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Abstract. The k-center problem is to choose a subset of size k from a set of n points such that
the maximum distance from each point to its nearest center is minimized. LetQ = {Q1, . . . , Qn}
be a set of polygons or segments in the region-based uncertainty model, in which each Qi is an
uncertain point, where the exact locations of the points inQi are unknown. The geometric objects
such as segments and polygons can be models of a point set. We define the uncertain version of
the k-center problem as a generalization in which the objective is to find k points from Q to
cover the remaining regions of Q with minimum or maximum radius of the cluster to cover at
least one or all exact instances of each Qi, respectively. We modify the region-based model to
allow multiple points to be chosen from a region, and call the resulting model the aggregated
uncertainty model.

All these problems contain the point version as a special case, so they are all NP-hard with a
lower bound 1.822 for the approximation factor. We give approximation algorithms for uncertain
k-center of a set of segments and polygons. We also have implemented some of our algorithms
on a data-set to show our theoretical performance guarantees can be achieved in practice.
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1. Introduction

k-center is a classic problem in the fields of computational geometry, data mining, and approximation
algorithms. Suppose a set of n points is given. The goal of metric k-center is to choose a subset of
size k called C from a set of n points such that the maximum distance from each point to its nearest
center is minimized.

Metric k-center is NP-hard and it has a tight 2-approximation algorithms in metric spaces [1].
According to Theorem 2.1 in [2], the lower bound on the approximation factor of k-center in the
Euclidean plane is 1.822.

The data uncertainty usually comes from the error in the precision of representing numbers [3],
the error in the measurement of input data such as GPS data [4] or other sources. Sometimes the prob-
ability of data is known based on previous data or measurement error [5, 6]. Uncertainty sometimes
affects the correctness of geometric algorithms, for example, a convex hull might not be convex at all
as a result of reduced precision. This has motivated a lot of uncertainty models over the years.

We introduce a new model for uncertainty, which we call the “aggregated uncertainty model”.
This allows the multiplicity of the realizations of an uncertain point to exceed one, which is a realistic
assumption for many applications, including anonymized data, continuous data such as GPS data or
sensor outputs, and repeated data which were summarized in the geometric version of the input as
a single point. In this paper, when we refer to uncertainty, it is the aggregated region-based uncer-
tainty model, which is the aggregated uncertainty model applied to a set of points in the region-based
uncertainty model (we have defined it later in this section).

Through the paper, the covering means the distance between the covered point and its closest
center is at most the radius of the covering, and the goal is to minimize the radius of covering. We
introduce and study the following two problems: (see Section 3 for formal definitions):

1. MinMax segments clustering: covering a set of n segments with k segments as the centers,
and the maximum distance from a point on a segment to its center is minimized. And,

2. Domain-restricted k-center of polygons: covering the points of a set of polygons by a set of k
points inside those polygons, and the maximum distance from a point on a polygon to its center
is minimized.

For each problem, we discuss two cases: the maximum version and the minimum version of the
problem. In the maximum version, the goal is to cover the whole input, while in the minimum version
the goal is to hit each input, i.e. to cover at least one point of each input.

Many variations of k-center have been studied before, in the following, we review the ones most
related to our problems as explained below.

k-center Variations In k-line center problem [7], the input is a set of lines and the goal is to find k
lines (or cylinders in higher dimensions) as centers that minimize the distance from each point to the
nearest line. In the same paper, a (1 + ε)-approximation algorithm for this problem in O(n log n) time
was given.

Another related problem is stabbing a set of line segments with two congruent squares of minimum
size[8]. The authors introduced a

√
2-approximation algorithm with running time O(n). They have



V. Keikha et al. / Clustering Geometrically-Modeled Points in the Aggregated Uncertainty Model 207

shown that their algorithm can also be applied to find two congruent disks of minimum size to cover
the line segments. Note that this is different from the MinMax segments clustering since our objective
is to find k segments from the input as centers, such that this selection minimizes the radius of the
covering.

A constrained version of our second problem is covering the area of a convex polygon P of n
vertices by k centers on its boundary so that each circle has the smallest possible radius [9]. The
authors of [9] provide a 1.8841-approximation O(nk) time algorithm, that first computes an approxi-
mate smallest bounding boxR for P , and solves the problem forR. Then, they translate the centers on
the boundary of R, to the points on the boundary of P . Later, a (1 + 7

k +O(ε))-factor approximation
algorithm for any ε > 0 and k ≥ 7 was given, which runs in O(n2(log ropt) + log 1

ε ) time [10].

Uncertainty Models Several formulations have been proposed for modeling data uncertainty over
the years, including epsilon geometry [3], the probabilistic model [5, 6], the region-based model [4],
and the domain-restricted models [11].

In the region-based model (which is equivalent to the locational model when each uncertain point
has a uniform distribution over its region), two types of regions where each point can occur are usually
discussed: the continuous and the discrete region. The problem asks for the minimum and maximum
solutions, defined as the solutions that work in the luckiest (best possible distribution based on the
objective function) and unluckiest (worst possible distribution based on the objective function) of
input points.

Several problems are studied in the region-based uncertainty model, where the objective was min-
imizing or maximizing the size of the area/perimeter of the convex hull [12], the area of the bounding
box, the length of width and diameter, and the area of the smallest enclosing disk [13], or the area of
the inscribing convex k-gon [14], etc. The smallest area/perimeter convex hull that contains at least
one point of each imprecise point also called polygon transversal. For a given set of line segments, the
smallest area/perimeter convex polygon that intersects all the segments can be computed inO(n log n)
time [15, 16, 17].

Uncertain k-center In the discrete model of uncertainty in which each uncertain point is modeled by
a discrete set of points with an assigned probability of occurrence, the k-center problem was studied
in [5, 18, 19], where, in all of them, the objective is to minimize the maximum expected distance
from the uncertain points. Also, the authors of [5, 19] only consider the problem in 1D space. The
1-center of a set of uncertain points also studied for rectilinear distances [20], where the uncertainty
of each point is modeled as a set of discrete points with assigned probability, but the objective is still
minimizing the maximum expected rectilinear distance to the uncertain points.

In the following, we briefly compare the introduced uncertainty model with the existing models.
In the region-based model, the objective is to compute the maximum and minimum possible feasible
solutions, with the existing error bound estimations. In the domain-restricted model, the objective is
to just find a class of feasible solutions. But, in the aggregated uncertainty model, the objective is to
compute a compact subset of the input which gives a guaranteed approximation for any exact instance
of the data, assuming the error bound estimation is given.
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Aggregated Uncertainty Model A common event in modeling uncertain data is when multiple
points are mapped to a single uncertain point. However, most existing uncertainty models allow only
a single point to be chosen from each uncertainty region. We remove this assumption from region-
based uncertainty models in our model, which is described in Definition 1.1. Also, in the current study,
by an uncertain point we mean a point that is specified by a region in which the point may lie.

Definition 1.1. (Aggregated Uncertainty Model (AGU))
For a set of uncertain points represented with regions Q1, . . . , Qn in R2 as inputs to a problem P in
the AGU model, a feasible solution for P is a solution which is feasible for all subsets of points in
∪ni=1Qi, such that at least one point from each set Qi is chosen. Indeed each uncertain point in the
AGU model is defined by a continuous region, and corresponds to at least one point in the real world.

An optimization problem in this model is solved by computing a minimum-cost solution with at
least one point in each region and a maximum-cost solution with the same constraints. i.e, the optimal
solution of the minimization version of a problem P in the AGU model is a minimum of the feasible
solutions.

k-Center in the aggregated uncertainty model. Since we allow multiple points to be chosen from
each uncertainty region, the uncertainty models of the input points and the chosen centers can be
different. In the domain-restricted k-center of polygons problem that we discussed in this paper, we
assume the minimum cost for the set of centers is intended. More specifically, we allow each center to
be an arbitrary point in an input polygon (uncertainty region). Both the minimum and the maximum
models for the output of an uncertainty problem, as defined for the region-based uncertainty models,
have been discussed for the input points.

Motivation As an application, suppose for a huge set of N data points we are allowed to draw a set
of n � N regression lines. Then each line segment in the line segment uncertainty model coincides
with one of these regression lines (which we have bounded the length of each line by the range of
the corresponding input points), where we require to classify all the points based on the computed
regression lines.

In the domain-restricted k-center of polygons, we assume each polygon represents a geometrical
label, e.g. areas on a map. Conversely, we may have a set of labeled points, and for the points
with equal labels, we have computed the corresponding region which here the region is modeled by a
polygon. Then the objective is to make a classification for such polygons, which is persistent for any
point which lies in the polygons in the future.

Contributions

We introduce a problem which we call multi-interval set cover, which appears as a sub-problem in
many problems, e.g., the wireless network problems in which each interval can be seen as a moving
sensor with bounded range [21, 22], or admissible choices in a game environment [23].

• In the MinMax segment clustering the objective is that of choosing k segments as centers to
cover the remaining regions modeled by a set of segments. We study both the maximization and
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the minimization versions that give some bounds on the radius of the clusters. We show that
k-center of segments is NP-hard by an approximation-preserving reduction from the set cover
problem, so it cannot be approximated by a factor better than Ω(log n) in polynomial time.
However, the approximation factor of the multi-interval set cover affects only the number of
clusters, which results in a bicriteria approximation for the problem. A summary of the results
is given in Table 1.

Table 1. The summary of the results. In our bi-criteria approximation for clustering, we assume βk centers
are used and the radius is αr. n is the number of input objects. The algorithms that assume the aspect ratio is
fixed are marked with ‡.

Problem Region Type β α Time Refs.

MinMax segment clustering (k = 1) Segments Max 1 1 O(n2) Alg. 3

MinMax segment clustering Segments Max O(log n) 1 + ε O(n
3

ε4
) Alg. 5‡

MinMax segment clustering Segments Max 1 ≥ 1.822 O(poly(n)) [2]

MinMax segment clustering (k = 1) Segments Min 1 1 O(n2) Alg. 6

MinMax segment clustering Segments Min O(log n) 1 + ε O(n
3

ε4
) Alg. 8

• We prove a special case of the geometric set cover problem, which we call the multi-interval
set cover problem is NP-hard, and prove it is NP-hard to approximate it by a factor better than
Ω(log n).

• In the domain-restricted k-center of polygons in the AGU model, we solve the k-center of a set
of polygons which is that of choosing k points from the input as the centers to cover the area
of the input polygons. We study both the maximization and the minimization versions that give
some bounds on the radius of the clusters over all possible distributions of exact instances. We
give constant factor approximation algorithms for this problem. The results are summarized in
Table 2.

Table 2. The summary of the results. In our bi-criteria approximation for clustering, we assume βk centers
are used and the radius is αr. n is the number of input objects. In polygon clustering problems, N is the total
complexity of the input polygons. The algorithms that assume the aspect ratio is fixed are marked with ‡.

Problem Region Type β α Time Refs.

k-Center Convex Polygons Max 1 2 + ε O(N + 1
ε2

) Alg. 10‡

k-Center Polygons Max 1 1 +
√
3
2 O(kN) Alg. 11

k-Center Polygons Max 1 ≥ 1.822 O(poly(n)) [2]

k-Center Polygons Min O(1) 1 nO(1) +O( 1
ε2

) Alg. 12‡

• We have implemented our algorithms for solving (1) the maximum version of domain-restricted
k-center of polygons of a data-set of size 4,491,143 of labeled points. (2) the existing algorithm
to solve this problem. We have not observed any significant loss of accuracy of the optimal
solutions by our algorithms in practice.
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2. Preliminaries

Bicriteria Approximation and Pseudo-Approximation In bicriteria approximation [24], two ob-
jective functions are approximated simultaneously by the solution of the algorithm. The approximation
factor is usually reported as a pair (α, β), where α is the approximation factor of the first objective
function and β is the approximation factor of the second objective function.

Smallest Enclosing Disk (SED) Given is a set P of points in the plane. The aim is to place a point c
that minimizes the maximum distance to the points of P . Then c determines the center of the smallest
enclosing disk of P . Megido [25] showed that the smallest enclosing disk can be computed in linear
time.

Uncertain Data In epsilon-geometry [3] the authors introduced a framework that provides algo-
rithms to determine the perturbation ε based on the rounding errors in which the output remains cor-
rect. If only the topology of the structure of the output needs to be kept, the value ε is called the
tolerance of the structure [26].

In most probabilistic methods, a probability distribution is assigned to each uncertain point. These
models are further divided into the locational models and the existential models. In the locational
model, each uncertain point always exists but its exact location is unknown. Then, the location of
each uncertain point will be determined by a specific probability distribution, but in the existential
model, each uncertain point has a certain exact location but its existence is unknown. We refer the
reader to [27, 28] and the references therein.

The domain-restricted uncertainty models [11, 29, 30] focus on the solution set of the problem
and therefore does not require an objective function, unlike the region-based models [12] whose re-
sults highly depend on the objective function. For example, the convex hull of the domain-restricted
uncertainty model is defined by an interior region and an exterior region, where the convex hull in-
cludes the interior region and is contained in the exterior region [11].

In the discrete model, each uncertain point is usually modeled by a discrete set of colored points,
and the objective is selecting one point from each color such that a specific measure of points is
minimized or maximized. There are several recent studies on this topic, see, e.g., [31].

Smallest Color-Spanning Disk Given a set of points with different colors, the goal is to find the
smallest disk that contains at least one point from each color [32]. There is a O(τn log n) time algo-
rithm, for τ colors by computing the upper envelope of Voronoi surfaces [33, 34].

Colorful k-Center The colorful k-center is a generalization of k-center where each point has a
color and there is a minimum requirement for each color that must be covered in the final solution. A
O(1)-approximation nO(c) time algorithm for this problem with c colors was given in [35].

ε-Net For any subset N ⊂ A and 0 ≤ ε ≤ 1, and a shape r from range space R, if the inequality
|r ∩A| ≥ ε|A| implies that r contains at least one point of N , then N is called an ε-net [36].
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When the range space is a set of disks, the number of independent samples for building an ε-net
is O(1ε log 1

εδ ), where 1 − δ is the probability of the resulting set to be an ε-net and ε > 0 is a given
constant (this is a special case of the theorem in [36]).

For computing the set cover of a set of objects with a fixed VC dimension d, there exists an
O(d log(nd))-approximation algorithm by using an ε-net, where n is the complexity of the optimal
solution. However, for a set of polygons of n vertices, the VC dimension at least equals 2n + 1,
which implies that the approximation factor of the set cover equals O((2n+ 1) log((2n+ 1)n) in the
worst-case.

Geometric Set Cover and Geometric Hitting Set In the geometric set cover problem, a range space
Σ = (X,R) is given as the input, where X is a set of points in Rd and R is a family of subsets of X .
The goal is to select a minimum-size subset C ⊆ R, such that any point in X is inside a shape in C.

The geometric hitting set problem, finds the smallest subset H ⊆ X , such that any shape in R
contains at least one point of H .

By reduction from facility location, the problem was proved to be NP-hard for disks in 2D, and
o(log n)-approximation algorithms for fat triangles, pseudo-disks, and other fat objects exist [37].
A randomized constant-factor approximation based on the concept of ε-nets exists for the geometric
hitting set and set cover of disks with O(n polylog(n)) time in R2 [38, 39]. The approximation factor
of hitting set was later improved to 13.4/ε [40]. Several PTAS algorithms for hitting set [41] and set
cover [42] of pseudo-disks also exist.

Ply A set of 1-dimensional intervals Si, i = 1, . . . , n are given, and U = ∪ni=1Si is the union of all
input intervals (the universe). The number of intervals Si, i = 1, . . . , n that contain a single point of
the universe interval is called the ply of that universe [43].

3. Problem definition

The k-center problem on points can be generalized to multiple versions on segments and polygons.
In one of our generalizations, all the points of an object which is chosen as a center can cover other
points. We study this model on a set of segments and call it the MinMax Segment Clustering. In the
other version, only k points chosen from input objects can act as centers and cover other points. We
study this model on a set of polygons and call it Domain-Restricted k-center of polygons.

3.1. MinMax segments clustering

Maximum Cost We are given a set S = {s1, . . . , sn} of n segments and we want to choose a subset
C of size k of S as the set of centers, such that the distance from any point on any segment in S to its
nearest center in C is minimized. In other words, the goal is to cover the points of all segments, using
points from k segments. An example of 1-center of a set of segments is shown in Figure 1.

Formally, the distance from a segment s to the centers from C is defined as follows:

d(s, C) = max
p∈s

min
c∈C

d(p, c).
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The objective function of the k-center is therefore:

min
C⊂S,
|C|=k

max
p∈s,
si∈S

min
c∈C

d(p, c).

Note that the distance defined over a set of segments (from other segments) is not a metric space.

c

s1

s2

s3

s4

s5

s6

s7

Figure 1. The maximum 1-center of a set of seg-
ments with C = {s6}. Note that the distance from
any point on any segment to s6 is minimized. The
point c is the center of 1-center.

c

s1s2

s3

s4

s5

s6

s7

Figure 2. The minimum 1-center of a set of seg-
ments with C = {s6}. Note that the distance from
at least one point of each segment to s6 is minimized.
The point c determines the center of the 1-center.

Minimum Cost For a given set of segments, the goal of the minimum k-center of segments is to
choose k of these segments such that the distance from at least one point of each segment to its nearest
center is at most r, and r is minimized. The objective function of the minimum k-center of a set S of
segments is as follows:

min
C⊂S,
|C|≤k

max
s∈S

min
p∈s

min
c∈C

d(p, c).

See Figure 2 for an example of 1-center of a set of segments.

3.2. Domain-restricted k-center of polygons

Maximum Cost Let Q = {Q1, . . . , Qn} be a set of polygons. The maximum k-center of polygons
solves the k-center problem on a set Q of polygonal shapes by finding a set C of k points inside the
input polygons as centers such that the maximum distance from each point inside these polygons to
its nearest center is minimized. An example of 2-center of polygons is shown in Figure 3.

Formally, for a set Q of polygons, the radius of clustering is defined as:

max
Qi∈Q

max
p∈Qi

min
c∈C

d(c, p),

and the objective function of the k-center of Q is:

min
C⊂(∪iQi),
|C|=k

max
p∈Qi,
Qi∈Q

min
c∈C

d(c, p).

In the domain-restricted k-center of polygons, the set of centers must lie inside the polygons.
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Q1

Q2 Q3

p2
p3

Figure 3. The maximum 2-center of three poly-
gons Q1, Q2 and Q3 with C = {p2, p3}. The
maximum distance from each point inside Q1, Q2

and Q3 to its nearest center is minimized.

p3

Q1

Q2

Q3

Figure 4. The minimum 1-center of three poly-
gons with C = {p3}. The maximum distances
from at least one point inside each of Q1, Q2 and
Q3 to the center p3 are minimized.

Minimum Cost If we require at least one point of each input polygon to be covered by k centers
chosen from points inside the input polygons, we call the problem minimum k-center of polygons. An
example of 1-center of polygons is shown in Figure 4.

Formally, the objective function of the minimum k-center of a set of polygons Q is:

min
C⊂(∪iQi),
|C|=k

max
Qi∈Q

min
p∈Qi

min
c∈C

d(c, p),

3.3. Multi-interval set cover

We define a restricted version of the geometric set cover problem over a set of intervals, and call this
special case multi-interval set cover. Formally, the problem is defined as follows:

Definition 3.1. (Multi-Interval Set Cover)
A set of n sets of intervals Qi, i = 1, . . . , n are given. The goal of multi-interval set cover is to find
the minimum size subset of sets Qi, i = 1, . . . , n, such that ∪ni=1 ∪s∈Qi s is covered.

Two differences between multi-interval set cover problem and the well-known geometric set cover
of intervals are first in the elements of the universe, which in the geometric set cover of intervals are
points, and in the multi-interval set cover problem are intervals; and second, in the number of intervals
in each set: each set in the multi-interval set cover is a set of intervals, while each set in the geometric
set cover of intervals is a single interval (and therefore a continuous set of points).

We introduce this problem and prove that it is NP-hard in Definition 4.3. Also, we give approximation
algorithms for this problem, using a reduction from set cover in Section 4.1.2.

4. MinMax segments clustering

Here, we discuss the k-center of a set of segments, where all the points on a set of segments must be
within distance at most r to their nearest point on a subset of size k of the segments, such that r is
minimized.
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The Hardness of MinMax Segment Clustering Observe that the distance between the line seg-
ments is not symmetric as we have illustrated an example in Figure 5. Recall that we define the
distance between a segment si to sj as the distance between the furthest point of si to the closest point
of sj . Also, the triangle inequality no longer holds for this problem; consider a line segment si and two
points (degenerate segments) sj and sk on a line which is intersecting si, so that each of sj and sk lies
on one side of si, and d(si, sj) and d(si, sk) is a very small positive constant, as we have illustrated
in Figure 6. Observe that d(sj , sk) > d(si, sj) + d(si, sk). Therefore, the proof of metric k-center
(including Euclidean k-center) no longer applies to this case, and we need to prove the approximation
factor.

si
sj

Figure 5. The distance d(si, sj) (shown in
green) does not equal to d(sj , si) (shown in
purple).

si

sj

sk

Figure 6. The distance d(sj , sk) (shown in purple) is
larger than d(si, sj)+d(si, sk); and the triangle inequal-
ity does not hold.

4.1. The maximum k-center

4.1.1. The hardness of maximum k-center

We define a version of the set cover problem for intervals and prove its hardness. Then, we use it to
prove the hardness of k-center of segments beyond the lower bound 1.822 from the k-center of a set
of points [2], which holds for polygons because a point is a degenerate polygon.

si

Figure 7. The Minkowski sum of a segment si with a disk of radius r. Only the blue segments are covered by
selecting si as a center.

In Algorithm 1, ⊕ denotes the Minkowski sum.

Lemma 4.1. The time complexity of Algorithm 1 isO(n2+T (n)), where T (n) is the time complexity
of the multi-interval set cover.

Proof:
Computing the Minkowski sum of a segment with a disk of radius r takes O(1) time (see Figure 7 for
an illustration), and finding the intersections between the resulting shape with n − 1 segments takes
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Algorithm 1 Reduction from k-Center of Segments to Multi-Interval Set Cover
Input: A set of segments S, an integer k, a constant r
Output: k segments as centers

1: for si ∈ S do
2: for sj ∈ S do
3: Qj ← Qj ∪ { the part of sj inside si⊕ disk of radius r}.
4: C= the solution of multi-interval set cover with {Qi}ni=1 as sets and S as the universal set.
5: return C

O(n) time. The nested for loops are repeated O(n2) times, each with O(1) time. The last step of
the algorithm runs an instance of the multi-interval set cover. So, the overall time complexity of the
algorithm is O(n2 + T (n)). ut

Theorem 4.2. Algorithm 1 computes a solution with αk centers, if C is an α-approximation of multi-
interval set cover.

Proof:
The set Qi is the set of segments covered by radius r of a segment si. So, the minimum number of the
sets Qi, i = 1, . . . , n that covers all other segments is the set of centers si with the same indices. So,
the number of centers is the number of sets in C. So, an α-approximation for multi-interval set cover,
is a solution with αk centers and radius r. ut

Based on Algorithm 1, in the clustering problem for segments, the ply of the intervals is equal to
the number of segments that can cover the same point on a segment.

4.1.2. The hardness of multi-interval set cover

In this case, each member of the universal set is an interval and each set of covers is also a set of
intervals.

a b

c

Figure 8. 1-Dimensional intervals a, b, c, such that c ⊂ (a ∪ b).

For three intervals a, b, c such that c is a subset of the union of a and b (See Figure 8), we have:

{a} ∪ {b} = {a} ∪ {b} ∪ {c}.

Therefore, the set cover of sets of intervals is different from the set cover of sets of points.

Theorem 4.3. The multi-interval set cover is NP-complete.



216 V. Keikha et al. / Clustering Geometrically-Modeled Points in the Aggregated Uncertainty Model

Proof:
The decision version of multi-interval set cover can be solved by sorting the intervals in the sets and
sweeping the intervals in the universe while keeping the last covered point of the interval. So, the
problem is in NP. It remains to prove the NP-hardness.

We proceed by a reduction from set cover. Let U be the universal set and S1, . . . ,Sn be the set
of sets in the set cover instance. Map the points of U to the interval [0, n] on the real line, where the
interval [i − 1, i] corresponds to the i-the member of U . Any set Si can then be represented as a set
of intervals; see Figure 7 for an illustration. This is an instance of the multi-interval set cover problem
with [0, n] as the universe and the intervals of Si, i = 1, . . . , n as the sets of intervals. Conversely, it
is easy to see that the optimal solution of this instance of multi-interval set cover results in an optimal
solution of the set cover. So, the current multi-interval set cover instance is equivalent to set cover. ut

Theorem 4.4. The reduction of Definition 4.3 is approximation-preserving.

Proof:
In the multi-interval set cover, the objective function is the number of segments in the universal set
that are covered by the chosen sets. Each member of the universe in the set cover is an interval in
the multi-interval set cover in the reduction of Definition 4.3. Therefore, the objective function of set
cover is preserved by the reduction. ut

Approximating multi-interval set cover

Based on Definition 4.3, the best possible approximation factor for this problem is Ω(log n), as
well [1]. For low frequency set cover, f -approximation, where f is the maximum frequency of an
element is possible [1].

Algorithm 2 Approximate Multi-Interval Set Cover
Input: A set of 1D intervals Qi, i = 1, . . . , n
Output: A subset of Q

1: U= the set of disjoint intervals with endpoints from the endpoints of intervals in Qi, i = 1, . . . , n
2: Si= the set of intervals in U that are covered by the intervals of Qi, i = 1, . . . , n
3: Solve set cover for Si, i = 1, · · · , n
4: return the indices of the sets from the previous step.

Theorem 4.5. Algorithm 2 solves the multi-interval set cover problem with the same approximation
factor as the set cover.

Proof:
Based on the construction of set U , the covered intervals are the same as that of ∪ni=1Qi, i.e. ∪u∈Uu =
∪ni=1 ∪q∈Qi q. The construction of Si also shows that ∪s∈Sis = ∪q∈Qiq. So, a set cover for ∪u∈Uu
and Si, i = 1, . . . , n is a set cover for ∪ni=1 ∪q∈Qi q and Qi, for i = 1, · · · , n.
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The opposite also holds, since the unions of intervals in each of the discussed sets are equal to
their corresponding sets in the other instance. As a result, the objective function, the solution set and
the approximation factor of these problems are preserved. ut

Lemma 4.6. Algorithm 1 takes O(n3) time, if the O(log n)-approximation algorithm [1] is used.

Proof:
The universe is the union of the intervals resulting from cutting each of the n input intervals at the
endpoints of other n− 1 intervals. So, it has size at most O(n2). The number of steps of the set cover
algorithm is at most n, since at each step of the algorithm at least one set is chosen. Removing the
elements of the universe covered at each step takes O(n2) time. So, the overall time complexity of the
algorithm is O(n3). ut

The time complexity of the algorithm for low frequency (equivalent to low ply in this setting) is the
complexity of solving the corresponding linear program [1], therefore, it is different from the time
complexity of the O(log n)-approximation algorithm discussed in Definition 4.6.

4.1.3. Approximating the radius of k-center

1-center In the case where the input is a set of segments and k = 1, the problem is equivalent to
compute the SED of the segments whose center is restricted to lie on a segment. The SED in this case
be determined by the endpoints of the segments.

Algorithm 3 1-Center
Input: A set of segments S
Output: A center from P

1: for p ∈ P do
2: dp = maxs∈P maxq∈s d(p, q)

3: return arg minp∈P dp.

Computing the distance from a segment to n − 1 other segment takes O(n) time. Algorithm 3
for each input segment, computes its distance to all other segments, so, the total running time of this
algorithm is O(n2).

Now, we compute a set of candidates for approximations of the radius of the k-center of a set of
segments. These values are used in the latter sections in a parametric pruning algorithm to find the
corresponding set of centers. Note that ε needs to be smaller than d(si, sj)/2, for any si, sj ∈ S.
Computing the smallest pairwise distance takes O(n log n) time by constructing a Voronoi diagram
for segments (Line 1).

Theorem 4.7. Algorithm 4 finds a set that solving the k-center problem on that gives a (1 + ε)-
approximation for the radius of the k-center of a set of segments.
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Algorithm 4 Finding r
Input: A set of segments S, an integer k, a constant ε
Output: A set of radius R

1: Discretize the segments of S with chunks of radius ε0
2: R= the pairwise distances between any pair of vertices from the previous step.
3: return R

Proof:
The distance between an optimal center and a member of its cluster is modified by at most 2ε by
discretization, assuming that ε is smaller than the minimum of R. The optimal cost is the distance
between an endpoint of a segment with a point on another segment. Therefore, after discretization,
this distance is at most multiplied by 1 + 2ε. Scaling ε by a constant factor concludes the proof. ut

Lemma 4.8. Algorithm 4 takes O( 1
ε4

) time.

Proof:
The number of points after discretization is O( 1

ε2
). Taking pairs of these distances can be done in(O( 1

ε2
)

2

)
= O( 1

ε4
) ways. Computing the distance between a pair takes O(1) time. So, the time com-

plexity of the algorithm is O( 1
ε4

). ut

Approximate k-center

We discretize the segments to find the candidates for r to use the set cover algorithm.

Algorithm 5 Approximate k-Center of Segments
Input: A set of segments S, an integer k, a constant ε
Output: A set of k segments as centers C

1: R = Run Algorithm 4.
2: for r ∈ R do
3: C = Run Algorithm 1 using the set cover algorithm of [1].
4: return C

Theorem 4.9. Algorithm 5 gives a solution with O(k log n) centers and radius r(1 + ε) for k-center
of segments.

Proof:
Using Definition 4.5, the O(log n)-approximation for set cover can be used to solve the multi-interval
set cover with the same approximation factor. This means that Algorithm 5 finds at most O(k log n)
centers, according toDefinition 4.2. The set of radii from Algorithm 4 contain a (1+ε)-approximation
for the optimal radius as proved in Definition 4.7. ut

Theorem 4.10. Algorithm 5 takes O(n
3

ε4
) time.
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Proof:
The time complexity of the algorithm is the time complexity of Algorithm 4 which is O( 1

ε4
) based on

Definition 4.8, plus |R| = O( 1
ε4

) times the complexity of Algorithm 1 using the geometric set cover,
which is O(n3). So, the algorithm takes O(n

3

ε4
) time. ut

4.2. Minimum cost k-center

In the case where k = 1, the objective is to find a segment si such that the maximum distance of any
point on any other segment to si is minimized. This problem is equivalent to compute a radius r for
which the Minkowski sum of a segment with the disk of radius r intersects the other segments.

to do: add the Minkowski sum step to algorithm 6

Algorithm 6 Minimum 1-Center of Segments
Input: A set of segments P
Output: A center from P

1: for p ∈ P do
2: dp = maxs∈P mins∈q d(p, q)

3: return arg minp∈P dp.

Theorem 4.11. Algorithm 6 finds a minimum 1-center in O(n2) time.

Proof:
The time required for computing the radius r for which the Minkowski sum of a segment p with the
disk of radius r intersects all segments is O(n). So, the overall time complexity of the algorithm is
O(n2). ut

We modify the algorithms for k-center of segments (Algorithm 5) to solve the minimum k-center
of segments problem.

As before, in Algorithm 7, ⊕ denotes the Minkowski sum.

Algorithm 7 Reduction from Minimum k-Center of Segments to Multi-Interval Set Cover
Input: A set of segments S, an integer k, a constant r
Output: k segments as centers

1: for si ∈ S do
2: for sj ∈ S do
3: if si⊕ disk of radius r intersects with sj then
4: Qj ← Qj ∪ {sj}.
5: C= multi-interval set cover with {Qi}ni=1 as sets and S as the universal set.
6: return C
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Algorithm 8 Approximate Minimum k-Center of Segments
Input: A set of segments S, an integer k, a constant ε
Output: A set of k segments as centers C

1: R = Run Algorithm 4.
2: for r ∈ R do
3: C = Run Algorithm 7 using the set cover algorithm of [1].
4: return C

Theorem 4.12. Algorithm 8 gives a solution with O(k log n) centers and radius r(1 + ε) for k-center
of segments.

Proof:
The proof is similar to Definition 4.9, the only difference is that it is enough if one point of a segment
is within distance r of a segment, which was modeled in Algorithm 7. ut

Remark. We note that since a segment can be considered as a polygon with zero area, the presented
algorithms in the next section can be applied to solve the MinMax segment clustering problem in the
AGU model. The difference is that the centers are segments in the MinMax segment clustering, while
they are points in the domain-restricted k-center of polygons.

5. Domain-restricted k-center of polygons

5.1. Maximum k-center

For the maximum k-center of polygons for k = 1, the center of SED of the vertices might not fall
inside any of the polygons. We give a 2-approximation algorithm for this problem (Algorithm 9).

Algorithm 9 1-center
Input: A set of polygons P
Output: A center from P

1: c = the center of the SED of points of P and the vertices of the polygons in P
2: return the nearest neighbor of c in P

Theorem 5.1. The approximation factor of Algorithm 9 is 2.

Proof:
By definition, the radius of the smallest enclosing disk (r) is a lower bound for 1-cluster. If the center
of the smallest enclosing disk falls inside the polygon, that is the optimal solution. The distance from
any point to the center of the smallest enclosing disk is at most its radius. Let o denote the center of
the optimal 1-center and p be the nearest neighbor (point) of c in P . Then, using triangle inequality,

d(p, o) ≤ d(o, c) + d(c, p) ≤ 2r. ut
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Theorem 5.2. The time complexity of Algorithm 9 is O(n) expected time and O(n log n) worst-case
time.

Proof:
Computing the nearest neighbor of a point to a set of segments takes O(n) time. Also, the SED can
be computed in expected linear time and worst-case O(n log n) time, so the total time complexity is
O(n) expected time and O(n log n) worst-case time. ut

5.1.1. Maximum k-center of convex polygons

If we solve the problem with a naive grid algorithm, we may miss the covering of the sharp corners of
the boundary of the polygons. To treat these cases, we first compute the Minkowski sum of a polygon
with a square of side length ε, and then consider the input on a grid with cell length ε. This guarantees
at least one vertex is chosen for the sharp corners. See Figure 9 for an illustration. But the rounded
polygons on the grid may impose some centers which do not lie on the polygons. To avoid this, we
map the vertices of the rounded polygons to the closest point of the polygon to satisfy the domain-
restriction assumption (Line 11 and 12 of Algorithm 10). We note that ε needs to be smaller than ri

k ,
where ri denotes the radius of the SEC of the vertices of Pi, for i = 1, . . . , n.

Pi

Mi

Figure 9. A polygon Pi and the result of the Minkowski sum of Pi and a square of side length ε. The cross
points denote the contributed points by Pi on the discretization.

We show that applying any k-center algorithm on the union of the grid points lying within the
polygons and the mapped points of the grid to the boundary of the polygons (in sharp corners) solves
our problem. If we use the presented algorithm of [1], we come up with a 2 + ε approximation.

Theorem 5.3. The approximation factor of Algorithm 10 is 2 + ε, for fixed aspect ratio and ε and its
time complexity is O(

∑n
i=1 |Pi|+

1
ε2

).

Proof:
Since ε ≤ ri, at least one vertex of a grid with cell length ε falls inside Mi. Therefore, all the points
of Pi are covered by disks of radius ε centered at the vertices of the grid. Mapping a grid vertex (x)
to its nearest neighbor in Pi (y) still covers the same area of Pi, but with radius 2ε. So, a clustering of
Y with radius r, is a clustering of X with radius r + ε, and a clustering of Pi with radius r + 2ε. Let
r∗ denote the optimal radius of the k-center of ∪ni=1Pi. Since Y is a subset of the points of polygons,
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Algorithm 10 k-Center of Convex Polygons
Input: A set of polygons P , an integer k, a constant ε
Output: A set of k centers inside P

1: for i = 1, . . . , n do
2: Mi = the Minkowski sum of Pi with a disk of radius ε.
3: build a grid of cell length ε
4: X = compute the vertices of the grid inside the shapes in M
5: S = ∅
6: for x ∈ X do
7: if x /∈ P then
8: for Mi ∈M,x ∈Mi do
9: Y = ∅

10: y = the nearest neighbor of x in Pi.
11: Y ← Y ∪ {y}
12: S ← S ∪ Y .
13: C = an approximate k-center of S ∪X
14: return C

the radius of k-center of Y is less than or equal to the k-center radius of ∪ni=1Pi, i.e. r ≤ r∗. The
approximation factor of the algorithm is therefore:

r + 2ε

r∗
≤ 1 +

2ε

r∗
≤ 1 + 2ε.

For the smallest possible ri, i = 1, . . . , n we have ri
k ≤ 2r∗ which is because each Pi can be

covered by multiple centers, and the radius of the clusters are at least ri
2k . Knowing ε ≤ mini

ri
k , we

prove the right side of the inequality. Since we compute a 2-approximation of the k-center of Y , the
overall approximation factor is 2(1 + 2ε) = 2 + 4ε.

Computing the circumscribed circle of Pi takes O(|Pi|) time. So, computing the minimum of the
radii of these circles takes O(

∑n
i=1 |Pi|). The time complexity of computing a k-center for the set

of grid points is O(k|Y |) = O(k|X|). Also, we have that: |X| =
∑n

i=1
Area(Pi)

ε2
, where Area(Pi)

denotes the area of polygon Pi. So, the total time complexity of the algorithm is: O(
∑n

i=1 |Pi| +∑n
i=1 Area(Pi)

ε2
). By scaling the bounding box of the input to have a unit area, i.e.

∑n
i=1 Area(Pi) = 1,

and adjusting the value of ε to be ε′/4, where ε′ is the input value for ε, the bounds in the statement of
the theorem are achieved. ut

5.1.2. Maximum k-center of abitrary polygons

For a set of arbitrary polygons, we first compute a triangulation ofPi for i = 1, . . . , n. Let T denote the
set of all triangles of Pi for i = 1, . . . , n. We apply Algorithm 10 on the set T , and compute a discrete
set of Θ(nk) points. We show that applying a k-center algorithm with (e.g., with approximation factor
2) on the discrete set gives a 6 + ε approximation of the optimal solution.
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Algorithm 11 Approximation Algorithm for the k-Center of arbitrary polygons
Input: A set of polygons P , an integer k
Output: A set of centers from P

1: T= the set of triangles in a triangulation of the input polygons
2: X= the output of Algorithm 10 on the set T
3: C = approximate k-center of X
4: C ′ = the closest point of each center in C to a point of a polygon of P
5: return C

Theorem 5.4. The approximation factor of Algorithm 11 is 6 + ε.

Proof:
LetR(Z) denote the optimal radius of the k-center of the points inside a set of shapes Z. If Z is a set
of points, R(Z) is the optimal radius of the points in Z. If Z is a polygon, R(Z) denote the radius
of the k-center of the points inside Z. If Z is a set of polygons, R(Z) denote the optimal radius of
the k-center of all the points inside the polygons Z. The optimal centers of the k-center of a convex
polygon lie inside it, since otherwise there is a center inside it with a lower or equal radius. The set of
points of each triangle Ti ∈ T is a subset of the points of P , so, they are covered by the centers of P
with radius at mostR(P ). Based on the optimality ofR(Ti), we have:

R(Ti) ≤ R(P ).

Taking the maximum over all such triangles gives the following bound:

max
∀Ti∈T

R(Ti) ≤ R(P ).

Similarly, the centers of the k-center of Ti’s lie inside P , so, X ⊆ P and we haveR(X) ≤ R(P ).

Running Definition 5.1 with approximation factor 2 + ε on the triangles, gives the set X . To
guarantee the centers chosen by the algorithm lie inside the input polygonal domain, we compute a
k-center on set X , where only points of X can be chosen as centers. The approximation factor of this
problem with the k-center using arbitrary points of the plane as centers is 2, andR(X) ≤ R(T ). Using
a 2-approximation k-center algorithm onX , results in a 4-approximation, and since the approximation
factor of Algorithm 10 is 2 + ε, Algorithm 11, and applying the triangle inequality gives a (6 + ε)-
approximation forR(P ):

max
Ti∈T

R(Ti) + 2R(X) ≤ (2 + ε)R(P ) + 2(2R(P )) = (6 + ε)R(P ). ut

5.2. Minimum cost k-center

In Algorithm 12, first we build a grid similar to the maximum k-center (Algorithm 10) with resolution
ε = min(ε,minp,q∈P minu∈p,v∈q d(u, v)), then we use colorful k-center to find a k-center that covers
at least one point from each polygon. The limitation is that colorful k-center has only been solved for
a constant number of colors in polynomial time [35], which limits the number of input polygons to a
constant.
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Algorithm 12 Approximate Minimum k-Center of Polygons
Input: A constant size set of polygons P , an integer k, a constant ε > 0
Output: A set of centers

1: Build a grid of cell length ε
2: Mi = Pi⊕ disk of radius ε
3: Ti = the closest point of ∪jPj to the vertices of the grid inside Mi, for Pi ∈ P
4: Color the points in Ti, for Pi ∈ P with color i.
5: c = compute the colorful k-center of the colored points.
6: return c

Theorem 5.5. Algorithm 12 is a O(1)-approximation for minimum k-center.

Proof:
To guarantee that the vertices of the grid cover the area of each polygon with distance at most O(ε),
we compute the grid vertices inside the Minkowski sum of each polygon with the disk of radius ε. To
satisfy the constraint that the centers must be a subset of input polygons, we replace these points with
their nearest neighbors in the input polygons. Computing the solution on the vertices of a grid adds a
1+ ε factor to the approximation. The approximation factor of colorful k-center is O(1) for a constant
number of colors. ut

6. Experimental studies

We implement our algorithm for maximum k-center in the aggregated uncertainty model (Algo-
rithm 11) and compare the results to the k-center of points ([44]) on a big network data-set [45, 46],
for k = 20 and ε = 5, where ε is the grid cell length.

The approximation factors of the k-center algorithms for big data is 4 for the metric case [44], and
2 + ε for the doubling metrics, including low-dimensional Euclidean space [47, 48]. Since we want
a small summary size, we use the 4-approximation algorithm with a summary of size O(kL) instead
of the (2 + ε)-approximation algorithms with summaries of size ω(kL

ε2
), where L is the number of

partitions. Algorithm 11 creates a summary of size O( L
ε2

), which is still feasible in practice. Note that
ε is about 1/10 times the radius in our experiment and halving the value of ε can multiply the size of
the summary by at most the doubling dimension of the Euclidean plane, which is 5.

The data-set used in our experiments is the time and location information of check-ins made by
users of the Brightkite social network. It has 58,228 users and 4,491,143 check-ins of these users over
the period of Apr. 2008 - Oct. 2010. It is available as a part of the SNAP network data-sets [46]. The
number of users with at least one check-in the aforementioned period of time is 51,685. Each user had
at most 325,821 check-ins.

In then implementation of Algorithm 11, we also use a test data set, that contains the grid points
which lie inside the convex polygons. We compare the output of our algorithm on both the test data
set and the convex polygons itself.
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We consider each check-in data as a point in 2D space. We use the maximum k-center algorithm
of polygons to cluster the users into k groups. To summarize the data of each user, we compute
their convex hull. As the test data-set, we use the vertices of the grid of cell-length ε that fall inside
each convex hull as possible future locations of that user. After computing the convex-hulls, the total
number of vertices was 189,355, which is an almost 23.7% data-compression ratio.
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Figure 10. The approximate k-center of vertices using the 4-approximation k-center algorithm for points [44]
for k = 20 (blue). The red points are the summary of points for k = 20 after the first round, which are the union
of k-centers of the partitions.

In Figure 10, the summary and the centers of the algorithm of [44] are shown in red and blue,
respectively. Figure 11 shows the centers of Algorithm 11 and the summary of the algorithm of [44].
In Figure 12, the output of Algorithm 11 for clustering the convex polygons is depicted. The red points
are the vertices of the grid inside the convex hull of the convex polygons, and the blue points are the
centers of the algorithm. The result of the clustering of the points of the grid (test data set) with the
centers computed by the algorithm presented in [44] is illustrated in Figure 13.
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Figure 11. The approximate k-center of polygons computed by sampling equidistant points (grid vertices)
inside the shapes and then clustering them Algorithm 11, for k = 20 and ε = 5 (blue). The red points are
the summary of 4-approximation k-center of points [44] for k = 20 and show the centers computed by this
algorithm are good centers for the summary points computed in the first round of [44].

In the figures, only the grid points that lie inside the convex polygons are shown (in red). The
computed centers are shown in blue. See Table 3 for the summary of the results.

Table 3. The summary of the experimental results.

k ε data-set alg summary size radius

20

- input [44] 580,327 r = 49.7757

ε = 5 input Algorithm 11 135,890 r = 51.76

- test [44] 580,327 r = 65.1846

ε = 5 test Algorithm 11 135,890 r = 51.76
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Figure 12. The approximate k-center of polygons by sampling equidistant points (grid vertices) inside the
shapes and then clustering them Algorithm 11, for k = 20 and ε = 5 (blue). The red points are the summary
of Algorithm 11 for ε = 5 that are shown in the figure as the representatives of the input shapes which show the
polygonal shape of the input.

In our experiments, the radius of covering the input points are almost the same, which implies the
effective sampling of our algorithm in practice. However, the set of vertices of a grid with cell-length
ε inside each convex polygon has also been tested for the centers computed by the algorithm of [44],
which require a slightly larger radius than the centers computed with our algorithm.

7. Conclusions and open problems

In this paper, we introduced a new clustering problem so-called MinMax segments clustering. Our
algorithms for solving this problem are mostly bicriteria approximations. Extending our model to
other shapes such as polygons and disks remains open, as well as improving the approximation factors
of our algorithms. Solving these problems in the presence of outliers can also be interesting.
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Figure 13. The approximate k-center of points computed using the 4-approximation algorithm for k-center
of points [44], for k = 20 and ε = 5 (blue). The red points are the summary of Algorithm 11 for ε = 5 and
approximately represent the input shape. Note that the blue points are the centers of the disks that cover the red
points, and the clustering radius is the maximum distance between a red point and its nearest blue point.

Also, we introduced the multi-interval set cover and proved it is NP-hard, and gave approximation
algorithms for it, which can be of independent interest.

We generalized the region-based uncertainty model to allow multiple points from each region, to
allow multiple centers to be chosen from the same region. Assuming the input points are in the region-
based uncertainty model with polygonal regions, we gave bicriteria approximation algorithms for the
domain-restricted k-center of polygons in this model.

Further directions of research about aggregated uncertainty models can be adding weights to
points, that are useful in problems where the number of points matters, such as k-means and ca-
pacitated clustering.
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