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Abstract. This paper presents method for obtaining high-degree compression functions using

natural symmetries in a given model of an elliptic curve. Such symmetries may be found using

symmetry of involution [−1] and symmetry of translation morphism τT = P + T , where T is

the n-torsion point which naturally belongs to the E(K) for a given elliptic curve model. We will

study alternative models of elliptic curves with points of order 2 and 4, and specifically Huff’s

curves and the Hessian family of elliptic curves (like Hessian, twisted Hessian and generalized

Hessian curves) with a point of order 3. We bring up some known compression functions on those

models and present new ones as well. For (almost) every presented compression function, differ-

ential addition and point doubling formulas are shown. As in the case of high-degree compression

functions manual investigation of differential addition and doubling formulas is very difficult, we

came up with a Magma program which relies on the Gröbner basis. We prove that if for a model

E of an elliptic curve exists an isomorphism φ : E → EM , where EM is the Montgomery curve

and for any P ∈ E(K) holds that φ(P ) = (φx(P ), φy(P )), then for a model E one may find

compression function of degree 2. Moreover, one may find, defined for this compression function,

differential addition and doubling formulas of the same efficiency as Montgomery’s. However, it

seems that for the family of elliptic curves having a natural point of order 3, compression func-

tions of the same efficiency do not exist.
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1. Introduction

Elliptic curve cryptography has been evolving over the years. Classical elliptic curve cryptography

(ECC) algorithms, such as ECDH, have been replaced by the isogeny-based cryptography algorithms,

such as SIDH [1], SIKE [2] and CSIDH [3]. Isogeny-based cryptography is believed to be resistant

to attacks by quantum computers, unlike classical solutions. It is worth noteing, that although many

current ECC notions differ from those relied upon years ago, x-line arithmetic proposed by Peter

L. Montgomery in [4] is still widely used, especially in isogeny-based cryptography. For example,

in SIKE reference implementation, x-line arithmetic on Montgomery curves is applied, using XZ
coordinates.

Over the last 20 years, numerous alternative elliptic curves models have been proposed, e.g. Ed-

wards [5], [6], twisted Edwards [7], Hessian [8], twisted Hessian [9], generalized Hessian [10], Huff’s

and generalized Huff’s [11] curves, and many others. However, efficient x-line arithmetic has not

been proposed for all of these alternative elliptic curves models.

The more general concept of x-line arithmetic, especially in application to elliptic curves cryp-

tography is compression function, which is described in details in Section 2. In general, compression

functions are well-known methods of obtaining shorter representation of elements used in many cryp-

tographic applications. The basic example is representation of point on Weierstrass curve or Mont-

gomery curve using only its x-coordinate. What is important, this concept may be extended to other,

alternative models of elliptic curves, as same as for representation of finite fields elements. It is worth

noting that in XTR [12] algorithm, instead of using full representation of element h ∈ Fp6 from sub-

group of order p2 − p + 1, it is enough to use the trace Tr(h) which is defined over Fp2 . Nowadays,

the most important application of compression functions is using them in isogeny-based cryptography,

especially in SIDH [13], SIKE [14], application of Velusqrt [15] method to CSIDH, CSURF and other

algorithms.

The role that symmetries on elliptic curves play in the efficiency of their arithmetics has been widely

discussed e.g. in [16] and [17]. Kohel noticed in [17] that symmetries obtained by an automorphism

group {[±1]} and translation by the specific points of proper order have impact on the efficiency of

addition law. He gave Hessian and Edwards curves as the most representative examples here.

In [17], Kohel was studying symmetric quartic models over binary fields with a rational 4-torsion

point T . According to [17], a genus 1 curve admits translations by rational points and translation

morphism τT = P + T on curve E is projectively linear (induced by a linear transformation of the

ambient projective space), iff E is a degree n model determined by a complete linear system in P
n−1

and T is in the n-torsion subgroup.

In this paper, we use these ideas to identify new compression functions of high degree (> 2)

especially for Huff’s curves, generalized Hessian and Hessian curves. The compression functions for

which we are looking are invariant on the action of involution and translation by specific point T of

order n, meaning that for compression function of degree f2n(P ) = f2n(Q) holds iffQ = ±P+[k]T ,

for k = 0, n − 1.

In the case of Huff’s curves, where EHu/K : ax(y2 − 1) = by(x2 − 1), we will study their

arithmetics using a high-degree point compression. Compression function f of order 4 is obtained by

using symmetry given by point (a : b : 0) of order 2. A compression function of order 8 is obtained
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by using symmetry given by three points of order 2: (a : b : 0), (1 : 0 : 0) and (0 : 1 : 0). Finally, a

compression function of degree 16 is obtained by using three 2-torsion points (a : b : 0), (1 : 0 : 0)
and (0 : 1 : 0), as well as one point of order 4 of the form (±1 : ±1 : 1). Let us note that compression

functions of different degrees were obtained by Farashahi and Hosseini in [18], where also translations

τT by a proper point of order 2 and 4 were used in the case of twisted Edwards curves.

In the case of generalized Hessian curves, given by EGH : x3 + y3 + a = dxy, we will study

the arithmetics of these curves using a point compression of degree 6, with this compression function

obtained by using symmetry given by a 3-torsion point (1 : −ω : 0).

In the case of Hessian curves, given by EGH : x3 + y3 + 1 = dxy, we will study the arithmetics

of these curves using a point compression of degree 18, with this compression function obtained by

using symmetry given by two 3-torsion points (1 : −ω : 0) and (−ω : 0 : 1). More details about this

approach will be presented in subsection 4.3.

In [19] a method for automating the process of searching for doubling and differential addition

formulas for compression functions of order 2 is presented. This method uses the Gröbner basis

mechanism. Because in the case of high-degree compression functions manual investigations iden-

tyfying differential and doubling formulas are very difficult, we modified the ideas from [19] and

implemented a Magma program, which may be used to search for differential addition and doubling

formulas also in the case of compression functions of a degree higher than 2. The method of searching

for convenient formulas may be very memory-consuming. It was necessary to use a computer with

384 GB of RAM to find such a formula in some cases.

Finally, we prove that if for a model E of an elliptic curve exists an isomorphism φ : E → EM ,

where EM is the Montgomery curve and for any P ∈ E(K) holds that φ(P ) = (φx(P ), φy(P )), then

for a model E one may find a compression function of degree 2 and, defined for this compression

function, differential addition and doubling formulas, respectively, A and D of the same efficiency (in

the whole paper, by the efficiency, we mean computational efficiency, which is the required number of

elementary operations) as Montgomery’s. However, such compression functions of degree 2 may be

sometimes complicated, as same as constants appearing in differential addition and doubling formulas

and therefore may be not optimal for all applications.

Basing on this theorem we also affirm, that for a family of elliptic curves having natural point of

order 3, e.g. Hessian, twisted Hessian and generalized Hessian curves, obtaining formulas of the same

or similar efficiency as for the Montgomery curve is impossible, because there do not exist natural

isomorphisms from these curves to the Montgomery curve.

2. Compression functions

In this section we provide basic facts on doubling, differential addition and point recovery. We also

describe a method based on the Gröbner bases from [19], with modifications for searching for formulas

concerning high-degree compression functions. This method was used, in Magma, to search for the

formulas given in the following sections (for an introduction to the Gröbner bases theory, see [20] or

[21]).

Peter Montgomery [4] gave some efficient and simple formulas for point doubling and differential

addition after compression on elliptic curves By2 = x3 +Ax2 + x. These formulas may be given for
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any model of an elliptic curve. Let E be an elliptic curve over a field K. In such a case a function

f : E → K for which holds that f(P ) = f(Q) iff Q = ±P for all P ∈ E is called a degree

2 compression function. We have induced point multiplication of values f(P ) given by [n]f(P ) =
f([n]P ) for n ∈ Z. There exist rational functions doubling D(x) ∈ K(x) and differential additions

A1(x, y), A2(x, y) ∈ K(x, y) after compression such that

f([2]P ) = D(f(P )), (1)

f(P +Q) + f(P −Q) = A1(f(P ), f(Q)), (2)

f(P +Q)f(P −Q) = A2(f(P ), f(Q)). (3)

These properties allow to compute, after compression, [n]f(P ) using the Montgomery ladder algo-

rithm. We may adopt A(x, y, z) = A1(x, y)) − z or A(x, y, z) = A2(x, y)/z in this algorithm.

Algorithm 1: The Montgomery ladder

Input: f(P ) and the binary expansion of n = (nk, . . . , n0)2
Output: [n]f(P )
x1 := f(P ); x2 := [2]x1;

for i = k − 1, . . . , 0 do

if ni = 1 then
x1 := A(x1, x2, f(P ));
x2 := D(x2);

else
x2 := A(x1, x2, f(P ));
x1 := D(x1);

end

end

return x1;

Formulas for doubling and differential addition were given for standard models of elliptic curves:

Montgomery, Weierstrass, Edwards, Hessian, Jacobi quartic, and Huff’s curves.

One may also consider compressions of higher degrees. In general, the degree of compression

function g is the number of different elements Q = ±P + [k]T , for k = 0, n− 1 and T being point

of order n, for which equation g(P ) = g(Q) holds for every P ∈ E(K) \ S. Set S contains points of

order 2 and points of order n from subgroup 〈T 〉. In this case the degree of compression function g is

equal to 2n. It is worth noting that the degree of compression function is always even.

For a function g : E → K, there exist rational functions D(x) ∈ K(x) and A(x, y, z) ∈ K(x, y, z)
such that g([2]P ) = D(g(P )) and g(P + Q) = A(g(P ), g(Q), g(P − Q)) for generic points on E,

then we have induced multiplication [n]g(P ) = g([n]P ) for n ∈ N which may be computed using the

Montgomery ladder algorithm (see also [10, Sec.5.4]). Note that multiplication [n]g(P ) = g([n]P )
is independent of choosing a point P which may be checked by induction on n. Let g(P ) = g(P ′).
For doubling, we have g([2]P ) = D(g(P )) = D(g(P ′)) = g([2]P ′). Let us assume that for each

0 ≤ k ≤ n we have g([k]P ) = g([k]P ′), then we have g([n + 1]P ) = A(g([n]P ), g(P ), g([n −
1]P )) = A(g([n]P ′), g(P ′), g([n − 1]P ′)) = g([n + 1]P ′).
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In section 2.2, we remind, from [19], a method (with some modifications) used to search for func-

tions D,A1, A2 for compressions g of degrees ≥ 2, which method was used in [19] for compressions

of degree 2.

Compressions of higher degrees were given for Edwards [18] and Jacobi quartic [22] curves.

Natural examples of low-order subgroups are known for Edwards, Hessian, Huff’s, and Jacobi quartic

elliptic curves. Given a subgroup G in the generic model of an elliptic curve, one may try to obtain

compression g of degree 2|G| such that g(±P +G) = g(P ) for each P ∈ E.

Now will be presented approach to searching for compression functions of degree > 2.

2.1. Compression functions of high degree using symmetries on elliptic curves

In this subsection a method for obtaining compression functions of high degree using natural symme-

tries on a given model of an elliptic curve will be presented.

At first, let us consider translation τT : E → E, τT (P ) = P + T for a certain chosen point

T ∈ E(K) of order n. We will be searching for the compression function f2n of degree 2n which

is invariant under involution and translation by T . This means that f2n(P ) = f2n (Q) iff Q =
±P + [k]T , for k = 0, n − 1.

Proposition 1. Let us note, that such a function may be easily found for a certain model E of an

elliptic curve if three conditions hold:

• involution [−1]P is projectively linear, which means that if P = (X : Y : Z), then [−1]P =
(α1X + β1Y + γ1Z : α2X + β2Y + γ2Z : α3X + β3Y + γ3Z) for some constant αi, βi, γi ∈
K, i = 1, 3,

• point T of order n naturally belongs to E(K),

• translation τT : E → E : τ(P ) = P + T is also projectively linear.

This approach, using symmetries of involution and translation, will be used for obtaining efficient

compression functions on Edwards, Huff’s and Hessian family of elliptic curves in section 4.

Remark 2. Using the approach presented in Proposition 1, the process of searching for a compression

function of a high degree should consist of the following steps:

1. at first, use the point addition formula and find equations for τT = P + T , where T ∈ E(K) is

point of order n and P is any point in E(K),

2. check if equation for τT is projectively linear,

3. let us try to find a compression function of degree 2n using the character of τT .

Remark 3. Let us know that if on an elliptic curve E there is a point T ∈ E(K) of order n, then one

can always construct compression function of degree 2n [23]. It is possible by constructing an isogeny

ψ : E → E/〈nT 〉. Then a compression function of degree 2n may be obtained using a compression

function of degree 2 and finally f2n(P ) = f2(ψ(P )). Even though, compression functions of degree

2n constructed in this way may be not so efficient.
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2.2. Algorithms to determine formulas used in the compression

In the case of function g : E → K , formulas (1), (2), (3) may be searched for using the method from

[19], with some small modifications. Assume for simplicity that E is contained in P
2 and is given by

the equation E : w(x, y) = 0 in K2 for w(x, y) ∈ K[x, y].

Let us assume that we indent to check if there exists a formula for doubling D ∈ K(x) satisfying

D(g(x, y)) = g([2](x, y)) (4)

on E, where D(x) = D1(x)
D2(x)

, D1,D2 ∈ K[x] are polynomials of degrees d1, d2 at most, respectively,

for fixed bounds di. Let D1 =
∑

α≤d1
aαx

α and D2 =
∑

β≤d2
bβx

β , with unknown coefficients

aα, bβ . We may write D(g(x, y)) = v1(x,y)
v2(x,y)

, where v1, v2 are polynomials in x, y, whose coefficients

contain aα, bβ of degree one. Writing g([2](x, y)) = u1(x,y)
u2(x,y)

, where u1, u2 ∈ K[x, y], we intend to

determine the values of aα, bβ such that v1u2 − v2u1 ∈ (w), which is equivalent to (4). Since v1u2 −
v2u1 contains aα, bβ of degree one, the normal form N(v1u2 − v2u1) with respect to the ideal (w)
contains aα, bβ also of degree one. Hence, in order to determine aα, bβ for whichN(v1u2−v2u1) = 0,

we need to solve a system of linear equations when coefficients depending on aα, bβ of the normal

form are zero.

Let us assume that we intend to determine a function A2(x, y) ∈ K(x, y) such that

g((x1, y1) + (x1, y1))g((x1, y1)− (x2, y2)) = A2(g(x1, y1), g(x2, y2)) (5)

on E × E. Let wi = w(xi, yi) for i = 1, 2. Let A2 = u1(x,y)
u2(x,y)

, where u1 =
∑

|α |≤d1
aαx

α1yα2 ,

α = (α1, α2) ∈ N
2, |α | = α1+α2, and, similarly u2 =

∑

| β |≤d2
bβx

β1yβ2 for given bounds

concerning degrees d1, d2 ∈ N.

Similarly as above, we may write A2(g(x1, y1), g(x2, y2)) = v1
v2

, where v1, v2 are polynomi-

als in x, y, which contain unknown coefficients aα, bβ of degree at most one. Writing g((x1, y1) +
(x1, y1))g((x1, y1) − (x2, y2)) = g1

g2
, where g1, g2 ∈ K[x, y] we intend to determine the values of

aα, bβ such that g1v2 − g2v1 belongs to the ideal I = (w1, w2), so the normal form N(g1v2 − g2v1)
with respect to I is equal to 0. Similarly as above, this leads to the system of linear equations with

respect to aα, bβ .

3. Alternative models of elliptic curves

In this section alternative models of elliptic curves will be briefly discussed.

3.1. Edwards curves

Definition 4. The Edwards curve EEd over a field K is given by the equation [6]

EEd/K : x2 + y2 = 1 + dx2y2, (6)

where d 6∈ {0, 1}.
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The sum of points P = (x1, y1) and Q = (x2, y2) on EEd is given by following formula:

P +Q =

(

x1y2 + y1x2
1 + dx1x2y1y2

,
y1y2 − x1x2

1− dx1x2y1y2

)

. (7)

The neutral element is O = (0, 1) and the negation is given by −(x, y) = (−x, y). If d is not

a square in K, then the addition formula presented above is complete in the set of K-rational points

on E.

3.2. Generalized and twisted Hessian curves

In this section, basic definitions on generalized Hessian and twisted Hessian curves will be presented.

Definition 5. The generalized Hessian curve EGH over a field K is given by the following equa-

tion [10]

EGH/K : x3 + y3 + a = dxy, (8)

for a, d ∈ K where a 6= 0 and d3 6= 27a.

The sum of points P = (x1, y1) and Q = (x2, y2) on EGH is given by the following unified formula,

which works for all inputs of P,Q /∈ Tζ , where Tζ = {(−ζ : 0 : 1)|ζ ∈ F, ζ3 = a}:

P +Q =

(

ay1 − x2y2x
2
1

x1x
2
2 − y2y

2
1

,
x1y1y

2
2 − ax2

x1x
2
2 − y2y

2
1

)

. (9)

Alternatively, the sum of points P = (x1, y1) and Q = (x2, y2) on EGH is given by the following

formulas:

• if P 6= ±Q (point addition)

P +Q =

(

y21x2 − y22x1
x2y2 − x1y1

,
x21y2 − x22y1
x2y2 − x1y1

)

, (10)

• if P = Q (point doubling)

[2]P =

(

y1(a− x31)

x31 − y31
,
x1(y

3
1 − a)

x31 − y31

)

. (11)

The neutral element is a point at infinity (1 : −1 : 0). The negation of the point P = (x1, y1) is

−P = (y1, x1).

Definition 6. The twisted Hessian curve ETH over a field K is given by the equation [9]

ETH/K : ax3 + y3 + 1 = d x y (12)

for a, d ∈ K where a 6= 0 and d
3
6= 27a.
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The neutral element of addition law for twisted Hessian curves is the point (0,−1). The negation

of the point P = (x1, y1) is −P = (x1/y1, 1/y1). The sum of points P = (x1, y1) and Q = (x2, y2)
on ETH is given by the following formulas:

• where P 6= ±Q (point addition)

P +Q =

(

x1 − y21x2y2
ax1y1x

2
2 − y2

,
y1y

2
2 − ax21x2

ax1y1x
2
2 − y2

)

(13)

• where P = Q (point doubling)

[2]P =

(

x1 − y31x1
ay1x

3
1 − y1

,
y31 − ax31
ay1x

3
1 − y1

)

. (14)

Although the model of twisted Hessian curves seems to be used more frequently, we chose the

generalized Hessian curves model. There are two reasons behind such a decision. First of all, there is

birationally equivalence between twisted Hessian and generalized Hessian models.

Remark 7. In projective coordinates the generalized Hessian curve is given by the equation

EGH/K : X3 + Y 3 + aZ3 = dXY Z. (15)

By swapping X with Z , we get the equation of a twisted Hessian curve in projective coordinates

ETH : aX
3
+ Y

3
+ Z

3
= d X Y Z, (16)

The isomorphism φ between EGH and ETH , is given by φ : EGH → ETH , φ(X : Y : Z) = (Z : Y :
X), a = a, d = d.

The other reason is that the generalized Hessian curve (in affine model) is symmetrical and the

twisted Hessian curve is not. Relying on this fact, it was easier to construct a compression function

acting on 3-torsion points in this case.

3.3. Huff’s curves

Definition 8. The Huff’s curve EHu over a field K is given by the equation [11]

EHu/K : ax(y2 − 1) = by(x2 − 1), (17)

where a2 6= b2 and a, b 6= 0.

The sum of points P = (x1, y1) andQ = (x2, y2) onEHu is given by the following complete formula:

P +Q =

(

(x1 + x2)(1 + y1y2)

(1 + x1x2)(1 − y1y2)
,
(y1 + y2)(1 + x1x2)

(1− x1x2)(1 + y1y2)

)

, (18)

Alternatively, to compute P +Q, one may use following formulas:
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• if P 6= ±Q (point addition)

P +Q =

(

(x1 − x2)(y1 + y2)

(1− x1x2)(y1 − y2)
,
(y1 − y2)(x1 + x2)

(1− y1y2)(x1 − x2)

)

, (19)

• if P = Q (point doubling)

[2]P =

(

(2y21 + 2)x1
(x21 + 1)y21 − x21 − 1

,
(2x21 + 2)y1

(x21 − 1)y21 + x21 − 1

)

. (20)

Point O = (0, 0) is the neutral element, and the opposite point −(x, y) = (−x,−y). In projective

coordinates the equation, (17) has a form:

EHu/K : aX(Y 2 − Z2) = bY (X2 − Z). (21)

There are three points at infinity on EHu: T1 = (1 : 0 : 0), T2 = (0 : 1 : 0) and T3 = (a : b : 0).
Points T1, T2 and T3 are of order 2. Additionally there are four points of order 4: (1 : 1 : 1),
(−1 : 1 : 1), (1 : −1 : 1) and (−1 : −1 : 1) (e.g. (1, 1), (−1, 1), (1,−1) and (−1,−1) in the affine

space).

4. High-degree compression function on alternative models of elliptic

curves

In this section we will present compression functions of degree ≥ 2 for Edwards, Huff’s and Hessian

family of elliptic curves. However, it is worth noteing that a compression function of order 4 for Jacobi

quartics has been also proposed in [22]. We will mainly focus on compression functions that are new

for these models and have not been presented before.

4.1. Edwards curves

4.1.1. Compression function of degree 2

Edwards curves were widely analyzed in the context of their arithmetics using compression functions.

The obvious compression function of degree 2 is f2(x, y) = y. The arithmetic using this compresison

function may be found, for example, in [24], but we recall this arithmetic below. If f2(P ) = rP and

f2(Q) = rQ, then the differential addition f2(P +Q)f2(P −Q) is given by the following formula:

f2(P +Q)f2(P −Q) = −
(dr2P−1)r2Q−r2P+1

(dr2
P
−d)r2

Q
−dr2

P
+1
. (22)

The formula for doubling has the following form:

f2([2]P ) = −
dr4P − 2r2P + 1

dr4P − 2dr2P + 1
. (23)
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Explanation: Formula (22) may be obtained using the algorithm from Appendix G.A, with modi-

fications from Appendix G.E. Accordingly, formula (23) may be obtained using the algorithm from

Appendix H.A, with modifications from Appendix H.D. �

4.1.2. Compression function of degree 4

We will give an example of a compression function of degree 4 for the Edwards curveEEd : x2+y2 =
1 + dx2y2. A compression function of degree 4 may be given by f4(x, y) = y2. It is easy to show,

that f4 has the degree of 4. At first, let us note, that

• involution [−1]P is projectively linear, because [−1]P = (−X : Y : Z) for P = (X : Y : Z),

• point T = (0 : −1 : 1) of order 2 naturally belongs to EEd(K),

• translation τT : EEd → EEd : τ(P ) = P + T is also projectively linear, because if P = (X :
Y : Z) ∈ EEd(K), then P + (0 : −1 : 1) = (−X : −Y : Z).

Let us note that f4(P ) = f4(Q), iff Q = ±P + [k](0 : −1 : 1), for k = 0, 1 is in set S =
{(x, y), (−x, y), (x,−y), (−x,−y)}, for P = (x, y).

Let us assume that r = y2 for y 6= 0. Using this identity in the Edwards curve equation, one may

obtain that

x2 + r = 1 + dx2r. (24)

This means that

x2(rd− 1)− r = 0. (25)

Because equation (25) is a polynomial of order 2, it means that one may find two roots of such

a polynomial at most. This means, that for every r one has at most 2 distinct values of x. Because

on an Edwards curve there are always exactly two points having the same x-coordinate, it means that

equation (25) may be satisfied by 4 points at most. All of these points belong to set S, which may be

easily checked manually.

Theorem 4.1. A differential addition formula for f4(P + Q)f4(P − Q) on an Edwards curve and a

compression function f4(x, y) = y2, where f4(P ) = rP and f4(Q) = rQ, is given by:

f4(P +Q)f4(P −Q) = L
M
, (26)

where

L = (d2rP
2 − 2adrP + a2)rQ

2 + (−2adrP
2 + (2ad + 2a2)rP − 2a2)rQ + a2rP

2 − 2a2rP + a2,

M = (d2rP
2 − 2d2rP + d2)rQ

2 + (−2d2rP
2 + (2d2 + 2ad)rP − 2ad)rQ + d2rP

2 − 2adrP + a2.
(27)

for every P ∈ EEd(K) holds f(P ) = rP .

Similarly, doubling is given by

f4([2]P ) =
d2rP

4 − 4adrP
3 + (2ad+ 4a2)rP

2 − 4a2rP + a2

d2rP 4 − 4d2rP 3 + (4d2 + 2ad)rP 2 − 4adrP + a2
. (28)
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Explanation: Formula (26) may be obtained using the algorithm from Appendix G.A, with modi-

fications from Appendix G.F. Accordingly, formula (28) may be obtained using the algorithm from

Appendix H.A, with modifications from Appendix H.E. �

4.1.3. Compression function of degree 8

A compression function of degree 8 on an Edwards curve, was presented by Farashahi and Hosseini

in [18]. They gave the example of a compression function dx2y2 of degree 8 for the Edwards curve

EEd : x2 + y2 = 1 + dx2y2. Below, we present results for a similar compression function of degree

8 on curve EEd given by f8(x, y) = x2y2. It is easy to show, that f8 has the degree of 8. At first, let

us note, that

• involution [−1]P is projectively linear, because [−1]P = (−X : Y : Z) for P = (X : Y : Z),

• point T = (1 : 0 : 1) of order 4 naturally belongs to EEd(K),

• translation τT : EEd → EEd : τ(P ) = P + T is also projectively linear, because if P = (X :
Y : Z) ∈ EEd(K), then P + (1 : 0 : 1) = (Y : −X : Z).

Let us note that f8(P ) = f8(Q), iff Q = ±P + [k](1 : 0 : 1), for k = 0, 3 is in set S =
{(x, y), (−x, y), (x,−y), (−x,−y), (y, x), (−y, x), (y,−x), (−y,−x)}, for P = (x, y).

Let us assume that r = x2y2 for x, y 6= 0. Using this identity in the Edwards curve equation, one

may obtain that

x2 +
r

x2
= 1 + dr. (29)

This means that

x4 − (dr + 1)x2 + r = 0. (30)

Because equation (30) is a polynomial of order 4, it means that one may find four roots of such

a polynomial at most. This means, that for every r one has at most 4 distinct values of x. Because

on an Edwards curve there are always at most two points having the same x-coordinate, it means that

equation (25) may be satisfied by 4 points at most. All of these points belong to set S, which may be

easily checked manually.

Theorem 4.2. A differential addition formula for f8(P + Q)f8(P − Q) on an Edwards curve and a

compression function f8(x, y) = x2y2, where f8(P ) = rP and f8(Q) = rQ, is given by:

f8(P +Q)f8(P −Q) =
(rP−rQ)2

(d2rP rQ−1)2 . (31)

Similarly, doubling is given by

f4([2]P ) =
4d2r3P + (8d− 16a)r2P + 4x

d4r4P − 2d2r2P + 1
. (32)



118 M. Wroński et al. / High-degree Compression Functions on Alternative Models of Elliptic Curves...

Explanation: Formula (31) may be obtained using the algorithm from Appendix G.A, with modi-

fications from Appendix G.G. Accordingly, formula (32) may be obtained using the algorithm from

Appendix H.A, with modifications from Appendix H.F. �

4.2. Hessian, generalized Hessian and twisted Hessian curves

4.2.1. Compression function of degree 2

Let us define a compression function on a generalized Hessian curve of degree 2 given by f2(P ) =

x+ y. This function may be obtained from the function f2(P ) = y+1
x

from [19], using isomorphism

between EGH and ETH . Using the same isomorphism between f2(P ) and f2(P ), one may use
differential addition and doubling formulas from [19] and obtain that if rP = f2(P ) and rQ = f2(Q)
then f(P +Q)f(P −Q) may be presented in the following form:

f2(P +Q)f2(P −Q) =
(drP

2 − 3a)rQ
2 + (6arP + 2ad)rQ − 3arP

2 + 2adrP + ad2

(3rP + d)rQ2 + (3rP 2 + drP )rQ + drP 2 − 3a)
. (33)

In the same manner, f(P +Q) + f(P −Q) may be presented as

f2(P +Q) + f2(P −Q) = −
((3rP

2 + drP )rQ
2 + (drP

2 + d2rP + 6a)rQ + 6arP + 2ad

(3rP + d)rQ2 + (3rP 2 + drP )rQ + drP 2 − 3a
. (34)

Similarly, doubling may be presented as:

f2([2]P ) =
−(r4P + 4arP + ad)

(2r3P + dr2P − a)
. (35)

Explanation: Formula (33) may be obtained using the algorithm from Appendix G.A, with mod-

ifications from Appendix G.B. Formula (34) may be obtained using the algorithm from Appendix

G.A, with modifications from Appendix G.C Accordingly, formula (35) may be obtained using the

algorithm from Appendix H.A, with modifications from Appendix H.B. �

4.2.2. Compression function of degree 6

We will give an example of a compression function of degree 6 for the generalized Hessian curve

EGH : x3 + y3 + a = dxy. A compression function of degree 6 may be given by f6(x, y) = xy.

It is easy to show, that f6 has the degree of 6. At first, let us note, that compression function f6
fulfills all the criteria from Proposition 1:

• involution [−1]P is projectively linear, because [−1]P = (Y : X : Z) for P = (X : Y : Z),

• for every generalized Hessian curve over field K, there exists root ω of polynomial ω2+ω+1 =
0 in field K and point T ∈ EGH

(

K
)

of order 3 T = (1 : −ω : 0) in projective coordinates,

• translation τT : EGH → EGH : τ(P ) = P + T is projectively linear, because if P = (X : Y :
Z) ∈ E(K), then P + (1 : −ω : 0) = (ωX : ω−1Y : Z).
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Let us note that f6(P ) = f6(Q), iff Q = ±P + [k](1 : −ω : 0) for k = 0, 2 is in set S =
{(x, y), (y, x), (ωx, ω2y), (ω2x, ωy), (ωy, ω2x), (ω2y, ωx)}, for P = (x, y).

Let us assume that r = xy for x, y 6= 0. Then y = r
x

and because x3 + y3 + a = dxy, then

x3 +
( r

x

)3
+ a = dx

r

x
(36)

and

g(x) = x6 + (a− dr)x3 + r3 = 0. (37)

Equation (37) has 6 roots at most. It is easy to show, that all points for which equation (37) is

satisfied belong to the set S which is easy to check manually.

Theorem 4.3. The differential addition formula for f6(P + Q)f6(P − Q) on a generalized Hessian

curve and compression function f6(x, y) = xy, where f6(P ) = rP and f6(Q) = rQ, is given by:

f6(P +Q)f6(P −Q) =
rP

2rQ
2 − adrP rQ + a2rQ + a2rP

(rQ − rP )2
. (38)

Similarly, doubling is given by

f6([2]P ) =
rP (a(drP − a)− rP

3 − a2)

(drP − a)2 − 4rP 3
. (39)

Explanation: Formula (38) may be obtained using the algorithm from Appendix G.A, without any

modifications. Correspondingly, formula (39) may be obtained using the algorithm from Appendix

H.A, without any modifications. �

Remark 9. By comparing the formulas for f2(P +Q)f2(P −Q) and f6(P +Q)f6(P −Q), it is easy

to notice that in the case of the differential addition function, f6(P ) is more efficient. However, in the

case of doubling, it seems that f2(P ) has a lower computational cost than f6(P ).

Remark 10. Let us note, that Farashahi and Joye in [10] obtained compression functions f6(x, y) =
xy and g6(x, y) = x3 + y3 for binary generalized Hessian curves. Indeed, the same compression

functions work also on generalized Hessian curves over fields with large characteristics. Let us see,

that g6(x, y) = x3 + y3 = dxy − a = d · f6(x, y)− a.

4.3. Compression function of degree 18

In the previous subsections, we defined a compression function of degree 6 on a generalized Hessian

curve of degree 6. In this subsection, we will be investigating a compression function of degree 18 on

a Hessian curve, using additional symmetries. Let us begin by noteing that for a Hessian curve given

in projective coordinates

EH : X3 + Y 3 + Z3 = dXY Z (40)

if P1 = (X : Y : Z) ∈ EH(K), then also P2 = (X : Z : Y ), P3 = (Y : X : Z), P4 =
(Y : Z : X), P5 = (Z : X : Y ), P6 = (Z : Y : X) ∈ EH(K). Furthermore, let us also note, that if
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T1 = (1 : −ω : 0) and T2 = (−ω : 0 : 1), then:

1. translation τT1
: EGH → EGH : τ(P ) = P +T is projectively linear, because P +T1 = (ωX :

ω2Y : Z) ∈ EH(K);

2. translation τT2
: EGH → EGH : τ(P ) = P +T is projectively linear, because P +T2 = (ωY :

ω2Z : X) ∈ EH(K).

The above means that we will be searching for the compression function f18 for which f18(P ) =
f18(Q), iff Q = ±P + [k](1 : −ω : 0) + [l](−ω : 0 : 1).

Now, we will give the following theorem.

Theorem 4.4. Let us state that f6(P ) = xy = XY
Z2 is a compression function on a generalized Hessian

curve and, therefore, on a Hessian curve. Because the Hessian curve equation is invariant under

permutation of its coordinates E(X : Y : Z) = E(Y : X : Z) = E(Z : Y : X) = E(Y : Z : X) =
E(X : Z : Y ) = E(Z : X : Y ), then, using these symmetries, the compression function of degree 18

may be given by f18(P ) =
XY
Z2 + Y Z

X2 + ZX
Y 2 = x3y3+x3+y3

x2y2
.

Proof:

At first, let us assume that f18(P ) = R, then

x3 + y3 = Rx2y2 − x3y3 (41)

and substituting x3 + y3 in the equation of the Hessian curve, one obtains that

Rx2y2 − x3y3 + 1 = dxy. (42)

Let us note, that xy = f6(P ). Let r = f6(P ). Then

g(r) = −r3 +Rr2 − dr + 1 = 0. (43)

For any R there are at most three distinct roots of the polynomial g. Let us note that we showed

that there are at most six distinct points in EH(K) for which f6(P ) = r.

This means, that f18(P ) has at most 18 distinct solutions. We will list all of those solutions in the

set S, for P = (x, y). It is easy to check that for every Q ∈ S holds that f18(Q) = R.

The set S is given by

S =
{

(X : Y : Z), (X : Z : Y ), (Y : X : Z), (Y : Z : X), (Z : X : Y ), (Z : Y : X),

(ωX : ω2Y : Z), (ωX : ω2Z : Y ), (ωY : ω2X : Z), (ωY : ω2Z : X), (ωZ : ω2X : Y ),

(ωZ : ω2Y : X), (ω2X : ωY : Z), (ω2X : ωZ : Y ), (ω2Y : ωX : Z), (ω2Y : ωZ : X),

(ω2Z : ωX : Y ), (ω2Z : ωY : X)
}

(44)
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in projective coordinates, which is equivalent to

S =
{

(x, y) ,
(

x
y
, 1
y

)

, (y, x) ,
(

y
x
, 1
x

)

,
(

1
y
, x
y

)

,
(

1
x
, y
x

)

,
(

ωx, ω2y
)

,
(

ω x
y
, ω2 1

y

)

,
(

ωy, ω2x
)

,
(

ω y
x
, ω2 1

x

)

,
(

ω 1
y
, ω2 x

y

)

,
(

ω 1
x
, ω2 y

x

)

,
(

ω2x, ωy
)

,
(

ω2 x
y
, ω 1

y

)

,
(

ω2y, ωx
)

,
(

ω2 y
x
, ω 1

x

)

,
(

ω2 1
y
, ω x

y

)

,
(

ω2 1
x
, ω y

x

)

}

.

(45)

in affine coordinates. ⊓⊔

Theorem 4.5. The differential addition formula for f18(P + Q)f18(P − Q) on a Hessian curve and

a compression function f18(x, y) =
x3y3+x3+y3

x2y2
, where f18(P ) = rP and f18(Q) = rQ, is given by:

f18(P +Q)f18(P −Q) =
rP

2rQ
2+9drP rQ+(−4d3

−27)rP+(−4d3
−27)rQ+d5+27d2

(rP−rQ)2 . (46)

Similarly, doubling is given by

f18([2]P ) =
1
4
rP

4+ 9
4
drP

2+(−2d3
−

27
2
)rP+ 1

4
d5+ 27

4
d2

rP 3
−

1
4
d2rP 2

−
9
2
drP+d3+ 27

4

. (47)

Explanation: Formula (46) may be obtained using the algorithm from Appendix G.A, with mod-

ifications from Appendix G.D. Correspondingly, formula (47) may be obtained using the algorithm

from Appendix H.A, with modifications from Appendix H.C. �

4.4. Huff’s curves

4.4.1. Compression function of degree 2

Let us define the compression function on a Huff’s curve of degree 2 given by f2(P ) = xy. This

function was presented in [25]. If rP = f2(P ) and rQ = f2(Q), then the differential addition

f2(P +Q)f2(P −Q) is given by the following formula:

f2(P +Q)f2(P −Q) =

(

rP − rQ
rP rQ − 1

)2

. (48)

The formula for doubling has the following form:

f2([2]P ) =
4rP (r

2
P +

(

a2+b2

ab

)

rP + 1

(r2P − 1)2
. (49)

Explanation: Formula (48) may be obtained using the algorithm from Appendix G.A, with mod-

ifications from Appendix G.H. Correspondingly, formula (49) may be obtained using the algorithm

from Appendix H.A, with modifications from Appendix H.G. �
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4.4.2. Compression function of degree 4

In this subsection, a method for obtaining a compression function f4 of degree 4 using natural sym-

metries on Huff’s curves and action on 2-torsion point is presented.

Let T3 = (a : b : 0) ∈ EHu(K) be a point of order 2 on Huff’s curve EHu given by the equation

(21). For a finite point P = (X : Y : Z) = (x, y) 6= (0, 0) the following translation:

τT3
: P + T3 =

(

1

x
,
1

y

)

(50)

is projectively linear.

Proof:

In order to verify, if the translation τT3
is linear in a projective space P

3, we start by embedding

the Huff’s curve equation EHu and the point P into a P
1 × P

1. We get the following Huff’s curve

equation:

EHu : aXZ1(Y
2 − Z2

2 ) = aY Z2(X
2 − Z1

2 ). (51)

In the space (P1)2 for P = ((X : Z1), (Y : Z2)) the translation τ3 has a form

τT3
: P + T3 = ((Z1 : X), (Z2 : Y )). (52)

By embedding the above solution into a projective space via Segre embedding ρ : P1×P
1 → P

3 given

by

((X1 : X2), (Y1 : Y2)) → (X1Y1 : X1Y2 : X2Y1 : X2Y2), (53)

we finally get

P = (XY : XZ2 : Y Z1 : Z1Z2) = (U1 : U2 : U3 : U4),

τT3
: P + T3 = (Z1Z2 : Y Z1 : XZ2 : XY ) = (U4 : U3 : U2 : U1).

(54)

Additionally we have

− P = (XY : −XZ2 : −Y Z1 : Z1Z2) = (U1 : −U2 : −U3 : U4). (55)

In consequence, we see that the translation τ3 and the involution [−1]P are projectively linear in

P
3. ⊓⊔

We will give an example of a compression function of degree 4 for a Huff’s curve EHu : ax(y2 −
1) = by(x2 − 1). A compression function of degree 4 may be given by f4(x, y) = xy+ 1

xy
. It is easy

to show, that f4 has the degree of 4. At first, let us note, that

• involution [−1]P is projectively linear in P
3 (see Remark 4.4.2),

• point T3 = (a : b : 0) of order 2 naturally belongs to EHu(K),

• translation τT3
: EHu → EHu : τT3

(P ) = P +T3 is also projectively linear (see Remark 4.4.2).
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Let us note that f4(P ) = f4(Q), iff Q = ±P + [k](a : b : 0), for k = 0, 1 and P = (x, y) is in set

S = {(x, y), (−x,−y), ( 1
x
, 1
y
), (− 1

x
, 1
y
)}.

Let us assume that xy = t and t 6= 0. Then f4(x, y) = xy + 1
xy

= t + 1
t
. One can denote

f4(x, y) = r. After short calculations we get

h(t) = t2 − rt+ 1 = 0. (56)

Polynomial h(t) has at most 2 distinct roots. Let t1 be a root of h(t). If we substitute y = t1
x

in the

Huff’s curve equation (17), we get

g(x) = (bt1 + a)x2 − bt1 − at21 = 0. (57)

Equation (57) is quadratic and has at most two distinct roots. In consequence, the degree of the

compression function f4 is 4 at most.

Theorem 4.6. A differential addition formula for f4(P +Q)f4(P −Q) on a Huff’s curve and com-

pression function f4(x, y) = xy + 1
xy

, where f4(P ) = rP and f4(Q) = rQ, is given by:

f4(P +Q)f4(P −Q) =
(ab)2(rP rQ+4)2+16(a2+b2)(ab)(rP+rQ)+16(a2+b2)2

(ab)2(rP−rQ)2 . (58)

Denoting (a2 + b2)/(ab) = A, we get

f4(P +Q)f4(P −Q) =
(rP rQ+4)2+16A(rP+rQ)+16A2

(rP−rQ)2
. (59)

Similarly, doubling is given by

f4([2]P ) =
(ab)2(r2P+4)2+32(a2+b2)(ab)rP+16(a2+b2)2

4ab((ab)(r3
P
−4rP )+(a2+b2)r2

P
−4(a2+b2))

. (60)

Denoting (a2 + b2)/(ab) = A we get

f4([2]P ) =
((r2P+4)+4A)2+8A(r2P+4)

4(rP+A)(r2
P
−4)

. (61)

Explanation: Formula (58) may be obtained using the algorithm from Appendix G.A, with modifi-

cations from Appendix G.I. Correspondingly, formula (60) may be obtained using the algorithm from

Appendix H.A, with modifications from Appendix H.H. �

4.4.3. Compression function of degree 8

In this subsection a method for obtaining a compression function f8 of degree 8 using natural symme-

tries on Huff’s curves and action on three 2-torsion points will be presented.

Let T1, T2, T3 ∈ EHu(K) be points of order 2 of the form T1 = (1 : 0 : 0), T2 = (0 : 1 : 0) and

T3 = (a : b : 0) = T1 + T2 on a Huff’s curve EHu given by the equation (21). For a finite point

P = (X : Y : Z) = (x, y) 6= (0, 0) we consider the following translations:

τT1
: P + T1 =

(

1
x
,−y

)

,

τT2
: P + T2 =

(

−x, 1
y

)

.
(62)
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Remark 11. Now we intend to check if the above translations are projectively linear. As in Remark

4.4.2, we consider the Huff’s curve equation EHu in the space (P1)2 given by the equation (51). In

the space (P1)2 for point P = ((X : Z1) : (Y : Z2)) the translations τ1 and τ2 have the following

form

τT1
: P + T1 = ((Z1 : X), (−Y : Z2)),

τT2
: P + T2 = ((−X : Z1), (Z2 : Y )).

(63)

By embedding the above formulas into a projective space via Segre embedding ρ : P1 × P
1 → P

3

given by (53), we get

P = (XY : XZ2 : Y Z1 : Z1Z2) = (U1 : U2 : U3 : U4),

τT1
: P + T1 = (−Y Z1 : Z1Z2 : −XY : XZ2) = (−U3 : U4 : −U1 : U2),

τT2
: P + T2 = (−XZ2 : −XY : Z1Z2 : Y Z1) = (−U2 : −U1 : U4 : U3).

(64)

Additionally, we have

− P = (XY : −XZ2 : −Y Z1 : Z1Z2) = (U1 : −U2 : −U3 : U4). (65)

In consequence, we see that the translations τ1, τ2 and the involution [−1]P are projectively linear in

P
3.

We will give an example of a compression function of degree 8 for a Huff’s curve EHu : ax(y2 −
1) = by(x2 − 1). A compression function of degree 8 may be given by f8(x, y) = xy + 1

xy
− x

y
− y

x
.

It is easy to show, that f8 has the degree of 8. At first, let us note, that

• involution [−1]P is projectively linear in P
3 (see Remark 11),

• points T1 = (1 : 0 : 0) and T2 = (0 : 1 : 0) of order 2 naturally belong to EHu(K),

• translations τT1
: EE → EE : τT1

(P ) = P + T1 and τT2
: EE → EE : τT2

(P ) = P + T2 are

also projectively linear (see Remark 11).

Let us note that f8(P ) = f8(Q), iff Q = ±P + [l](1 : 0 : 0) + [k](0 : 1 : 0), for l, k = 0, 1 and

P = (x, y) is in set

S = {(x, y), (−x,−y), ( 1
x
,−y), (− 1

x
, y), (−x,

1
y
), (x,− 1

y
), ( 1

x
, 1
y
), (− 1

x
,− 1

y
)}.

Let us assume that xy = t and t 6= 0. From the Huff’s curve equation (17), one may derive:

x2 =
xy(axy + b)

bxy + a
=
t(at+ b)

bt+ a
, y2 =

xy(bxy + a)

axy + b
=
t(bt+ a)

at+ b
. (66)

Then, one may write

f8(x, y) = xy +
1

xy
−
x

y
−
y

x
= t+

1

t
−
at+ b

bt+ a
−
bt+ a

at+ b
. (67)

Let us denote f8(x, y) = r. By simple calculations, we get

h(t) = abt4 − abrt3 − (a2r + b2r + 2ab)t2 − abrt+ ab = 0. (68)
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Polynomial h(t) has at most 4 distinct roots. Let t1 be a root of h(t). If we substitute y = t1
x

in

the Huff’s curve equation (17), we get the quadratic equation (57). In consequence, a degree of the

compression function f8 is 8 at most.

Theorem 4.7. A differential addition formula for f8(P + Q)f8(P − Q) on a Huff’s curve and a

compression function f8(x, y) = xy + 1
xy

− x
y
− y

x
is given by:

f8(P +Q)f8(P −Q) =
(rP rQ − 16)2

(rP − rQ)2
. (69)

Similarly, doubling is given by

f8([2]P ) =
(r2P − 16)2

4rP (r2P + 4a2+b2

ab
rP + 16)

. (70)

Explanation: Formula (69) may be obtained using the algorithm from Appendix G.A, with modifi-

cations from Appendix G.J. Correspondingly, formula (70) may be obtained using the algorithm from

Appendix H.A, with modifications from Appendix H.I. �

Remark 12. Let us note that formulas (69) and (70) that we obtained for compression function f8 are

as efficient as formulas for the Montgomery curve.

4.4.4. Compression function of degree 16

One may check, in a similar manner as in the preceding sections, that a compression function of degree
16 is given by

f16(x, y) = xy +
1

xy
−
y

x
−
x

y
+
y + 1

1− y
·
x+ 1

1− x
+
y + 1

y − 1
·
1− x

1 + x
+
y − 1

1 + y
·
x− 1

x+ 1
+

1− y

1 + y
·
x+ 1

x− 1
. (71)

This compression function may be obtained using natural symmetries on Huff’s curves and action on

three 2-torsion points and points of order of 4, given by (±1 : ±1 : 1).

Let us note that f16(P ) = f16(Q), iff Q = ±P + [l](1 : 0 : 0) + [m](1 : 1 : 1), for l = 0, 1,m =
0, 3 and P = (x, y) is in set

S =
{

(x, y) , (−x,−y) ,
(

1
x
,−y

)

,
(

− 1
x
, y
)

,
(

x,− 1
y

)

,
(

−x, 1
y

)

,
(

1
x
, 1
y

)

,
(

− 1
x
,− 1

y

)

,
(

y+1
1−y

, x+1
1−x

)

,
(

y+1
y−1 ,

1−x
1+x

)

,
(

y−1
1+y

, x−1
x+1

)

,
(

1−y
1+y

, x+1
x−1

)

,
(

− y+1
1−y

,−x+1
1−x

)

,
(

− y+1
y−1 ,−

1−x
1+x

)

,
(

− y−1
1+y

,−x−1
x+1

)

,
(

− 1−y

1+y
,−x+1

x−1

)}

.

Theorem 4.8. The differential addition formula for f16(P +Q)f16(P −Q) on a Huff’s curve and a

compression function f16(x, y) given by the formulae (71), where f16(P ) = rP and f16(Q) = rQ, is

given by:

f16(P +Q)f16(P −Q) =
(rP rQ+64)2+1024 a2+b2

ab
(rP+rQ+ a2+b2

ab
)

(rP−rQ)2 . (72)
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Similarly, doubling is given by

f([2]P ) =
L

M
, (73)

where

L = 1
4x

4 + 32x2 + 512a2+512b2

ab
x+ 1024a4+3072a2

∗b2+1024b4

a2b2
,

M = x3 + 4a2+4b2

ab
x2 − 64x+ −256a2

−256b2

ab
.

(74)

Explanation: Formula (72) may be obtained using the algorithm from Appendix G.A, with mod-

ifications from Appendix G.K. Correspondingly, formula (74) may be obtained using the algorithm

from Appendix H.A, with modifications from Appendix H.J. �

5. Formulas as fast as Montgomery’s

A short analysis of the cost of applying a compression functions f2, f6 and f18 on a generalized

Hessian curve shows that the applications of these functions are not as efficient as Montgomery-like

formulas for Montgomery, Huff’s and Edwards curves. Now, we will present the following theorem.

Theorem 13. Let E be a model of an elliptic curve, for which isomorphism φ from E to the Mont-

gomery curve EM : By2 = x3 + Ax2 + x is given by a function φ(x, y) = (Wx(x, y),Wy(x, y)),
where Wx(x, y),Wy(x, y) are rational functions. Let us f2(P ) = x be compression function of de-

gree 2 on the Montgomery curve, where P = (x, y) ∈ EM (K). Then g2(x, y) = f2 (Wx(x, y))
is compression function of degree 2. Let A(f2(P ), f2(Q), f2(P − Q)) be differential addition and

D(f2(P )) be the doubling formulas on the Montgomery curve. In such a case, on an elliptic curve E
we may define differential addition A(g2(P ), g2(Q), g2(P −Q)) and doubling D(g2(P )) formulas of

the same efficiency as Montgomery’s, up to constants which depends on the coefficients of E.

Proof:

Let us φ be an isomorphism from a curve E to the Montgomery curve EM : By2 = x3 + Ax2 + x,

given by φ(P ) = (Wx(P ),Wy(P )), where Wx(P ) and Wy(P ) are rational functions. Then, for

P ∈ E(K) holds that g2(P ) = f2 (Wx(P ),Wy(P )) = Wx(P ) is indeed a compression function of

degree 2 on a curve E. Let us note, that f2(P ) = x = rP gives the same value rP only for two points

P ,−P ∈ EM (K). Because φ is an isomorphism from E to EM , it means that f2 (Wx(P ),Wy(P )) =
Wx(P ) = rP also gives the same value rP for only two points P,−P ∈ E(K). It follows that

g2(P ) = f2 (Wx(P ),Wy(P )) =Wx(P ) is a compression function of degree 2 on a curve E.

Now, let us denote rP = f2(P ), rQ = f2(Q), rP+Q = f2(P +Q), rP−Q = f2(P −Q), r[2]P =

f2([2]P ). Let us note that hold rP = g2(P ), rQ = g2(Q), rP+Q = g2(P + Q), rP−Q = g2(P −
Q), r[2]P = g2([2]P ). If A(f2(P ), f2(Q), f2(P − Q)) is a differential addition and D(f2(P )) is

a doubling formula on the Montgomery curve, then A(f2 (Wx(P ),Wy(P )) , f2 (Wx(Q),Wy(Q)) ,
f2 (Wx(P −Q),Wy(P −Q))) = A (g2(P ), g2(Q), g2(P −Q)) is a differential addition formula

on a curve E. Correspondingly, if D(f2(P ) is a doubling formula on the Montgomery curve, then

D(f2(P ) = D(f2 (Wx(P ),Wy(P ))) = D(g2(P )) is a doubling formula on a curve E. Because for

every P ∈ EM (K) holds that rP = f2(P ) =Wx(P ) = g2(P ) = rP , it follows that A(rP , rQ, rP−Q)
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and D(rP ) onE are of the same efficiency asA(rP , rQ, rP−Q) and D(rP ) on the Montgomery curve,

up to constants which depends on the coefficients of a curve E. ⊓⊔

Let us note that an isomorphism φ for which conditions presented in Theorem 13 hold, may be

defined, for example, from a twisted Edwards curve to the Montgomery [7], from the Huff’s curves

to the Montgomery [10] and also other models of elliptic curves. Using these isomorphisms, one may

obtain for these compression functions of degree 2 Montgomery-like formulas of the same efficiency.

However, compression functions of degree 2 obtained by Theorem 13 may be sometimes complicated,

as same as constants appearing in differential addition and doubling formulas and therefore may be

not optimal for all applications.

Remark 14. Let us note that for Hessian, twisted Hessian and generalized Hessian curve models

there do not exist natural isomorphisms from these curves to the Montgomery curve. We therefore

state the conjecture that for Hessian, twisted Hessian and generalized Hessian curves arithmetics using

compression of the same or similar efficiency as for Montgomery do not exist.

6. Conclusion

This paper presents new compression functions of degree > 2 on Edwards, Huff’s and the Hessian

family of elliptic curves. As it was presented in section 2, compression functions of high degree

may be obtained using natural symmetries on elliptic curves obtained by the action on the n-torsion

point T .

Additionally, it is worth noteing that models of elliptic curves for which a birationally equivalent

Montgomery curve exists, have some compression functions of degree 2 for which differential addi-

tion and doubling is of the same efficiency as the Montgomery curves. Unfortunately, it seems that

compression functions of the same efficiency as the Montgomery curve do not exist for models of el-

liptic curves with a natural point of order 3. Such representatives of elliptic curves are Hessian, twisted

Hessian, and generalized Hessian curves. This is because, for these models, natural isomorphisms do

not exist from these curves to the Montgomery curve.
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G Computer program for generation differential addition formula

Appendix G.A Main program

Q:=Rationals();

Z:=Integers();

rQ<a,b>:=FunctionField(Q,2);

/* maximal degree d of nominator and denominator in rational function

for f(P+Q)*f(P-Q) or for f(P+Q)+f(P-Q) */

d:=4;

n:=(d+1)*(d+2); /* Number of unknown parameters */

R:=PolynomialRing(rQ,n);

F:= FieldOfFractions(R);

pF2<x,y>:=PolynomialRing(F,2);

pF4<x1,y1,x2,y2>:=PolynomialRing(F,4);

rF4:=FieldOfFractions(pF4);

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=x^3 + y^3 +a-b*x*y;

/*definition of compression function f*/

f:=x*y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(y1^2*x2-y2^2*x1)/(x2*y2-x1*y1);

y3:=(x1^2*y2-x2^2*y1)/(x2*y2-x1*y1);

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

http://eprint.iacr.org/2008/218
https://eprint.iacr.org/2020/526
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x4:=Evaluate(x3, [x1,y1,y2,x2]);

y4:=Evaluate(y3, [x1,y1,y2,x2]);

//End of exchangeable parameters

I:=ideal<pF4|[ Evaluate(E,[x1,y1]), Evaluate(E, [x2,y2]) ] >;

f1:=Evaluate(f,[x1,y1]); f2:=Evaluate(f,[x2,y2]);

f3:=Evaluate(f,[x3,y3]); f4:=Evaluate(f,[x4,y4]);

/* In here we search for rational function f(P+Q)*f(P-Q).

If one intends to search for rational function f(P+Q)+f(P-Q),

then H:=f3+f4; */

H:=f3*f4;

G:=[pF2!0,pF2!0];

k:=0;

for u:=1 to 2 do

for j:=1 to d+1 do

for i:=1 to j do k:=k+1;

G[u]:=G[u]+ R.k*x^(i-1)*y^(j-i);

end for; end for; end for;

Nor:=NormalForm(Numerator( H - Evaluate(G[1]/G[2],[f1,f2])), I);

cf:=Coefficients(Nor);

sd:=[];

for i in cf do sd:= sd cat [Denominator(i)]; end for;

ld:=Lcm(sd);

cf0:=[];

/* multiplication by common denominator Coefficients(Nor) */

for i:=1 to #cf do cf0:=cf0 cat [R!(ld*cf[i])]; end for;

Proj:=ProjectiveSpace(R);

Sch:=Scheme(Proj,cf0);

dim:=Dimension(Sch);

if dim eq 0 then Rp:=RationalPoints(Sch);

for i in Rp do sq:=Eltseq(i); end for;

G:=[pF2!0,pF2!0];

k:=0;

for u:=1 to 2 do

for j:=1 to d+1 do

for i:=1 to j do k:=k+1;

G[u]:=G[u]+ sq[k]*x^(i-1)*y^(j-i);

end for; end for; end for;

[G[1], G[2]];

end if;
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Appendix G.B Modifications for compression function f18(x, y) = xy on generalized

Hessian curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=x^3 + y^3 +1-b*x*y;

/*definition of compression function f*/

f:=x+y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(y1^2*x2-y2^2*x1)/(x2*y2-x1*y1);

y3:=(x1^2*y2-x2^2*y1)/(x2*y2-x1*y1);

x4:=Evaluate(x3, [x1,y1,y2,x2]);

y4:=Evaluate(y3, [x1,y1,y2,x2]);

//End of exchangeable parameters

Appendix G.C Modifications for compression function f18(x, y) = xy on generalized

Hessian curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=x^3 + y^3 +1-b*x*y;

/*definition of compression function f*/

f:=x+y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(y1^2*x2-y2^2*x1)/(x2*y2-x1*y1);

y3:=(x1^2*y2-x2^2*y1)/(x2*y2-x1*y1);

x4:=Evaluate(x3, [x1,y1,y2,x2]);

y4:=Evaluate(y3, [x1,y1,y2,x2]);

//End of exchangeable parameters

Additionally, H = f3 + f4.

Appendix G.D Modifications for compression function f18(x, y) = xy on generalized

Hessian curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=x^3 + y^3 +1-b*x*y;

/*definition of compression function f*/

f:=(x^3*y^3+x^3+y^3)/(x^2*y^2);

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(y1^2*x2-y2^2*x1)/(x2*y2-x1*y1);

y3:=(x1^2*y2-x2^2*y1)/(x2*y2-x1*y1);
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x4:=Evaluate(x3, [x1,y1,y2,x2]);

y4:=Evaluate(y3, [x1,y1,y2,x2]);

//End of exchangeable parameters

Appendix G.E Modifications for compression function f2(x, y) = y on Edwards curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

a:=1;

E:=a*x^2 + y^2 -1 - b*x^2*y^2;

/*definition of compression function f*/

f:=y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1*y2+y1*x2)/(1+b*x1*x2*y1*y2);

y3:=(y1*y2-a*x1*x2)/(1-b*x1*x2*y1*y2);

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

x4:=Evaluate(x3, [x1,y1,-x2,y2]);

y4:=Evaluate(y3, [x1,y1,-x2,y2]);

//End of exchangeable parameters

Appendix G.F Modifications for compression function f4(x, y) = y2 on Edwards curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

a:=1;

E:=a*x^2 + y^2 -1 - b*x^2*y^2;

/*definition of compression function f*/

f:=y^2;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1*y2+y1*x2)/(1+b*x1*x2*y1*y2);

y3:=(y1*y2-a*x1*x2)/(1-b*x1*x2*y1*y2);

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

x4:=Evaluate(x3, [x1,y1,-x2,y2]);

y4:=Evaluate(y3, [x1,y1,-x2,y2]);

//End of exchangeable parameters

Appendix G.G Modifications for compression function f8(x, y) = x2y2 on Edwards

curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

a:=1;

E:=a*x^2 + y^2 -1 - b*x^2*y^2;
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/*definition of compression function f*/

f:=x^2*y^2;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1*y2+y1*x2)/(1+b*x1*x2*y1*y2);

y3:=(y1*y2-a*x1*x2)/(1-b*x1*x2*y1*y2);

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

x4:=Evaluate(x3, [x1,y1,-x2,y2]);

y4:=Evaluate(y3, [x1,y1,-x2,y2]);

//End of exchangeable parameters

Appendix G.H Modifications for compression function f2(x, y) = xy on Huff’s curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1+x2)*(y1*y2+1)/((x1*x2+1)*(1-y1*y2));

y3:=(y1+y2)*(x1*x2+1)/((1-x1*x2)*(y1*y2+1));

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

x4:=Evaluate(x3, [x1,y1,-x2,-y2]);

y4:=Evaluate(y3, [x1,y1,-x2,-y2]);

//End of exchangeable parameters

Appendix G.I Modifications for compression function f4(x, y) = xy + 1
xy

on Huff’s

curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y+1/(x*y);

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1+x2)*(y1*y2+1)/((x1*x2+1)*(1-y1*y2));

y3:=(y1+y2)*(x1*x2+1)/((1-x1*x2)*(y1*y2+1));

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

x4:=Evaluate(x3, [x1,y1,-x2,-y2]);

y4:=Evaluate(y3, [x1,y1,-x2,-y2]);

//End of exchangeable parameters
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Appendix G.J Modifications for compression function f8(x, y) = xy + 1
xy

− x
y
− y

x
on

Huff’s curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y+1/(x*y)-x/y-y/x;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1-x2)*(y1+y2)/((y1-y2)*(1-x1*x2));

y3:=(y1-y2)*(x1+x2)/((x1-x2)*(1-y1*y2));

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

x4:=Evaluate(x3, [x1,y1,-x2,-y2]);

y4:=Evaluate(y3, [x1,y1,-x2,-y2]);

//End of exchangeable parameters

Appendix G.K Modifications for compression function f16(x, y) = given by equation

(71) on Huff’s curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y+1/(x*y)-y/x-x/y+(y+1)/(1-y)*(x+1)/(1-x)+(y+1)/(y-1)*(1-x)/(1+x)+

(y-1)/(1+y)*(x-1)/(x+1)+(1-y)/(1+y)*(x+1)/(x-1);

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1-x2)*(y1+y2)/((y1-y2)*(1-x1*x2));

y3:=(y1-y2)*(x1+x2)/((x1-x2)*(1-y1*y2));

/* subtraction of points (x1,y1)-(x2,y2), depends on the curve equation */

x4:=Evaluate(x3, [x1,y1,-x2,-y2]);

y4:=Evaluate(y3, [x1,y1,-x2,-y2]);

//End of exchangeable parameters

H Doubling

Appendix H.A Main program

Q:= Rationals();

Z:=Integers();

rQ<a,b>:=FunctionField(Q,2);

for d in [1..10] do

n:=2*d+2;
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R:=PolynomialRing(rQ,n);

F:= FieldOfFractions(R);

pF2<x,y>:=PolynomialRing(F,2);

rF2:=FieldOfFractions(pF2);

pF4<x1,y1,x2,y2>:=PolynomialRing(F,4);

rF4:=FieldOfFractions(pF4);

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=x^3 + y^3 +a-b*x*y;

/*definition of compression function f*/

f:=x*y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3 := (a*y1-x2*y2*x1^2)/(x1*x2^2-y2*y1^2);

y3 := (x1*y1*y2^2 - a*x2)/(x1*x2^2-y2*y1^2);

//End of exchangeable parameters

I:=ideal<pF2|E>;

D1:=Evaluate(x3,[x,y,x,y]); /*doubling */

D2:=Evaluate(y3,[x,y,x,y]);

H1:=D1; H2:=D2;

F1:=0; F2:=0;

for j:=1 to n do

if j le d+1 then

F1:=F1+R.j*x^(j-1);

else

F2:=F2+R.j*x^(j-d-2);

end if;

end for;

Nor:=NormalForm(Numerator(Evaluate(f,[H1,H2]) - Evaluate(F1/F2,[f,1])), I);

cf:=Coefficients(Nor); sd:=[];

for i in cf do sd:= sd cat [Denominator(i)]; end for;

ld:=Lcm(sd);

cf0:=[];

for i:=1 to #cf do cf0:=cf0 cat [R!(ld*cf[i])];

end for;

Proj:=ProjectiveSpace(R);

Sch:=Scheme(Proj,cf0);



136 M. Wroński et al. / High-degree Compression Functions on Alternative Models of Elliptic Curves...

dim:=Dimension(Sch);

if dim eq 0 then Rp:=RationalPoints(Sch);

for i in Rp do sq:=Eltseq(i); end for;

F1:=0; F2:=0;

for j:=1 to n do

if j le d+1 then

F1:=F1+sq[j]*x^(j-1);

else

F2:=F2+sq[j]*x^(j-d-2);

end if;

end for;

[F1, F2];

break d;

end if;

end for;

Appendix H.B Modifications for compression function f2(x, y) = xy on generalized

Hessian curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=x^3 + y^3 +1-b*x*y;

/*definition of compression function f*/

f:=x+y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3 := (y1-x2*y2*x1^2)/(x1*x2^2-y2*y1^2);

y3 := (x1*y1*y2^2 - x2)/(x1*x2^2-y2*y1^2)

//End of exchangeable parameters

Appendix H.C Modifications for compression function f18(x, y) = xy on generalized

Hessian curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=x^3 + y^3 +1-b*x*y;

/*definition of compression function f*/

f:=(x^3*y^3+x^3+y^3)/(x^2*y^2);

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3 := (y1-x2*y2*x1^2)/(x1*x2^2-y2*y1^2);

y3 := (x1*y1*y2^2 - x2)/(x1*x2^2-y2*y1^2)

//End of exchangeable parameters
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Appendix H.D Modifications for compression function f2(x, y) = y on Edwards curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

a:=1;

E:=a*x^2 + y^2 -1 - b*x^2*y^2;

/*definition of compression function f*/

f:=y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1*y2+y1*x2)/(1+b*x1*x2*y1*y2);

y3:=(y1*y2-a*x1*x2)/(1-b*x1*x2*y1*y2);

//End of exchangeable parameters

Appendix H.E Modifications for compression function f4(x, y) = y2 on Edwards curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

a:=1;

E:=a*x^2 + y^2 -1 - b*x^2*y^2;

/*definition of compression function f*/

f:=y^2;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1*y2+y1*x2)/(1+b*x1*x2*y1*y2);

y3:=(y1*y2-a*x1*x2)/(1-b*x1*x2*y1*y2);

//End of exchangeable parameters

Appendix H.F Modifications for compression function f8(x, y) = x2y2 on Edwards

curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

a:=1;

E:=a*x^2 + y^2 -1 - b*x^2*y^2;

/*definition of compression function f*/

f:=x^2*y^2;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1*y2+y1*x2)/(1+b*x1*x2*y1*y2);

y3:=(y1*y2-a*x1*x2)/(1-b*x1*x2*y1*y2);

//End of exchangeable parameters
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Appendix H.G Modifications for compression function f2(x, y) = xy on Huff’s curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y;

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1+x2)*(y1*y2+1)/((x1*x2+1)*(1-y1*y2));

y3:=(y1+y2)*(x1*x2+1)/((1-x1*x2)*(y1*y2+1));

//End of exchangeable parameters

Appendix H.H Modifications for compression function f4(x, y) = xy + 1
xy

on Huff’s

curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y+1/(x*y);

/* addition of points (x1,y1)+(x2,y2), depends on the curve equation */

x3:=(x1+x2)*(y1*y2+1)/((x1*x2+1)*(1-y1*y2));

y3:=(y1+y2)*(x1*x2+1)/((1-x1*x2)*(y1*y2+1));

//End of exchangeable parameters

Appendix H.I Modifications for compression function f8(x, y) = xy + 1
xy

− x
y
− y

x
on

Huff’s curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/

E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y+1/(x*y)-x/y-y/x;

/* doubling of point (x1,y1), depends on the curve equation */

x3:=(2*y1^2+2)*x1/((x1^2+1)*y1^2-x1^2-1);

y3:=(2*x1^2+2)*y1/((x1^2-1)*y1^2+x1^2-1);

//End of exchangeable parameters

Appendix H.J Modifications for compression function f16(x, y) given by equation (71)

on Huff’s curve

//Beginning of exchangeable parameters

/*definition of an elliptic curve E*/
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E:=a*x*(y^2-1)-b*y*(x^2-1);

/*definition of compression function f*/

f:=x*y+1/(x*y)-y/x-x/y+(y+1)/(1-y)*(x+1)/(1-x)+(y+1)/(y-1)*(1-x)/(1+x)+

(y-1)/(1+y)*(x-1)/(x+1)+(1-y)/(1+y)*(x+1)/(x-1);

/* doubling of point (x1,y1), depends on the curve equation */

x3:=(2*y1^2+2)*x1/((x1^2+1)*y1^2-x1^2-1);

y3:=(2*x1^2+2)*y1/((x1^2-1)*y1^2+x1^2-1);

//End of exchangeable parameters
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