If R is n-ary, then we

will assume that in φ expression $i corresponds to the i-th column of R, for i ∈ {1, . . . , n}.
Let r be a base relation of arity k (for simplicity we omit the typing information), and let ~x be a

list of k distinct variables. Then tr(r) := ∇[Rr(~x)]? . Rr(~x). We now consider selected relational

operators:

1. Let R be a relational formula defining an n-ary relation, and let i1, . . . , ik be a subsequence of

1, . . . , n. We define tr(πi1,...,ik(R)) to be tr(R) with each subquery of the formRR(t1, . . . , tn)
replaced withRπi1,...,ik (R)(ti1 , . . . , tik).

2. Let R be a relational formula of arity k, and let φ be a term of sort Bool representing condition

on rows of R (where in φ special variable $i, i ∈ {1, . . . , n} corresponds to the i-th “attribute”

of R). We define tr (σφ(R)) to be tr (R) with each subquery of the form RR(~t) replaced with
{

{~t/~$}(φ)
}

⇒Rσφ(R)(~t).

3. tr (R1 ∪R2) := tr(R1)⊲ tr (R2).

4. Let R and S be relational formulas. Let tr(S)′ := σ(tr (S)) for some renaming σ such that

Var (tr(R))∩Var (tr (S)′) = ∅ (tr(S) ≡ tr(S)′ by Lemma 5.6 since tr (S) is closed). Further,

let α(~t) be tr(S)′ with each subquery of the form RS(~s) replaced with RR×S(~t, ~s). Then we

define tr (R× S) to be tr(R) with each subquery of the form RR(~t) replaced with α(~t).

5. LetR and S be relational formulas of arity k. Let tr(S)′ be like in the previous point. Let ~x be a

list of k distinct variables such that {~x}∩(Var (tr (R))∪Var (tr (S)′)) = ∅. We define tr(R\S))
to be tr (R) with each subquery of the form RR(~t) replaced with ¬{~t/~x}

(

φ
~x|RS

tr(S)′

)

⇒ RR\S(~t)
(see Lemma 5.13).

An easy induction on the structure of R shows that tr(R) is closed and deterministic, and Equa-

tion (20) is satisfied (in the case of induction step for set difference we also use Lemma 5.13) ⊓⊔

Remark 5.16. Relational queries R evaluate to sets of tuples. However, tr(R) may evaluate to a

multiset of facts — e.g., when evaluating unions duplicate facts are not removed.

Example 5.17. Let r and s be binary relations. Consider the following relational algebra expression:

R := π1,4
(

σ$2=$3(r × s)
)

.

Thus, (x, y) ∈ R iff (x, z) ∈ r and (z, y) ∈ s for some z. Let represent R as a query in Qqry
Σ,D using

definition of tr() from the proof of Theorem 5.15. First,

tr(r) = ∇[Rr(x1, x2)]? .Rr(x1, x2), tr(s) = ∇[Rs(y1, y2)]? .Rs(y1, y2),

B. Zieliński / A Non-deterministic Multiset Query Language 165

where x1, x2, y2, y2 are distinct variables. Then, by the point 4 in the proof

tr (r × s) = ∇[Rr(x1, x2)]? .∇[Rs(y1, y2)]? .Rr×s(x1, x2, y1, y2).

Finally, to deal with selection and projection we apply points 2 and 1, respectively, from the proof:

tr
(

π1,4
(

σ$2=$3(r × s)
))

= ∇[Rr(x1, x2)]? .∇[Rs(y1, y2)]? .
(

{x2 = y1} ⇒ Rπ1,4(σ$2=$3
(r×s))(x1, y2)

)

.

6. Rewriting semantics ofQdml
Σ,D

We associate with a DML query Q in Qdml
Σ,D the rewriting system Rdml

Σ,D (Q). Terms rewritten with the

rules of Rdml
Σ,D (Q) are of the form {F,F ′, Fn, S}d, where { , , , }d : FSet FSet FSetn Stkd →

Stated. F is the database of facts against which we issue the DML query. F changes during execution

of the query while the facts are removed from it. A multiset F ′, expanded during query execution,

contains new facts to be added to the database. Fn is a multiset of fresh facts (see Section 2) from

which fresh values are drawn. S is a stack of sort Stkd which simulates structural recursion. Normal

forms encapsulating a new database and new multiset of fresh facts after successful or, respectively,

failing execution of a DML query, are constructed with n, f : FSet FSetn → Stated. We consider

only terms t of sort Stated which satisfy the following freshness condition:

Definition 6.1. A term t of sort Stated satisfies the freshness condition if and only if m > n for all

positions κ, κ′ in t such that κ 6= κ′1, t|κ = Cs(ı
s
m) and t|κ′ = ısn.

Example 6.2. Consider the following term of Stated sort:

n
(

f(ıs10) ◦ f(ıs3), Cs(ıs7)
)

.

It does not satisfy the freshness condition having as subterms both Cs(ı
s
7) and ıs10 with 10 > 7. Our

general assumption which justifies the freshness condition is that a fresh fact of the form Cs(ı
s
m)

means that we never before used any value of the form ısn with n > m. Clearly, terms which do not

satisfy freshness condition (like the term above) violate this assumption.

Terms of sort Stkd are constructed from local computation frames of sort Frmd, where Frmd <
Stkd, using an associative binary operator : Stkd Stkd → Stkd with identity ∅. Most constructors

of frames are indexed by DML sub-queries R ofQ, and lists of distinct variable names ~v := v1, . . . , vn
of respective sorts s1, . . . , sn such that {~v} ⊆ Var(Q) contains all free variables of R:

[, . . . ,]
~v|d
R , [, . . . ,]

~v|d,↓
R : s1 . . . sn → Frmd, [, . . . , |]

~v|d
R : s1 . . . sn Stkc → Frmd,

√
:→ Frmd, [| , . . . , |]

~v|d
∇P.R : FSet s1 . . . sn Bool→ Frmd,

[| , . . . , | ,]
~v|d
∇P.R : FSet s1 . . . sn Bool FSet→ Frmd.

166 B. Zieliński / A Non-deterministic Multiset Query Language

As ~v can be empty, the above signature templates include []
~v|d
R , []

~v|d,↓
R :→ Frmd, etc. A constant

√

marks successful branches of computation, i.e., those which created either new facts or
√

: DQy.

Marking such branches is necessary as facts deleted by unsuccessful branches are restored as soon as

the branch finishes. Frames of the form [~a]
~v|d
R , [~a]

~v|d,↓
R , [~a|S]~v|dR , [F ′|~a|B]

~v|d
R , or [F ′|~a|B,F ′′]~v|dR are

called (R,σ)-frames, where σ := {~a/~v} is the current substitution. They are related to evaluation of

σ(R). Marked frames [~a]~v|d,↓ occur in the execution of “unions” ⊲ . Conditional frames [~a|S]~v|dR
are used in execution of conditionals φ ⇒ R, where S : Stkc represents evaluation of φ. Iterator

frames [F ′|~a|B]
~v|d
∇P.R and [F ′|~a|B,F ′′]~v|d∇P.R represent iterative execution of σ(∇P . R). Multiset F ′,

called iterator state, contains facts available for matching with P! ◦P? ◦ P0 (cf. Remark 2.3). Iteration

status B is equal to t iff the iteration already generated either new facts or
√

(i.e., if the branch

related to σ(∇P . R) was successful). “Tentative” iterator frames [F ′|~a|B,F ′′]~v|q∇P.R store multiset

F ′′ of facts deleted from the database in the present step, so that they can be restored if the step is

unsuccessful. Given a database F , in order to execute a closed DML query Q we rewrite a state term

IQ(F,Fn) := {F, ∅, Fn, []
|d
Q}d until a normal form n(F ′, F

′

n) or f(F ′, F
′

n) is reached, indicating that a

successful or, respectively, unsuccessful execution of Q in the database F yielded a new database F ′,
and a new multiset of fresh facts F

′

n. Now we are ready to define rule schemas of Rdml
Σ,D (Q).

Two consecutive occurrences of
√

are collapsed, and (
√
, σ)-frames are replaced with

√
:

λcol : {F,F ′, Fn, S
√√}d ⇒

{

F,F ′, Fn, S
√}d, λ√ : {F,F ′, Fn, S[~v]

~v|d√ }d ⇒{F,F ′, Fn, S
√}d.

(21)

An (∅, σ)-frame is removed from the stack. An (f, σ)-frame, where f is a fact and σ is the current

substitution, is replaced by
√

and σ(f) is added to F ′ (since Var(f) ⊆ {~v}, σ(f) is closed):

λ∅ :
{

F,F ′, Fn, S[~v]
~v|d
∅

}d ⇒
{

F,F ′, Fn, S
}q
, λfact :

{

F,F ′, Fn, S[~v]
~v|d
f

}d ⇒
{

F,F ′ ◦ f, Fn, S
√}q

.
(22)

An (R1 ⊲R2, σ)-frame is split into the (R1, σ)-frame and the (R2, σ)-frame. The (R2, σ)-frame

is marked with ↓ so that the evaluation of σ(R1 ⊲R2) can be marked as successful when at least one

of the branches is successful. When both branches are successful, this can produce two consecutive
√

constants on the stack which are then collapsed using λcol rule in Equation (21).

λunf
⊲

:
{

F,F ′, Fn, S[~v]
~v|d
R1⊲R2

}d ⇒
{

F,F ′, Fn, S[~v]
~v|d,↓
R2

[~v]
~v|d
R1

}d
,

λfld
⊲;

√ :
{

F,F ′, Fn, S[~v]
~v|d,↓
R2

√}d ⇒
{

F,F ′, Fn, S
√
[~v]

~v|d
R2

}d
,

λfld
⊲;∅ :

{

F,F ′, Fn, S[~v]
~v|d,↓
R2

}d ⇒
{

F,F ′, Fn, S[~v]
~v|d
R2

}d
, (23)

Rule schemas for execution of conditionals φ⇒ Q are similar to those in Equations (12), (13):

λunf
cond :

{

F,F ′, Fn, S[~v]
~v|d
φ⇒R

}d ⇒
{

F,F ′, Fn, S
[

~v | [~v]~v|cφ
]~v|d
R

}d
,

λunf
cond;f :

{

F,F ′, Fn, S[~v | r(f)]~v|dR
}d ⇒ {F,F ′, Fn, S}d,

λunf
cond;t :

{

F,F ′, Fn, S[~v | r(t)]~v|dR
}d ⇒

{

F,F ′, Fn, S[~v]
~v|d
R

}d
,

λd :{F,F ′, Fn, S[~v | S′]~v|dR }d ⇒ {F,F ′, Fn, S[~v | S′′]~v|dR }d if C

for all λ : {F, S′}c ⇒ {F, S′′}c if C in Rcnd
Σ,D(φ). (24)

B. Zieliński / A Non-deterministic Multiset Query Language 167

Evaluation of a∇ . subquery is initialized with the whole database available for matching. Itera-

tion status is f since evaluation is not successful yet.

λinit
∇ :

{

F,F ′, Fn, S[~v]
~v|d
∇P.R

}d ⇒
{

F,F ′, Fn, S[F | ~v | f]~v|d∇P.R
}d
. (25)

Let ~w be a sequence of all the distinct variables in Var(P)\{~v}. Let σ be the current substitution.

Rule λunf
∇ pushes onto the stack a (σ′, R)-frame, where σ′ = σ ∪ {~b/~w} is defined by matching

F ′′ ◦ σ(P! ◦ P? ◦ P0) with iterator state and Pn with the multiset of fresh facts Fn. It also removes

σ′(P? ◦ P0) from the iterator state and σ′(P0) from the database state, and, finally, it updates fresh

facts using υ defined in Equation (1). Removed facts σ′(P0) are stored in the tentative iterator frame:

λunf
∇ :

{

F ◦ P! ◦ P? ◦ P0, F
′, Fn ◦ Pn, S

[

F ′′ ◦ P! ◦ P? ◦ P0 | ~v | B
]~v|d
∇P.R

}d

⇒
{

F ◦ P! ◦ P?, F
′, Fn ◦ υ(Pn), S

[

F ′′ ◦ P! | ~v | B,P0

]~v|d
∇P.R[~v, ~w]

~v, ~w|d
R

}d
, (26)

If execution of σ′(R) proves unsuccessful, removed facts can be restored both to iterator state and

database. Otherwise, we discard them and set the iteration status to t:

λfld
∇;∅ :

{

F,F ′, Fn, S
[

F ′′ | ~v | B,F0

]~v|d
∇P.R

}d ⇒
{

F ◦ F0, F
′, Fn, S

[

F ′′ ◦ F0 | ~v | B
]~v|d
∇P.R

}d
,

λfld
∇;

√ :
{

F,F ′, Fn, S
[

F ′′ | ~v | B,F0

]~v|d
∇P.R

√}d ⇒
{

F,F ′, Fn, S
[

F ′′ | ~v | t
]~v|d
∇P.R

}d
. (27)

We keep applying λunf
∇ until we cannot match σ(P! ◦ P? ◦ P0) with iterator state. Then we replace

the iterator frame with δ(B) where B is the iteration status, δ(t) =
√

, and δ(f) = ∅. To prevent

premature application, rule schema λend
∇ is conditional, where the condition uses functions µP,~v :

Pat s1 . . . sn → Yes? defined for each ~v ⊆ Var(Q) and pattern P occurring in Q with the single

equation µP,~v(F ◦ P! ◦ P? ◦ P0, ~v) = yes (cf. Equation (8)):

λend
∇ :

{

F,F ′, Fn, S
[

F ′′ | ~v | B
]~v|d
∇P.R

}d ⇒ {F,F ′, Fn, Sδ(B)}d if (µP,~v(F
′′, ~v) = yes) = f. (28)

The last two rules reduce the Stated-terms with an empty stack or stack containing only the
√

constant into a term constructed with n or f, respectively:

λ
√
dml : {F,F ′, Fn,

√} ⇒ n(F ◦ F ′, Fn), λ∅dml : {F,F ′, Fn, ∅} ⇒ f(F ◦ F ′, Fn). (29)

Theorem 6.3. Rdml
Σ,D (Q) is a terminating rewriting system.

Proof:

The proof is similar to the proof of Theorem 4.2. Only subqueries of the form ∇P . R, where P is

semiterminating but not terminating (i.e., P0 6= ∅, but P? = ∅) require special care. In this case,

the signature of ∇ . forces R to be success assured, i.e., R’s evaluation always succeeds, and hence

removed facts matching P0 are never restored. This ensures termination of ∇P . R’s execution. ⊓⊔

The following useful observation can be trivially verified by examining the rule schemas:

168 B. Zieliński / A Non-deterministic Multiset Query Language

Lemma 6.4. Let R be a DML subquery of Q. Then, for all multisets of facts F , F ′, G, G′, multisets

Fn, Gn of fresh facts, stacks S, lists of variables ~v = v1, . . . , vn and of values ~a = a1, . . . , an,

1. {F,F ′, Fn, S[~a]
~v|d
R }d →∗

R1
{G,F ′ ◦G′, Gn, S

√}d iff {F, ∅, Fn, []
|d
σ(R)}d →∗

R2
n(G ◦G′, Gn),

2. {F,F ′, Fn, S[~a]
~v|d
R }d →∗

R1
{F,F ′, Gn, S}d iff {F, ∅, Fn, []

|d
σ(R)}d →∗

R2
f(F,Gn).

where σ := {~a/~v}, R1 := Rdml
Σ,D (Q), and R2 := Rdml

Σ,D (σ(R)).

As in the case of pure queries, we consider two DML queries equivalent if and only if they can

match their results. We should not, however, distinguish results differing only by the choice of fresh

values. Let Sn denote the set of nominal sorts in ΣS . Let nom(t) be the Sn-sorted set of nominal

values contained in term t. For any Sn-sorted bijection α : X → Y between sets of nominal values we

denote by α̂ the natural extension of α to terms t such that nom(t) ⊆ X. More precisely, α̂(x) = α(x)
if x ∈ X, α(c) = c if c is a constant of non-nominal sort or a variable, and α̂(f(t1, . . . , tn)) =
f(α̂(t1), . . . , α̂(tn)) if f(t1, . . . , tn) is of non-nominal sort. With those notions we define equivalence

on DML queries as follows:

Definition 6.5. Let Q1 and Q2 be two DML queries in Qdml
Σ,D . We say that Q1 is logically equivalent

to Q2, writing Q1 ≡ Q2, if and only if, for all ground substitutions σ such that σ(Q1) and σ(Q2) are

closed, all ground multisets of facts F ,G, all ground multisets of fresh facts Fn,Gn, and all i ∈ {1, 2}
1. if Iσ(Qi)(F,Fn)→! n(G,Gn) then there exist multisets of fresh facts F

′

n, G
′

n, multisets of facts

F ′, G′, and an Sn-sorted bijection α : nom(F) ∪ nom(G) → nom(F ′) ∪ nom(G′) such that

F ′ = α̂(F), G′ = α̂(G), and Iσ(Q3−i)(F
′, F

′

n)→! n(G′, G
′

n).

2. if Iσ(Qi)(F,Fn) →! f(F,Gn) then there exist multisets of fresh facts F
′

n, G
′

n, a multiset of

facts F ′, and an Sn-sorted bijection α : nom(F) → nom(F ′) such that F ′ = α̂(F) and

Iσ(Q3−i)(F
′, F

′

n)→! f(F ′, G
′

n).

The following result is an immediate consequence of Lemma 6.4:

Lemma 6.6. Logical equivalence on queries inQdml
Σ,D is an equivalence relation and a congruence, i.e.,

if κ is a position in a DML query Q such that Q|κ is a DML query, and R ≡ Q|κ, then Q ≡ Q[R]κ.

Lemma 6.7. For any closed DML query Q in Qdml
Σ,D , and any renaming σ, Q ≡ σ(Q).

Lemma 6.8, proven similarly to Lemma 4.8, clarifies elements of rewriting semantics of DML

queries in Qdml
Σ,D (we leave ∇ . evaluation where we are better off with the rewriting definition).

Lemma 6.8. For all ground multisets of facts F , G and of fresh facts Fn, Gn, as well as closed DML

queries Q, Q1, Q2 and all sentences φ, the following holds:

1. If IQ(F,Fn) →! Γ then Γ = n(G,Gn) or Γ = f(F,Gn) for some ground multiset of facts G
and ground multiset of fresh facts Gn. If IQ(F,Fn)→! f(G,Gn) then F = G.

2. If If (F,Fn)→! Γ then Γ = n(F ◦ f, Fn). If I∅(F,Fn)→! Γ then Γ = f(F,Fn).

B. Zieliński / A Non-deterministic Multiset Query Language 169

3. Iφ⇒Q(F,Fn)→! n(G,Gn) iff Iφ(F)→! r(t) and IQ(F,Fn)→! n(G,Gn).

4. Iφ⇒Q(F,Fn)→! f(F,Gn) iff Iφ(F)→! r(f) or IQ(F,Fn)→! f(F,Gn).

5. IQ1⊲Q2(F,Fn)→! f(F,Gn) iff there exists a multiset of fresh factsG
′

n such that IQ1(F,Fn)→!

f(F,G
′

n) and IQ2(F,G
′

n)→! f(F,Gn).

6. IQ1⊲Q2(F,Fn) →! n(G,Gn) iff, for some ground multisets of facts F ′, F ′′, G′, G′′ such that

G = G′′ ◦F ′ ◦F ′′, a ground multiset of fresh facts G
′

n, and stacks S, S′ ∈ {∅,√} where S =
√

or S′ =
√

, we have IQ1(F,Fn)→∗ {G′, F ′, G
′

n, S}d and IQ2(G
′, G

′

n)→∗ {G′′, F ′′, Gn, S
′}d.

Lemma 6.9. The following logical equivalences hold between queries in Qdml
Σ,D :

∅⊲Q ≡ Q, Q⊲ ∅ ≡ Q, Q1 ⊲ (Q2 ⊲Q3) ≡ (Q1 ⊲Q2)⊲Q3,

⊥ ⇒ R ≡ ∅, ¬⊥ ⇒ R ≡ R, ∃P . ∅ ≡ ∅

Lemma 6.9 is very similar to Lemma 5.8, except that ⊲ is not commutative. Q1 ⊲Q2 may be

non-equivalent with Q2 ⊲Q1 if, say, Q1 deletes a fact which is referred to in some pattern in Q2.

We need to generalize the notion of confluence, lest rewriting paths leading to terms differing only

by distinct choices of fresh values (as in the next example) are to be considered non-convergent.

Example 6.10. Let I be a nominal sort. Let r : Nat → Fact, s : I Nat → Fact. Consider DML

query Q := ∇[CI(x)]n ◦ [r(y)]? . s(x, y), and let F := r(1) ◦ r(2). Then

IQ
(

F,CI(ı
I

0)
)

→∗ {F, ∅, CI(ı
I

0), [F ||f]
|d
Q

}d λunf
∇−−→

{

F, ∅, CI(ı
I

1), [r(2)||f, ∅]
|d
Q[ı

I

0, 1]
x,y|d
s(x,y)

}d

→∗ {F, s(ıI0, 1), CI(ı
I

1), [r(2)||t]
|d
Q

}d λunf
∇−−→

{

F, S(ıI0, 1), CI(ı
I

2), [∅||t]
|d
Q[ı

I

1, 2]
x,y|d
s(x,y)

}d

→∗ n
(

F ◦ s(ıI0, 1) ◦ s(ıI1, 2), CI(ı
I

2)
)

,

and, if we match r(1) and r(2) in reverse order in applications of λunf
∇ rule, then

IQ
(

F,CI(ı
I

0)
)

→∗ n
(

F ◦ s(ıI0, 2) ◦ s(ıI1, 1), CI(ı
I

2)
)

.

Here we define an equivalence relation on terms of sort Stated which is a bisimulation:

Definition 6.11. We say that term t1 is nominally equivalent to term t2, in which case we write t1 ≡n

t2, if and only if there exists a bijection α : nom(t1)→ nom(t2) such that α̂(t1) = t2.

Lemma 6.12. Nominal equivalence is an equivalence relation. When restricted to Stated terms sat-

isfying the freshness condition (Definition 6.1), it is also a bisimulation onRdml
Σ,D (Q), for all Q.

We leave an easy proof of Lemma 6.12 to the reader. The restriction to terms satisfying the freshness

condition is necessary for nominal equivalence being a bisimulation, as demonstrated below:

170 B. Zieliński / A Non-deterministic Multiset Query Language

Example 6.13. Let I be a nominal sort. Let r : I→ Fact, s : I I→ Fact. Define F := r(ıI1)◦r(ıI2).
Consider a DML query Q := ∇[CI(x)]n ◦ [r(y)]? . ({x = y} ⇒ s(x, y)). Let t1 := IQ(F,CI(ı

I

0))
and t2 := IQ(F,CI(ı

I

3)). Term t1 does not satisfy the freshness condition (Definition 6.1). It is

immediate that t1 ≡n t2, t1 →! t3, where t3 := n(s(ıI1, 1) ◦ F,CI(ı
I

2)), but the only normal form of

t2 is t4 := f(F,CI(ı
I

5)) and t3 6≡n t4.

We now define a class of queries Q for whichRdml
Σ,D (Q) is confluent modulo nominal equivalence.

Definition 6.14. Let Q be a DML query. We say that Q has no deletion conflicts if and only if for

each DML subquery ∇P . R of Q, and any subterm f : Fact of R (resp. P) occurring inside []0, P
(resp. R) has no subterm f ′ occurring inside []0, []! or []? such that f and f ′ are unifiable.

Definition 6.15. Let Q be a DML query in Qdml
Σ,D . Q is called deterministic if it has no deletion

conflicts and all quantification patterns in Q (including those inside subterms which are conditions)

contain only single facts with unique matching property (but may contain any number of fresh facts).

In Example 4.14 we shown why multiple facts in patterns lead to non-confluence, and as a result, to

non-deterministic evaluation of conditions (and queries). However, we have not previously considered

deletion conflicts (as they are specific to DML queries). The following example shows why deletion

conflicts can prevent confluence:

Example 6.16. Consider the following DML query:

Q := ∇[f(x)]0 .
(√

⊲ (∇[f(1)]? . h(x))
)

. (30)

Observe that all quantification patterns in Q consist of single facts, but Q does have deletion conflicts

(facts in both patterns are unifiable, and one of them is []0-pattern which has the second one in its

scope). Since the first pattern ([f(x)]0) is semi-terminating but not terminating, to ensure that the

DML query in its scope is success assured it is of the form
√

⊲ .

Now, let F := f(1) ◦ f(2). It is easy to see that executing Q against F removes from F both f -

facts and either adds a single fact h(2) or nothing depending on whether pattern [f(x)]0 first matches

f(2) (which makes it possible for the subquery ∇[f(1)]? . h(x) to succeed then and return h(2)) or

f(1) (which causes all executions of subquery ∇[f(1)]? . h(x) to fail).

The following theorem states that while evaluation of a deterministic DML query is not itself

deterministic, but its results are.

Theorem 6.17. Let Q be a deterministic query in Qdml
Σ,D . ThenRdml

Σ,D (Q) is confluent up to a nominal

equivalence. In particular, given ground multisets of facts F , and of fresh facts Fn, there is a unique

(up to nominal equivalence) term t of the form n(G,Gn) or f(F,Gn) such that IQ(F,Fn)→! t.

Proof:

The only significant difference between the proof of this theorem and Theorem 5.12 is the presence of

deletions and fresh facts. The non-confluence introduced by fresh facts can be absorbed with nominal

equivalence. Since Q has no deletion conflicts, when a DML subquery ∇P . R is executed, neither

B. Zieliński / A Non-deterministic Multiset Query Language 171

deletion of facts through P influences execution of R nor execution of R decreases the pool of facts

available for matching with P . Moreover, if P contains [f]0 for some fact f , then f is the only fact in

P , hence R cannot fail, facts deleted through P are never returned, and [f]0 behaves like [f]?. ⊓⊔

Let us finish this section with the following remark about expressibility of Qdml
Σ,D :

Remark 6.18. A typical formalization of database updates is to use pairs of queries which define facts

to be, respectively, deleted from, and added to the current database. This approach can be emulated

in Qdml
Σ,D , using multiple DML queries executed in a sequence. First, let us extend the signature Σ

with function symbols fd and fa for each fact constructor f . Let Qd and Qa be queries in Qqry
Σ,D

which return sets of facts to be deleted and added, respectively, to the database. We assume that Qd
and Qa contain no subterms of the form fd(~t) or fa(~t). Let Q̂d and Q̂a be the same as Qd and Qa,

respectively, except that all subqueries f(~t) of sort Fact are replaced, respectively, with fd(~t) and

fa(~t). Then to update the database we execute the following DML queries (in this order):

Q̂d, Q̂a, ∇[fd1 (~v1)]? .∇[f1(~v1)]0 .
√
, . . . ,∇[fdm(~vm)]? .∇[fm(~vm)]0 .

√
,

∇[fd1 (~v1)]0 .
√
, . . . ,∇[fdm(~vm)]0 .

√
, ∇[fa1 (~v1)]0 . f1(~v1), . . . ,∇[fam(~vm)]0 . fm(~vm),

where f1, . . . , fm are fact constructors occurring in Qd and Qa. Thus, because of Theorem 5.15 we

can express any relational database update using multiple DML queries in Qdml
Σ,D .

7. Reachability analysis of data-centric business processes

In this section we demonstrate the application of Qdml
Σ,D in specification and analysis of data-centric

business processes. First, we describe a general reachability and simulation framework, and then

devote the rest of the section to an extended example specification.

So far, we have specified the rules for execution of a single DML expression. A business process,

in general, executes a sequence of DML expressions according to some orchestration rules. A simple

example of such rules which we use here, appropriate for a data driven process, is that if a DML

expression can be executed successfully then it can be chosen (non-deterministically) as the next

command to be executed. Usually (c.f., [40]) such data modifying operations are launched in response

to some events, such as user actions which also provide input parameters for the command. In turn,

their execution may trigger further events. Here, taking inspiration from [41, 42], we interpret some

of the facts as triggering events, user input, and output events (we describe this in more detail later as

a part of the example). This simplifies the simulation.

Thus, we specify a business process simply as a finite set Γ of DML expressions inQdml
Σ,D . During

simulation, at each “business step” a DML expression is chosen non-deterministically and is executed.

Unsuccessful execution simply leaves the database of facts unchanged. Alternatively, during reacha-

bility analysis which performs a breadth-first search through all possible evolutions of the process it is

more efficient to make the system stuck on unsuccessful step. This prunes spurious branches in search

tree.

172 B. Zieliński / A Non-deterministic Multiset Query Language

More precisely, a set of DML expressions Γ determines a rewriting system RΣ,D(Γ) defined to be

the union ofRdml
Σ,D (Q)’s, Q ∈ Γ, augmented with two rule schemas

λnew
Q : n(F,Fn)⇒ IQ(F,Fn), λfail

Q : f(F,Fn)⇒ IQ(F,Fn), (31)

for all Q ∈ Γ.

Rule schema λnew
Q chooses non-deterministically a new DML query for execution and rewrites

into an initial state for this query if the execution of the previous one was successful. Similarily, λfail
Q

chooses a new DML query if the execution of the previous one failed. It is important to know that

the failure of a randomly chosen DML expression does not usually mean that the business process

execution is faulty: Instead, it may simply mean that the given DML expression was not applicable at

the moment. Since here the only way to know if the DML expression is applicable is to run it, the rule

λfail
Q is necessary lest the simulation stops prematurely. On the other hand, unsuccessful executions

do not change database state, and thus are spurious, adding no useful information. This is why, when

doing reachability analysis which explores using breadth-first search all possible paths of execution

(in contrast to simulations, where each simulation travels just a single execution path) it is better to

drop the rule λfail
Q .

It is assumed that all DML queries Q ∈ Γ are such that a successful execution of Q consumes

and emits a special fact ♯ (of sort Fact) called a token. The token does not denote any real data,

but rather facilitates a non-deterministic choice of user input. Say, if in the database there were

facts f(a1), f(a2), . . ., where a1, a2, . . . are possible user inputs for some business step, then we

can simulate user choice and execution of further action D(x) (based on this choice and expressed

as DML query with free variable x storing user’s decision) by using the DML expression of the form

∇[♯]0 ◦ [f(x)]? . D(x). If the query wouldn’t match and remove the token then the action D(x) would

be executed for every possible user input. In the example described in this section instead of a constant

token we use tokens ♯ : Nat → Fact parametrized by a natural number. All DML queries consume

a token with a non-zero parameter and emit a token with a parameter decreased by one. This permits

limiting the number of “large business steps”, i.e., executions of DML queries, in the simulation or

search procedure. Rewriting systems such as Maude permit limiting rewriting steps in the search pro-

cedure. However, execution of each DML query can take many rewriting steps, the number of which

is not easy to estimate. Thus, it is not trivial to pass from the number of rewriting steps to the number

of business steps (which are more natural in this context).

Given an initial database F we start reachability analysis from term n(F ◦ ♯(k), Cs1(ıs1m1
) ◦

· · ·Csn(ısnmn
)), where k is the maximal depth of search expressed in the number of business steps,

s1, . . . , sn are nominal sorts for which we need fresh values, and m1, . . . ,mn are such that values ısipi
for pi ≥ mi, i ∈ {1, . . . , n}, do not occur in F . In case of reachability analysis we search for the term

of the form n(F,Fn) where the database F satisfies some condition (either desirable or undesirable

one).

7.1. Example specification

We borrow an example from [28, Appendix C] to demonstrate specification of a business process as

a set of DML expressions in Qdml
Σ,D . The example concerns the process of selecting and advertising

B. Zieliński / A Non-deterministic Multiset Query Language 173

restaurant offers of dinners by employees of mediating agency, and managing corresponding book-

ings. The lifecycles of two key artifact types — Offer and Booking — are presented as finite state

machines in Figure 1. Each agent publishes exactly one restaurant offer — either the new one which

just came or the one which was previously put on hold. The published offer is in the state available.

Agent puts the offer he currently publishes on hold (state onHold) when picking up another offer for

publication. Dashed arrows in Figure 1 indicate that entering a given state by an artifact may trigger

state change in another artifact, e.g., there is a dashed arrow between the available state and the

anonymous transition into onHold state (in a distinct artifact of type Offer). Available offer may get

closed (state closed, or be picked up by a customer (transition newBooking to state beingBooked).

The latter triggers creation of a new Booking artifact. Booking starts with a preliminary phase of

drafting (state drafting) in which the customer chooses dinner hosts (transition addHosts). After

draft submission (which changes the state to submitted) the agent computes price for the offer (tran-

sition determineProposal to state finalized) and the customer decides to either accept or reject

the proposal transitioning, respectively, to the accepted or canceled state. The acceptance may in

some cases go through toBeValidated state when additional validation is necessary.

onHold available closed

beingBooked

newOffer

resume

closeOffer

newBookingO
ff

er

drafting

addHosts

canceled accepted

submitted finalized toBeValidated

submit cancel confirm
reject

determineProposal accept2

accept1

reject2

B
o
o
k

in
g

Figure 1. Lifecycles of Offer and Booking artifacts presented as finite state machines [28, Figure 5] (see also

[43, Figure 5])

States of offers and bookings are constants of sorts OState and BState, respectively, named

like in Figure 1. We use the following nominal sorts for identifiers: Rest for restaurants; Person

for customers, agents and hosts; Offer, Book and Url for offers, bookings, and url’s of finalized

proposals, respectively. For facts we use the following constructors:

Rest : Rest→ Fact, Agent, Cust : Person→ Fact,

Offer : Offer OState Rest Person→ Fact, Book : Book BState Offer Person→ Fact,

Host : Book Person→ Fact, Prop : Book Url→ Fact.

where facts Rest(r), Agent(a), Cust(c) indicate that r, a, and c are, respectively, identifiers of a

registered restaurant, agent, and customer. Offer(o, s, r, a) means that an offer o in a state s for a

restaurant r is managed by an agent a. Book(b, s, o, c) means that booking b in a state s for a customer

174 B. Zieliński / A Non-deterministic Multiset Query Language

c is related to an offer o. A fact Host(b, p) indicates that a person p is included as a host for booking b.
Finally, Prop(b, u) indicates that finalized proposal for booking b, with details and prices, is available

at the url u.

We now specify selected transitions from Figure 1 in detail. Transition newOffer responsible for

creation of new offers is implemented with the following DML query:

∇[♯(s(n))]0 ◦ [COffer(o)]n ◦ [Agent(a)]? ◦ [Rest(r)]! .
(

∀ [Offer(o′, beingBooked, r′, a)]? . ⊥
)

⇒
(

O(o, available, r, a) ⊲
(

∇[O(o′, available, r′, a)]0 . O(o′, onHold, r′, a)
)

⊲ ♯(n)
)

.

Above, s : Nat → Nat denotes the successor function. We assume that each DML query is exe-

cuted against a database in which there is exactly one token matching ♯(s(n)), i.e., a token holding

a number greater than zero. Thus, in the above, we first choose a single fresh offer identifier, and,

non-deterministically, a single registered agent and a single restaurant. The token is marked with []0,

so it is removed from the database after matching (this guarantees that we choose no more than one

agent, restaurant, and offer identifier). The query emits back a token with a number decreased by 1

ensuring the possibility (if this number is greater than zero) of executing a next query. The restaurant

can be arbitrary (as long as it is registered in the system), however the agent must not manage an offer

being booked, as described by the deterministic condition

∀[O(o′, beingBooked, r′, a)]? . ⊥

inside the above DML query. If this condition is not satisfied, the quantifier step fails, the token is

returned to the database and a new matching is tried. Since Agent(a) is marked by []?, we do not

try the same agent again. If the correct matching is found, a fact describing new offer is added to the

database. We also change the state of any available offer managed by the agent of the new offer to

onHold.

An offer which was put on hold, may be resumed by any agent who is not managing an offer which

is currently being booked. Agent resuming an offer becomes the new manager of the offer:

∇[♯(s(n)) ◦ Offer(o, onHold, r, a)]0 ◦ [Agent(a′)]? .
(

∀ [Offer(o′, beingBooked, r′, a′)]? . ⊥
)

⇒
(

♯(n)⊲ Offer(o, available, r, a′)

⊲

(

∇[Offer(o′, available, r′, a′)]0 . Offer(o′, onHold, r′, a′)
))

.

With the newBooking transition some offer o changes state from available to beingBooked).

It also triggers creation of a new booking (with a fresh identifier) in the drafting state for the chosen

offer o on behalf of some registered customer:

∇[♯(s(n)) ◦ Offer(o, available, r, a)]0 ◦ [CBook(b)]n ◦ [Cust(c)]!
.
(

Offer(o, beingBooked, r, a) ⊲ Book(b, drafting, o, c) ⊲ ♯(n)
)

.

The customer involved in booking can add dinner hosts one by one (see transition addHosts in

Figure 1) as long as the booking is in the drafting stage. The added host can be either fresh or be

B. Zieliński / A Non-deterministic Multiset Query Language 175

present in the database as a host for another offer. We use separate DML queries for each of those

cases. The first case (of a fresh host) is trivial:

∇[♯(s(n))]0 ◦ [CPerson(h)]n ◦ [Book(b, drafting, o, c)]! .
(

♯(n)⊲ Host(b, h)
)

.

In the second case we have to ensure that we are not adding the same person twice:

∇[♯(s(n))]0◦[Book(b, drafting, o, c)]!◦[Host(b′, h)]?.
(

(∀ [Host(b, h)]?.⊥)⇒ (♯(n)⊲Host(b, h))
)

.

The submit action simply changes the state of the booking from drafting to submitted. Then,

if the customer’s customized booking is infeasible, it can be rejected (reject transition in Figure 1,

the implementation of which we omit for brevity’s sake). Otherwise, the final proposal (which includes

cost, etc.) to the customer who owns the booking is created (transition determineProposal in

Figure 1). The preparation of the proposal is abstracted as (1) creating the fresh url to the proposal,

and (2) removing information about hosts (which is available at the new url). As before, we pick the

booking non-deterministically using the token and appropriate pattern:

∇[♯(s(n)) ◦ Book(b, submitted, o, c)]0 ◦ [CUrl(u)]n.
(

Prop(b, u)⊲ Book(b, finalized, o, c) ⊲
(

∇[Host(b, h)]0 .
√)

⊲ ♯(n)
)

.

A finalized booking proposal for a restaurant r can be accepted either immediately (with accept1)

or after an additional confirmation (with accept2). The first case applies only to golden customers of

a given restaurant r, i.e., those who successfully booked a dinner in r at least k-times, for some fixed

k. Accepting a proposal changes the state of the offer to which the booking belongs to closed:

∇[♯(s(n)) ◦ Book(b, finalized, o, c) ◦ Offer(o, beingBooked, r, a)]0 ◦ [Cust(c)]?.
(

∃ [Offer(o1, closed, r, a1) ◦B(b1, accepted, o1, c)

◦ · · · ◦ Offer(ok, closed, r, ak) ◦ Book(bk, accepted, ok, c)]? .⊤
)

⇒
(

Book(b, accepted, o, c) ⊲ Offer(o, closed, r, a) ⊲ ♯(n)
)

.

Remark 7.1. In our earlier work [15] we have used the almost same example (with minor modifi-

cations) to illustrate an alternative formalism (c.f. Section 1.1 in the current paper) where queries,

also implemented in the rewriting system, but using meta-level features, are deterministic. This makes

them behave like a classical queries, but because of determinism it is not possible to simulate user

input directly. Instead, a separate mechanism had to be introduced to simulate non-deterministic input

choice. Secondly, DML expressions in [15] did not add or, more importantly, delete facts from the

database directly. Instead, they return pairs (which need to be specified in the DML expression itself)

of (multi)sets of facts: those to be deleted and those to be added. However, in this particular example

(and we believe it is typical) facts to be deleted are matched by parts of the patterns in the query.

This (in [15]) led to code duplication, and suggested natural use of rewriting rules (which, of course,

replaces matched subterms), and ultimately led to the formalism described in this paper.

Remark 7.2. We have implemented both the syntax and semantics ofQCnd

Σ,D andQDml

Σ,D in Maude [44].

The implementation is available on the project’s website [45]. To test the implementation we have

176 B. Zieliński / A Non-deterministic Multiset Query Language

used specification of the business process described above (also available from [45]). The specification

compiles into a Maude’s system module which contains definitions of 196 operators, 285 equations

and 83 rewriting rules (in actual implementation we used equations in place of deterministic rewriting

rules).

Let us now describe a simple example of a reachability analysis with the specification just de-

scribed. Let

initDB := agent(a1) ◦ agent(a2) ◦ cust(c1) ◦ cust(c2) ◦ rest(r1) ◦ rest(r2) ◦ ♯(7)

be an initial database of facts. Let

initDBN := C(ıOffer0) ◦ C(ıBook0) ◦ C(ıUrl0) ◦ C(ıPerson0)

be an initial multiset of fresh facts. Finally, let

initState := n(initDB, initDBN)

be an initial state. Note that since the token is parametrized by 7, it follows that we can make at

most seven successful business steps from this state. We are interested in checking if we can reach

from initState (in no more than 7 business steps) the state in which there exists a closed offer (and

accepted associated booking) from the database with no bookings and offers. Formally, we want to

reach the state matching

n(F ◦ Offer(o1, closed, r1, a1) ◦ Book(b1, accepted, o1, c1), Fn).

Using our implementation [45] we can easily check that a matching state is indeed reachable in 6

business steps (Maude reported 525165 actual rewritings in 2528ms).

8. Conclusion

We have presented a multiset non-deterministic query and data manipulation language QΣ,D based

on conditional term rewriting. The intended application of this language is in specification, simula-

tion and reachability analysis of data-centric business processes. However, the remarkable features of

QΣ,D, particularly non-determinism and non-standard approach to variable binding, make it interest-

ing on its own. We show that non-determinism of queries is useful for simulating user choices, but

we also provide easily identifiable syntactic restrictions which ensure uniqueness of query results. In-

terestingly, this non-determinism leads to bisimulation-like definitions of logical equivalence between

formulas. In the last section we demonstrated how sets of DML queries can be used to specify a

business process and we provide a simple framework for simulation and testing.

QΣ,D is a multiset query language. Most formal query languages, including relational calculus

and algebra, are based on sets. One under-appreciated fact is that SQL is really a multiset query

language, and for a very good reason — removing duplicates is expensive. While this was not our

primary reason to use multisets, we believe that using multiset languages encourages query design

B. Zieliński / A Non-deterministic Multiset Query Language 177

which avoids unnecessary expensive operations, and takes the complexity of query execution into

account better than set-based languages.

The fact that closed QΣ,D formulas are compiled to rewriting systems permits their symbolic

execution using narrowing [16]. We intend to explore this possibility in future research. This is also

one of the reasons why it was important to limit the use of conditional rules as much as possible: many

implementations of narrowing (see e.g., [46]) do not permit narrowing with conditions.

We have implemented Qcnd
Σ,D, Qdml

Σ,D and a specification framework extending the one described

at the beginning of Section 7 in Maude [46]. The implementation is available from [45]. It differs in

non-essential way from the one described in the present paper, but the code is extensively documented.

Acknowledgements

The author is grateful to the anonymous reviewers for their helpful remarks

References

[1] Hull R. Artifact-Centric Business Process Models: Brief Survey of Research Results and Challenges. In:

Meersman R, Tari Z (eds.), On the Move to Meaningful Internet Systems: OTM 2008. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008 pp. 1152–1163. doi:10.1007/978-3-540-88873-4 17.

[2] Calvanese D, De Giacomo G, Montali M. Foundations of Data-aware Process Analysis: A Database The-

ory Perspective. In: Proceedings of the 32Nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, PODS ’13. ACM, New York, NY, USA, 2013 pp. 1–12. doi:10.1145/2463664.

2467796.

[3] van der Aalst WM. The application of Petri nets to workflow management. Journal of circuits, systems,

and computers, 1998. 8(01):21–66. doi:10.1142/S0218126698000043.

[4] van der Aalst WM, Ter Hofstede AH. YAWL: yet another workflow language. Information systems, 2005.

30(4):245–275. doi:10.1016/j.is.2004.02.002.

[5] Rosa-Velardo F, de Frutos-Escrig D. Decidability and complexity of Petri nets with unordered data. The-

oretical Computer Science, 2011. 412(34):4439–4451.

[6] Lasota S. Decidability border for Petri nets with data: WQO dichotomy conjecture. In: Interna-

tional Conference on Application and Theory of Petri Nets and Concurrency. Springer, 2016 pp. 20–36.

doi:10.1007/978-3-319-39086-4 3.

[7] Montali M, Rivkin A. Model checking Petri nets with names using data-centric dynamic systems. Formal

Aspects of Computing, 2016. 28(4):615–641. doi:10.1007/s00165-016-0370-6.

[8] Montali M, Rivkin A. DB-Nets: On the Marriage of Colored Petri Nets and Relational Databases. In:

Transactions on Petri Nets and Other Models of Concurrency XII. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2017 pp. 91–118. doi:10.1007/978-3-662-55862-1 5.

[9] Montali M, Rivkin A. From DB-nets to Coloured Petri Nets with Priorities. In: International Conference

on Applications and Theory of Petri Nets and Concurrency. Springer, 2019 pp. 449–469. doi:10.1007/978-

3-030-21571-2 24.

[10] Meseguer J. Conditional rewriting logic as a unified model of concurrency. Theoretical computer science,

1992. 96(1):73–155. doi:10.1016/0304-3975(92)90182-F.

178 B. Zieliński / A Non-deterministic Multiset Query Language

[11] Meseguer J, Rosu G. The rewriting logic semantics project. Theoretical Computer Science, 2007.

373(3):213 – 237. doi:10.1016/j.tcs.2006.12.018.

[12] Stehr MO, Meseguer J, Ölveczky PC. Rewriting Logic as a Unifying Framework for Petri Nets. In:

Unifying Petri Nets: Advances in Petri Nets. Springer Berlin Heidelberg, Berlin, Heidelberg, 2001 pp.

250–303. doi:10.1007/3-540-45541-8 9.

[13] Padberg J, Schulz A. Model Checking Reconfigurable Petri Nets with Maude. In: Echahed R, Minas

M (eds.), Graph Transformation. Springer International Publishing, Cham, 2016 pp. 54–70. doi:10.1007/

978-3-319-40530-8 4.

[14] Kheldoun A, Barkaoui K, Ioualalen M. Formal verification of complex business processes based on high-

level Petri nets. Information Sciences, 2017. 385:39–54. doi:10.1016/j.ins.2016.12.044.

[15] Zieliński B. A Query Language Based on Term Matching and Rewriting. Fundamenta Informaticae,

2019. 169:237–274. doi:10.3233/FI-2019-1845.

[16] Meseguer J, Thati P. Symbolic reachability analysis using narrowing and its application to verification

of cryptographic protocols. Higher-Order and Symbolic Computation, 2007. 20(1-2):123–160. doi:

10.1007/s10990-007-9000-6.

[17] Fay M. First-order unification in an equational theory. In: Proceedings of the 4th Workshop on Automated

Deduction, Austin, Texas, 1979.

[18] Hullot JM. Canonical forms and unification. In: International Conference on Automated Deduction.

Springer, 1980 pp. 318–334. doi:10.1007/3-540-10009-1 25.

[19] Alpuente M, Escobar S, Iborra J. Termination of narrowing revisited. Theoretical Computer Science,

2009. 410(46):4608–4625. doi:10.1016/j.tcs.2009.07.037.

[20] Zieliński B, Maślanka P. Relational Transition System in Maude. In: Beyond Databases, Architec-

tures and Structures. Towards Efficient Solutions for Data Analysis and Knowledge Representation: 13th

International Conference, BDAS 2017, Ustroń, Poland, May 30 - June 2, 2017, Proceedings. Springer

International Publishing, Cham, 2017 pp. 497–511. doi:10.1007/978-3-319-58274-0 39.

[21] Roşu G, Ellison C, Schulte W. Matching Logic: An Alternative to Hoare/Floyd Logic. In: Algebraic

Methodology and Software Technology. Springer Berlin Heidelberg, Berlin, Heidelberg, 2011 pp. 142–

162. doi:10.1007/978-3-642-17796-5 9.

[22] Roşu G. Matching logic. arXiv:1705.06312, 2017.

[23] Stehr MO. CINNI-A Generic Calculus of Explicit Substitutions and its Application to λ-ς-and π-

Calculi. Electronic Notes in Theoretical Computer Science, 2000. 36:70–92. doi:10.1016/S1571-0661(05)

80125-2.

[24] Baader F. The description logic handbook: Theory, implementation and applications. Cambridge Univer-

sity Press, New York, NY, USA, 2003. ISBN:0-521-78176-0.

[25] De Giacomo G, De Masellis R, Rosati R. Verification of conjunctive artifact-centric services. International

Journal of Cooperative Information Systems, 2012. 21(02):111–139. doi:10.1142/S0218843012500025.

[26] Hariri BB, Calvanese D, De Giacomo G, De Masellis R, Felli P. Foundations of relational artifacts ver-

ification. In: International Conference on Business Process Management. Springer, 2011 pp. 379–395.

doi:10.1007/978-3-642-23059-2 28.

B. Zieliński / A Non-deterministic Multiset Query Language 179

[27] Calvanese D, Montali M, Patrizi F, De Giacomo G. Description logic based dynamic systems: modeling,

verification, and synthesis. In: Proceedings of the 24th International Conference on Artificial Intelligence.

AAAI Press, 2015 pp. 4247–4253.

[28] Abdulla PA, Aiswarya C, Atig MF, Montali M, Rezine O. Recency-Bounded Verification of Dynamic

Database-Driven Systems. In: Proceedings of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium

on Principles of Database Systems, PODS ’16. ACM, New York, NY, USA, 2016 pp. 195–210. doi:

10.1145/2902251.2902300.

[29] Chen-Burger YH, Robertson D. Automating business modelling: a guide to using logic to represent infor-

mal methods and support reasoning. Springer Science & Business Media, 2006. doi:10.1007/b138799.

[30] Merouani H, Mokhati F, Seridi-Bouchelaghem H. Formalizing Artifact-Centric Business Processes - To-

wards a Conformance Testing Approach. In: Proceedings of the 16th International Conference on Enter-

prise Information Systems. 2014 pp. 368–374. doi:10.5220/0004951803680374.

[31] McCarthy J, Hayes PJ. Some philosophical problems from the standpoint of artificial intelligence. Read-

ings in artificial intelligence, 1969. pp. 431–450.

[32] Deutsch A, Li Y, Vianu V. Verifas: a practical verifier for artifact systems. Proceedings of the VLDB

Endowment, 2017. 11(3):283–296. doi:10.14778/3157794.3157798.

[33] Deutsch A, Li Y, Vianu V. Verification of hierarchical artifact systems. ACM Transactions on Database

Systems (TODS), 2019. 44(3):1–68. doi:10.1145/3321487.

[34] Calvanese D, Ghilardi S, Gianola A, Montali M, Rivkin A. Formal modeling and SMT-based parameter-

ized verification of data-aware BPMN. In: International Conference on Business Process Management.

Springer, 2019 pp. 157–175. doi:10.1007/978-3-030-26619-6 12.

[35] Seco JC, Debois S, Hildebrandt T, Slaats T. RESEDA: Declaring live event-driven computations as RE-

active SEmi-structured DAta. In: 2018 IEEE 22nd International enterprise distributed object computing

conference (EDOC). IEEE, 2018 pp. 75–84. doi:10.1109/EDOC.2018.00020.

[36] Meseguer J. Membership algebra as a logical framework for equational specification. In: Recent Trends

in Algebraic Development Techniques. Springer Berlin Heidelberg, Berlin, Heidelberg, 1998 pp. 18–61.

doi:10.1007/3-540-64299-4 26.

[37] Huet G. Confluent reductions: Abstract properties and applications to term rewriting systems: Abstract

properties and applications to term rewriting systems. Journal of the ACM (JACM), 1980. 27(4):797–821.

[38] Thielscher M. Introduction to the Fluent Calculus. Electronic Transactions on Artificial Intelligence,

1998. 2(3-4):179–192.

[39] Ochremiak J. Nominal sets over algebraic atoms. In: International Conference on Relational and Algebraic

Methods in Computer Science. Springer, 2014 pp. 429–445. doi:10.1007/978-3-319-06251-8 26.

[40] Hull R, Damaggio E, De Masellis R, Fournier F, Gupta M, Heath III FT, Hobson S, Linehan M, Maradugu

S, Nigam A, et al. Business artifacts with guard-stage-milestone lifecycles: managing artifact interactions

with conditions and events. In: Proceedings of the 5th ACM international conference on Distributed

event-based system. ACM, 2011 pp. 51–62. doi:10.1145/2002259.2002270.

[41] Abiteboul S, Vianu V, Fordham B, Yesha Y. Relational Transducers for Electronic Commerce. In: Pro-

ceedings of the Seventeenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database

Systems, PODS ’98. ACM, New York, NY, USA. ISBN 0-89791-996-3, 1998 pp. 179–187. doi:

10.1145/275487.275507.

180 B. Zieliński / A Non-deterministic Multiset Query Language

[42] Abiteboul S, Vianu V, Fordham B, Yesha Y. Relational transducers for electronic commerce. Journal of

Computer and System Sciences, 2000. 61(2):236–269. doi:10.1006/jcss.2000.1708.

[43] Abdulla PA, Aiswarya C, Atig MF, Montali M, Rezine O. Recency-bounded verification of dynamic

database-driven systems (extended version). arXiv preprint arXiv:1604.03413, 2016.

[44] Clavel M, Durán F, Eker S, Lincoln P, Martı́-Oliet N, Meseguer J, Talcott C. The Maude 2.0 System. In:

Nieuwenhuis R (ed.), Rewriting Techniques and Applications (RTA 2003), number 2706 in Lecture Notes

in Computer Science. Springer-Verlag, 2003 pp. 76–87. doi:10.1007/3-540-44881-0 7.

[45] Zieliński B. Nondeterministic Rewriting Query Language (NDRQL). Project website,

http://ki.wfi.uni.lodz.pl/ndrql/.

[46] Clavel M, Duràn F, Eker S, Escobar S, Lincoln P, Martı̀-Oliet N, Meseguer J, Talcott C. Maude Manual

(Version 2.7.1), 2016.

	1 Introduction
	1.1 Prior work
	1.2 Preliminaries on term rewriting

	2 Multisets of facts, fresh facts and patterns
	3 Query and condition languages
	3.1 Conditions
	3.2 Syntax of queries and DML queries

	4 Rewriting semantics of Q, Dcnd
	5 Rewriting semantics of Q, Dqry
	6 Rewriting semantics of Q, Ddml
	7 Reachability analysis of data-centric business processes
	7.1 Example specification

	8 Conclusion

