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Abstract. Crystal Structure Prediction (CSP) is one of the central and most challenging problems
in materials science and computational chemistry. In CSP, the goal is to find a configuration of
ions in 3D space that yields the lowest potential energy. Finding an efficient procedure to solve
this complex optimisation question is a well known open problem. Due to the exponentially large
search space, the problem has been referred in several materials-science papers as “NP-Hard
and very challenging” without a formal proof. This paper fills a gap in the literature providing
the first set of formally proven NP-Hardness results for a variant of CSP with various realistic
constraints. In particular, we focus on the problem of removal: the goal is to find a substructure
with minimal potential energy, by removing a subset of the ions. Our main contributions are NP-
Hardness results for the CSP removal problem, new embeddings of combinatorial graph problems
into geometrical settings, and a more systematic exploration of the energy function to reveal the
complexity of CSP. In a wider context, our results contribute to the analysis of computational
problems for weighted graphs embedded into the three-dimensional Euclidean space.
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1. Introduction

One of the central and most challenging problems in materials science and computational chemistry
is to predict the structure of a crystal, given the set of ions composing it. At a high level, the goal there
is to find the “best” configuration structure of ions in a three-dimensional box. More specifically, the
input of the problem consists of a chemical formula, and a function that maps configurations of the
ions – that agree with the chemical formula – in the Euclidean three-dimensional space to energy. The
objective is to find a structure that minimises the average energy per ion, since this structure is more
likely to correspond to a stable material [2]. This problem, termed Crystal Structure Prediction (CSP),
has remained open due to the complexity of solving it optimally [3] and the combinatorial explosion
following a brute-force approach. There are many previous approaches to this problem, largely based
on heuristic techniques [4, 2, 5, 6, 7], however these lack the ability to guarantee optimality within any
factor and moreover they are computationally very demanding.

In the most generic formulation of CSP there are many degrees of freedom, due to both the physical
constraints of the setting, such as the interaction between types of ions, and the optimisation parame-
ters of the model such as the number of ions to place, and their positions. Furthermore, real crystals are
based on periodic tessellations of 3D space with unit cells, parallelepiped periods composed of ions,
whose size and shape may also be changed. Even when the size with respect to both the size of the unit
cell, and the number of ions are restricted, the search space for this problem is still exponential. Due
to this, CSP has, incorrectly, been referred to in several computational-chemistry papers as “NP-Hard
and very challenging” [8]. However, from the computational-theory viewpoint the argument that the
search must be done in a set of exponential size does not imply NP-Hardness.

Two results closely related to the NP-Hardness of energy minimisation can be found in [9] and
in [10]. In [9], within the context of the Ising model, the authors show NP-Hardness for placing ±1
charged vertices on a graph taking into account only interactions between connected vertices. The
reduction works on a grid, where each vertex has degree at most 6, making the interaction very local.
While this is close to CSP, the limitation to only very local interactions within the context of the
electrostatic charge reduces the relevance of this result to CSP. In [10], it was shown that the problem
of placing ions for some given positions is in NP. However, the reduction goes only one way, and thus
shows only containment in NP, and does not imply the NP-Hardness of the problem. While both of
these results are closely related, neither of them provides a satisfying answer to the CSP problem.

In our work, we consider several special variants of CSP and provide a few alternative reasons
for the hardness of closely related problems. We take inspiration from hard combinatorial problems
in graph theory and embed several NP-Hard problems on graphs into complete weighted graphs in
Euclidean space. These can be seen as optimisation problems for weighted geometric graphs with a
non-linear objective function. We focus on the problem of removal; which can be seen as a combi-
natorial variant of CSP. Here, the input is a configuration of ions, and the goal is to remove a subset
of them such that the interaction energy – the pairwise energy between each pair of ions – among
the remaining atoms is minimised. This can be seen as a problem of removing vertices of a graph
which results in a subgraph satisfying some specific property. These types of problems have been
intensively studied in the combinatorial graph theory. In [11], it was shown that is is NP-Complete to
decide if a removal of k vertices from a graph leaves a forest, or planar graph. In [12] and [13] this
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was extended to further properties showing NP-Completeness for bipartite graphs and for non-trivial
hereditary properties.

An alternative view of the removal problem is as variant of CSP, where the available positions of
the ions correspond to points on a discrete grid/lattice of 3D Euclidean space. For example, we can
find the optimal structure for an instance of CSP as follows. Firstly, we can unrealistically place several
ions from which we want to build a new structure at every position of the discrete space (or even at
unrealistically close distance to each other at every position). Then we need to find a set of ions that
should be removed to minimise the energy function. Due to the nature of the energy function, when
the goal is to minimise the potential energy, the overlapping ions must be removed and thus we get
a realistic structure. In our variant of removal problem, for which we show NP-Hardness results, an
initial configuration of ions on this grid, from which we remove ions, is part of the input and has only
vacant positions or positions with a single ions in the discrete three-dimensional-Euclidean space.

In this paper the interaction is restricted with respect to the energy function to a single unit cell
only. The primary reason for this restriction is that the electrostatic potential over the infinite series
when expressed naively converges conditionally [14]. While there are approaches that mitigate this
issue, they are difficult to analyse theoretically. An alternative approach, used here, is to consider a
sufficiently large part of a crystal as a unit cell such that the local interactions within the cell provide a
good approximation of the total energy. By showing that this problem is hard even in this simple case,
we provide a strong evidence that the general case is hard as well.

Our contributions. Our main goal is to initiate the study of CSP through the lens of Theoretical
Computer Science and explore a more systematic way of studying the energy function that could
reveal the computational complexity of CSP. Towards this, we give the first correct NP-Hardness
results with more realistic constraints for CSP such as those inspired by [15]. In addition, we provide
new embeddings of combinatorial problems on graphs in geometrical settings. Our results can be seen
as part of a more general problem of removing vertices from a weighted graph embedded into 3D
Euclidean space. This type of results are more difficult to obtain compared to other metric spaces.

There are two main technical challenges in relation to the graphs that we consider. Firstly, they are
complete. Secondly, they are “Euclidean”, i.e., the edges are weighted proportional to the Euclidean
distance between their vertices. In this restricted setting, many classical NP-Hard problems are much
harder to embed. There are only a few NP-hardness results about low dimensional Euclidean graphs
[16, 17]. The main difficulty is to satisfy the triangle inequality in constant dimensions. This is further
complicated in our setting by the additional weighting caused by a non-linear energy function acting
as a weight on the edges.

We consider three versions of the removal problem. In every version, the input consists of a graph
G embedded into 3D Euclidean space and an “energy function” that maps every subgraph of G to
an energy. Further each vertex in G is labelled with an ion species and it is weighted according to
the charge of the species. Similarly each edge e in G is weighted using the energy function on the
subgraph consisting of only e. The objective for each version is to remove a neutral subset of vertices
- a set of vertices for which the sum of charges is zero - such that the energy of the remaining subgraph
is minimised. Informally speaking the versions differ by constraints imposed on the set of vertices we
can remove.
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• k-Charge Removal. Here, we must remove a neutral set of vertices such that the sum of vertices
with positive charges is equal to k. In Corollary 2.12 we note that it is NP-Hard to determine if
there is a solution to this problem when the charges on the vertices are unbounded.

• k≥-Charge Removal. Here, a neutral set of vertices must be removed such that the sum of
vertices with a positive charge is greater than or equal to k.

• Minimal-k≥-Charge Removal. Here, the neutral set of vertices must also be minimal (infor-
mally, no vertices can be removed from the set while keeping it both neutral and the sum of
positive charges greater than or equal to k).

We also consider a variety of settings for these problems, varying the energy function for the
crystal, restrictions on the charges of the vertices, and restrictions on the number of ion species. We
summarise our results in Table 1. Regarding energy functions, we primarily consider the Buckingham-
Coulomb potential function, which is commonly used in computational chemistry, and the more gen-
eral class of controllable energy functions, which we denote by F , that includes the Buckingham-
Coulomb potential function. The class F is formally defined in Section 2. We show in Proposition
2.2 that Buckingham-Coulomb belongs to the class F . One other energy function we consider is the

Table 1. Summary of our results and their corresponding settings.

Theorem Summary Setting

Theorem 3.1 NP-Completeness by re-
duction from the clique
problem.

All problems, under any energy function inF , vertices
of charge ±c for a given c and an unbounded number
of ion species.

Theorem 3.2 NP-Completeness by ex-
tension of Theorem 3.1.

All problems, under any energy function in F , any
bounded set of charges and an unbounded number of
ion species.

Theorem 3.3 Non-approximability in
Polynomial time for any
factor of n1−ε, for ε > 0

k≥-CHARGE REMOVAL, for any energy function in F .

Theorem 3.4 Reduction to max-
weight-k-clique.

k-Charge Removal or minimal-k≥-Charge Removal
under any computable energy function, vertices of
charge ±c for a given c, and a unbounded number of
ion species.

Theorem 4.5 NP-Completeness by
reduction from inde-
pendent set on penny
graphs.

All problems, under the Buckingham-Coulomb poten-
tial energy function, vertices of charge ±1, and two
species of ion.

Theorem 5.1 NP-Completeness by re-
duction from the knap-
sack problem.

Minimal-k≥-Charge Removal and k≥-Charge Re-
moval, under the Coulomb potential energy function,
unbounded number of vertex weights and unbounded
number of ion species.
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Coulomb potential, which is used to calculate the electrostatic potential. We show that depending
on the energy function used, and the restrictions on the ion species and vertex charges, we are able
to reduce several different combinatorial problems to our problems. Since the initial publication of
these results Theorem 4.5 has been used to show the hardness of the related problem of Multimarginal
Optimal Transport for Density Functional Theory [18, 19].

The remainder of this work is organised as follows: in Section 2 we discuss the preliminaries
of these problems, providing relevant notation and definitions. In Section 3 we present our results
for the general case of the problems, proving NP-Hardness with Theorems 3.1 and 3.2 for energy
functions in F and an unbounded number of ion species. We also consider some natural restrictions
to this problem. In Section 4 we consider the restriction of having only two species of ions under
the Buckingham-Coulomb potential as energy function. We show that the problem remains NP-Hard
under these restrictions (Theorem 4.5). In Section 5 we consider the restriction to only the Coulomb
potential, this time with no restrictions on the number of species of ions or the charges of the ions. In
Theorem 5.1 we show that under these restrictions the problem remains NP-Hard.

2. Preliminaries

Unit Cell. A crystal is a solid material defined by an infinitely repeating parallelepiped period, called
unit cell. A unit cell is a parallelepiped region of three dimensional space containing ions at fixed
positions. Each unit cell contains a set of n ions within the unit. Each ion, i, has a specie, e.g. Ti or
Sr, and a non-zero charge qi. The specie for an ion i is denoted S(i). In every crystal the unit cell is
charge neutral, i.e.,

∑
1≤i≤n

qi = 0. An arrangement of ions in a unit cell defines a position for every

ion in the unit cell, i.e. the positions within R3.

Energy of a Crystal. When two crystal structures of the same composition are assessed for stability,
a common method is to compare the sum of all pairwise interactions, with a more negative potential
energy being preferable. This energy is calculated using force fields, determined by the species of
ions. The force field parameters and distance between the ions are used by a given pairwise energy
function U . In general, energy is defined via series as a crystal is considered to have infinite size.

For notation, the pairwise interaction between two ions i and j with respect to the energy function
U is U(i, j), denoted Uij when it is clear from context. The value of Uij is defined by the force field
of the ions and the Euclidean distance between them, which is included as one of the parameters. The
total potential energy for an arrangement of n ions in the graph G is given by U(G) =

∑
1≤i,j≤n,i 6=j

Uij .

This paper considers a general class of energy functions, called the controllable potential func-
tions, denoted by F . All functions in F are required to be computable in polynomial time for any
input. Intuitively, for every f ∈ F there exists a set of force field parameters that counteract the effect
of the distance parameter r.

Definition 2.1. A function f : Rq 7→ R belongs to F if and only if for any given a ∈ R and any fixed
r ∈ R+ there exists a vector of q − 1 parameters ~x ∈ Rq−1 such that f(~x, r) = a.
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One of the most common functions for crystal structure prediction is the Buckingham-Coulomb po-
tential [20], which is the sum of the Buckingham potential and the Coulomb potential. The Coulomb
potential for a pair of ions i, j is defined as UC(i, j) =

qiqj
rij

, where rij is the Euclidean distance

between the ions. The Buckingham potential, UB(i, j), for a pair of ions i, j is defined by four pa-
rameters: the distance between the ions, rij , and the three force field parameters, Ai,j , Bi,j , Ci,j ∈ R,
defined by the species of the ions. Note that all three parameters are positive values. The energy is
calculated as UB(i, j) = Ai,j

eBi,j ·rij −
Ci,j

r6ij
. The Buckingham-Coulomb potential is given by:

UBC(i, j) = UB(i, j) + UC(i, j) =
Ai,j

eBi,j ·rij
− Ci,j

r6ij
+
qiqj
rij

.

Proposition 2.2. UBC : R4 7→ R belongs to the class F .

Proof:
To show that UBC belongs toF , it is sufficient to provide a constructive method to determine the force
field parameters such that for any value a ∈ R and a pair of ions i, j the energy UBC(i, j) = a. Let
i and j be at a distance of rij with arbitrary charges qi and qj , the parameters may be set so that the
potential at a distance of rij is a. We set Bi,j = 0 and the values of Ai,j and Ci,j as follows depending
on whether a is positive or not. If a > 0, then we set:

Ai,j =

{
a if qiqj > 0;

a+
|qiqj |
rij

otherwise.
and Ci,j =

{
qiqjr

5
ij if qiqj > 0;

0 otherwise.

If a ≤ 0, then we set:

Ai,j =

{
0 if qiqj > 0;
|qiqj |
rij

otherwise.
and Ci,j =

{
|a|r6ij + qiqjr

5
ij if qiqj > 0;

|a|r6ij otherwise.

In this case of the Buckingham-Coulomb potential, the equation becomes

UBC(i, j) = Ai,j −
Ci,j
r6i,j

+
qiqj
rij

.

The Coulomb potential, qiqj
rij

, is cancelled either by adding qiqjr5ij to Ci,j , if qiqj > 0, or |qiqj |rij
to

Ai,j in the case qiqj ≤ 0. In the first case the energy added by the Coulomb potential is |qiqj |rij
, which

is cancelled by the addition of qiqjr5ij when multiplied by the −1
r6ij

term applied to Ci,j . Otherwise

the Coulomb energy is −|qiqj |rij
, which is cancelled out by the relevant addition from Ai,j . With the

Coulomb energy removed, a is either left as part of the Aij term, if a > 0, or part of the Cij term
otherwise. ut

Crystals as geometric graphs. The unit cell of a crystal may be thought of as a geometric graph
G = (V,E) in R3. Recall that each ion corresponds to a charged point in R3. In the context of a graph
each ion represents a weighted vertex in R3 at the same position as the ion, giving a total of n vertices.
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Let the vertex vi correspond to ion i and wt(vi) correspond to the charge of qi, i.e. wt(vi) = qi. For
notation, V + ⊂ V denotes the set of vertices with a positive charge, and V − the set of vertices with a
negative charge.

Between each pair of vertices there is an edge, weighted by the pairwise interaction of the corre-
sponding ions Uij . Note that from its definition Uij is determined in part by the length of the edge,
which is drawn as a straight line in the space. The energy of a crystal graph G = (V,E) is computed
as U =

∑
(vi,vj)∈E

Uij .

Definition 2.3. A crystal graph is a complete geometric graph G = (V,E) equipped with a weight
function f : (v1, v2 ∈ V, r ∈ R) 7→ R such that:

• every v ∈ V is associated to a non-zero integer wt(v);

•
∑

v wt(v) = 0;

• every edge (u, v) is associated with a weight given by f(u, v, dist(u, v)), denoted wt(u, v).

In the remainder of this work crystals are described in terms of their physical structure, where it
makes sense to be considering the ions, and as a graph otherwise. Further, we assume that a crystal
graph contains n vertices unless otherwise stated, equivalently we assume that a crystal contains n
ions unless otherwise stated. One important concept for crystals is the idea of neutrality. Informally a
crystal is neutral if the sum of the charges of every ion in the unit cell is 0.

Definition 2.4. A set of vertices R ⊂ V is neutral if
∑
vi∈R

wt(vi) = 0.

The k-Charge Removal Problem. The k-Charge Removal problem, henceforth k-CHARGE RE-
MOVAL, takes as input a crystal graph G corresponding to a “dense” initial arrangement of ions,
with the goal of removing some vertices in order to minimise the energy of the new subgraph G′ ⊂ G.
It is assumed that the initial graph is neutral by Definition 2.4. As G′ must also be neutral, any set
of vertices which is removed must therefore be neutral. A natural number k of charges to remove is
chosen, as defined in Definitions 2.6 and 2.7. In practical applications, the value of k may be chosen
either using intuition from chemistry, or by exhaustively checking each value of k.

Definition 2.5. For any set S ⊆ V, S+ denotes the set of positively charged vertices in S, and S− the
set of negatively charged vertices.

Definition 2.6. A set of k-charges R in a crystal graph (V,E) is a neutral set of vertices, where

R ⊆ V and

∣∣∣∣∣ ∑v∈R+

wt(v)

∣∣∣∣∣ =
∣∣∣∣∣ ∑v∈R−wt(v)

∣∣∣∣∣ = k.

Informally, a set of k-charges is a set of vertices with a net charge of 0, where the magnitudes of the
sums of all positively charged vertices is k, as is the sum of all negatively charged vertices.
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Definition 2.7. The removal operation of a set of vertices R from a graph G = (V,E) returns the
graph G′ = (V ′, E′), where V ′ = V \R and E′ is the set of edges in E with no endpoint in R.

In other words, a removal of R from G returns the graph G′ that is the complement of the graph
induced by R.

Problem 1. k-Charge Removal (k-CHARGE REMOVAL)

Instance: A crystal graph G, with edges weighted by a given common energy
function U , a natural number k and a goal energy g ∈ R.

Question: Does there exist a set of k-Charges R ⊂ V such that removing R from G

returns a graph G′, where U(G′) ≤ g?

The k≥-Charge Removal Problem. One variation of k-CHARGE REMOVAL is the k≥-Charge Re-
moval problem, denoted k≥-CHARGE REMOVAL. This problem takes the same input as in k-CHARGE

REMOVAL, however rather than looking to remove a set of exactly k-charges, it is instead sufficient
to remove a neutral set of at least k positive and negative charges. In this generalisation, vertices of
total weight more than k may be removed, provided the cell remains neutral. Note that any removal
of exactly k is also acceptable for this generalisation.

Definition 2.8. A set of k≥-charges R from a crystal graph (V,E) is a neutral subset, where R ⊆ V
and

∑
vi∈R+

wt(vi) ≥ k.

Problem 2. k≥-Charge Removal (k≥-CHARGE REMOVAL)

Instance: A crystal graph G, with edges weighted by a given common energy
function U , a natural number k, and a goal energy g ∈ R.

Question: Does there exist a set of k≥-Charges R ⊂ V such that removing R
from G returns a graph G′, where U(G′) ≤ g?

Proposition 2.9. A solution to k-CHARGE REMOVAL or k≥-CHARGE REMOVAL can be verified in
polynomial time.

Proof:
A solution to k-CHARGE REMOVAL contains the set of charges R that are removed. This can be
verified as a set of k≥-charges by simply summing up the positive and negative weights, checking

that the set is neutral and that

∣∣∣∣∣ ∑vi∈R+

wt(vi)

∣∣∣∣∣ = k for k-CHARGE REMOVAL or

∣∣∣∣∣ ∑vi∈R+

wt(vi)

∣∣∣∣∣ ≥ k

for k≥-CHARGE REMOVAL. The time complexity is of the order of O(|R|). Similarly the sum of the
edges in the original graph G that do not have an endpoint in R can be checked against the goal value
g. This is done in O(|V |2) time, as the graph is complete. As no step takes more than O(|V |2) time, a
solution to either k-CHARGE REMOVAL or k≥-CHARGE REMOVAL can be verified in polynomial time.
Hence k-CHARGE REMOVAL and k≥-CHARGE REMOVAL fall into the class of NP problems. ut



D. Adamson et al. / On the Hardness of Energy Minimisation for Crystal Structure Prediction 189

The Minimal-k≥-Charge Removal Problem. An alternative variation of k≥-CHARGE REMOVAL

is the minimal-k≥-Charge Removal problem, denoted MINIMAL-k≥-CHARGE REMOVAL. This also
serves as a generalisation of k-CHARGE REMOVAL, where the goal is to get close to a set of k-charges,
accepting that it may not be possible to reach the exact value. In this problem a minimal set of k≥-
charges is removed.

Definition 2.10. A set R of k≥-charges is minimal if there exists no subset R′ ⊂ R such that∣∣∣∣∣ ∑vi∈R′+wt(vi)
∣∣∣∣∣ ≥ k and

∣∣∣∣∣ ∑vi∈R′+wt(vi)
∣∣∣∣∣ =

∣∣∣∣∣ ∑vj∈R′−wt(vj)
∣∣∣∣∣.

Informally, Definition 2.10 means that there is no way of getting closer to a set of k-charges from
the set, without having fewer than k charges. It follows that for a given crystal graph, there may be
multiple minimal k≥-charge sets for a given k. A removal of k≥-charges is minimal if the set of
k≥-charges is minimal. It may be noted that a set of k-charges is always a minimal set of k≥-charges.

Problem 3. Minimal-k≥-Charge Removal (MINIMAL-k≥-CHARGE REMOVAL)

Instance: A crystal graph G, with edges weighted by a given common energy
function U , a natural number k, and a goal energy g ∈ R.

Question: Does there exist a minimal set of k≥-charges R ⊂ V such that
removing R from G returns a graph G′, where U(G′) ≤ g?

Proposition 2.11. It is NP-Hard to verify if a set of k≥-charges is minimal when no bounds are given
on the charges of the vertices.

Proof:
This is shown by a reduction from the subset-sum problem. In the subset-sum problem there is a set
of values S, and a goal k. The task is to choose some subset S′ ⊆ S such that

∑
i∈S′

i = k. Note that

this problem remains NP-complete in the case the input is only positive integers.

Given an instance of subset sum I = (S, k), a crystal graph is created as follows. For each
integer i ∈ S a new vertex with a charge of i is created, note these correspond to the set V +.
Two further ions are created, the first having a charge of −k and the second having a charge of

−

(( ∑
vi∈V +

wt(vi)

)
− k

)
, these correspond to V −. The value k′ is chosen as the greater of k and( ∑

vi∈V +

wt(vi)

)
− k.

Given I , we claim that the only minimal k′-Charge Removal, R, from S = (V,E) is R = V if
and only if there is no solution to I . To disprove that R is minimal there must be some subset R′ ⊂ R
that is also a set of k≥-charges. As k′ charges must be removed, any such V ′− must only contain the
vertex in V − with a charge of −k′. Therefore if this claim is false, there must be a set R′+ ⊆ R+

such that
∑

vi∈R′+
wt(vi) = k′. If there is such a R′ then there must also be a solution to the subset sum
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instance as either R′+ or R+ \ R′+. This is shown as if k′ = k, the values in R′+ must sum to k,
satisfying I . Conversely, if there is k′-Charge removal R ⊂ V then following the above arguments,
there must be a solution to I .

In the other direction, if there is a solution to I then trivially there must be exist such a R′+ that
would make R′ non-minimal. Similarly if there is no valid solution to I then the only minimal set of
k-charges is the complete set of ions. Therefore it may not be determined if a solution is minimal in
polynomial time. Subsequently as a minimal set of charges for k≥-CHARGE REMOVAL is required, a
solution can not be verified in polynomial time unless P = NP , therefore it is not in NP in the general
case. ut

Corollary 2.12. It is NP-Hard to determine if an instance of k-CHARGE REMOVAL has a valid solu-
tion in the case there are no bounds on the charges of the vertices.

Proof:
It follows from the arguments of Proposition 2.11 that an instance of k-CHARGE REMOVAL may be
constructed for a subset sum instance I = (S, k) such that it is only satisfiable if the subset sum
instance is. ut

Lemma 2.13. A set of k-Charges may be verified as minimal in polynomial time for charges bounded
by a polynomial size.

Proof:
In the case when the charges of the vertices are bounded, a solution to the subset sum may be found
in polynomial time, for example, relative to either the upper limit on the weights due to Pisinger
[21], or the number of distinct weights and the goal values due to Axiotis and Tzamos [22]. Using
these algorithms a set of k-Charges R can be verified as minimal. This is done by, for every value
1 ≤ t ≤

∑
vi∈R+

wt(vi)−k checking if there is a subset of charges R′+ ⊆ R+ and R′− ⊆ R− such that

t =
∑

vi∈R′+
wt(vi) =

∣∣∣∣∣ ∑vi∈R′−wt(vi)
∣∣∣∣∣. If there exists such a solution for any t then R is not minimal.

The claimed energy may also be verified by checking the sum of pairwise interactions relative to
U , which may be trivially done in polynomial time due to the definition of U . Therefore under these
restrictions k≥-CHARGE REMOVAL is in NP. ut

3. NP-Hardness for an unbounded number of ion species

This section focuses on the class of potential functions F . It is assumed that the energy function for all
cases is an arbitrary function in F for which the parameters required by the ions to result in the energy
from their pairwise interaction to be any arbitrary a are known. NP-completeness for k-CHARGE

REMOVAL as well as for the generalisations to MINIMAL-k≥-CHARGE REMOVAL and k≥-CHARGE

REMOVAL is shown when there are bounds on value of the charges (either quantity of charges, or the
maximum value). Further, these problems are shown to be APX-Hard for bounded values of charges. It
may be noted that in the case the charges are not bounded, MINIMAL-k≥-CHARGE REMOVAL remains
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NP-Hard, however as it is not in NP it is not NP-complete. Along with the hardness results we provide
a polynomial time reduction from both k-CHARGE REMOVAL and MINIMAL-k≥-CHARGE REMOVAL

to max-weight-k-clique, under the restriction that all vertices have a charges of ±c for some non zero
c ∈ Z.

Theorem 3.1. k-CHARGE REMOVAL, MINIMAL-k≥-CHARGE REMOVAL and k≥-CHARGE REMOVAL

are NP-Complete for any energy function in F for vertices with charges of ±c, for any natural num-
ber c.

Proof:
k-CHARGE REMOVAL and k≥-CHARGE REMOVAL are in NP by Proposition 2.9, and as the vertex
charges are bounded, MINIMAL-k≥-CHARGE REMOVAL is in NP by Lemma 2.13. Hardness is estab-
lished via a reduction from CLIQUE. This is shown by reduction to k-CHARGE REMOVAL, noting that
any satisfying solution to k-CHARGE REMOVAL also satisfies k≥-CHARGE REMOVAL and MINIMAL-
k≥-CHARGE REMOVAL.

In the Clique problem, henceforth CLIQUE, the input is a graph, G, and a natural number, k. The
goal is to find a clique of size k in G, or report that no such clique exists. A clique is a set of vertices
in a graph such that all vertices in the set are adjacent to each other.

Given an instance of CLIQUE, I = (G, k) = ((V,E), k), where n = |V |, an instance, I ′, of
k-CHARGE REMOVAL is constructed as follows. A unit cell of arbitrary size is chosen. Within this
cell 2n unique positions are created at arbitrary points in the unit cell. In the first n positive ions are
placed and in the last n negative ions are placed. Each ion has its own unique specie. Every vertex
vi ∈ V corresponds to two ions, i+ and i− with charges c and −c respectively. For two ions i and j
associated with vi and vj respectively the parameters are set so as to satisfy the following:

Uij =

{
−1 vi = vj or (vi, vj) ∈ E
p otherwise.

Where p ∈ R is some arbitrarily high penalty value that may be treated as effectively being equal to
∞ for any practical purpose. The definition of F guarantees that there exists parameters satisfying
these conditions irrespective of the positions, and thus the distance rij , of the ions. Note that there are
k(2k − 1) edges in a clique of size 2k. Let g = k(2k − 1) and let k′ = n− k. To remove k′ positive
and k′ negative ions ck′ vertices must be removed.

The corresponding crystal graph G′ = (V ′, E′) is constructed as described in the preliminaries.
Let the vertices v+i , v

−
i ∈ V ′ represent the ions corresponding to vi ∈ V . v±i is used to denote either

v+i or v−i , where the charge of the vertex doesn’t matter i.e. we are only concerned with the vertex in
G that v±i corresponds to. From the definition of the energy function, wt(v±i , v

±
j ) = −1 if i = j or

(vi, vj) ∈ E, and p otherwise.
We claim that I is satisfiable if and only if I ′ is satisfiable. First consider the case that I is

satisfiable. In this case ck′ vertices may be removed from I ′, leaving only the vertices corresponding
to the clique in I , denoted A. As all vertices in A correspond to adjacent vertices in G, the energy is
−1 multiplied by the number of edges, giving a total energy of −k(2k− 1), satisfying the k-CHARGE
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REMOVAL instance. Conversely if there does not exist a clique of size k in G then any subset of
charges A ⊆ V ′ of cardinality k clearly must contain at least one edge with a weight of p, making I
unsatisfiable. ut

This may be extended to other graph problems relatively easily. One example of this would be the
MAX-WEIGHT K-CLIQUE problem. The MAX-WEIGHT K-CLIQUE problem takes as input a weighted
graph G, a natural number k, and a goal value v. The problem is to report if a clique of size k, where
the sum of the weights of the edges is at least v exists. Using the above construction, a crystal graph
G′ may be created from G. From this the weights on the edges may be adjust as follows:

Uij =


−wt(vi, vj) vi 6= vj and (vi, vj) ∈ E
−c vi = vj

p otherwise.

Where p ∈ R is some arbitrary large penalty value, wt(vi, vj) denotes the energy between vertices vi
and vj in G and c is some constant such that @(vi, vj) ∈ E where wt(vi, vj) ≥ c. The goal value for
the k-CHARGE REMOVAL instance is chosen as −k · c− v. The correctness of this reduction follows
from the arguments in Theorem 3.1.

Theorem 3.2. k-CHARGE REMOVAL remains NP-Hard for a given set of allowed charges with unique
magnitude and an energy function within F .

Proof:
The construction of Theorem 3.1 may be extended to the case the set of vertices is limited to any set
of allowed charges. Two charges are chosen from this set, c and d where |c| > |d| and cd < 0 such
that the difference between the absolute value of the charges, |c| − |d|, is minimised. The same steps
as in Theorem 3.1 are followed for the construction to get an initial crystal graph G = (V,E) and k′.
Note that I has a deficiency of n(|c| − |d|), where n is the number of ions in the initial construction,
meaning that some set of vertices must be added to make the cell neutral. To handle the deficiency
two sets of dummy vertices with charges of c and d are created.

The first set is to deal with the deficiency that would be left from a clique of size k. To construct
these, a natural number t is chosen such that there exists a pair of natural numbers tc and td such that
tc|c| = t and td|d| = k(|c| − |d|) + t. Using these, tc vertices with a charge of c and td vertices with
a charge of c and td with a weight of d are added. From the definition of F , the energy between them
and all ions in G and between each other is set as 0.

The second set of dummy vertices are to counteract the overall deficiency in the initial unit cell.
A natural number u is chosen such that there exists a pair of natural numbers uc and ud, where
u = |c|(uc + tc) and u + n(|c| − |d|) = |d|(ud + td). uc vertices with a charge of c and ud vertices
with a charge of d are added. The potential energy between between them and all other vertices,
including the set of previously added dummy vertices, is P .

To ensure that the optimal set of ions to be left with is a clique of size k as well as all of the
dummy vertices added in the first step, the following is done. The goal energy remains the same as
from Theorem 3.1. Observe that the only way to achieve this is to leave vertices corresponding to a
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clique of size at least k. As there are c(n+ uc + tc) vertices for one set, and the goal is to be left with
c(k + tc), a value k′ is chosen to remove as c(n + uc − k). In the case that exactly k′-charges are
removed, either the dummy vertices or some other vertices corresponding to a clique of size greater
than k, ensuring the set remains neutral is left. In the at-least-k′ case, some dummy vertices may also
be removed provided the cell remains neutral.

From the arguments in Theorem 3.1 this is sufficient to ensure the new instance is satisfiable if and
only if the original CLIQUE instance is. Therefore these problems are NP-Hard, even in the case that
there are distinct charges c and d, |c| 6= |d|. ut

Theorem 3.3. For any ε > 0, k≥-CHARGE REMOVAL for k = 0 cannot be approximated within a
factor of n1−ε, where n is the number of ions, in polynomial time unless P = NP .

Proof:
This result follows from the results of Håstad [23], who showed an approximation bound of n1−ε for
Max-Clique. Using the reductions from Theorems 3.1 and 3.2 let the minimum energy after a removal
of at least 0 vertices be e. Note that this corresponds to the lowest potential energy of the instance.
From the reductions, it is clear that e = −k, where k is the size of the clique, or P if the remaining
ions do not correspond to a clique. Note that as P may be arbitrarily large, given an approximation
algorithm for any instance of k≥-CHARGE REMOVAL with k = 0 an approximation algorithm for
Max-Clique may be derived that approximates the instance of Max-Clique to the same factor as it
approximates the k≥-CHARGE REMOVAL instance. Therefore any bounds on the approximation of
Max-Clique must also apply to this problem, hence k≥-CHARGE REMOVAL can not be approximated
within a factor of n1−ε for any ε > 0 within polynomial time unless P = NP . ut

While there are simple reductions to other NP-Complete problems such as Integer Programming, em-
bedding this problem into many classical problems is made difficult due to the problem of maintaining
the neutrality of the unit cell. To this end, Theorem 3.4 provides a novel polynomial time reduc-
tion to show how a restricted version of k-CHARGE REMOVAL may be embedded into MAX-WEIGHT

K-CLIQUE.

Theorem 3.4. k-CHARGE REMOVAL can be reduced to MAX-WEIGHT K-CLIQUE in polynomial time,
under the restriction that vertices are limited to charges of ±c and the energy function is computable
within polynomial time.

Proof:
Note that, given charges of ±c, a valid solution to MINIMAL-k≥-CHARGE REMOVAL is either valid
for k-CHARGE REMOVAL, or there is no valid solutions to k-CHARGE REMOVAL. Taking as input
an instance of MINIMAL-k≥-CHARGE REMOVAL with charges of ±c with the corresponding crystal
graph, it is claimed that this instance may be represented as an instance of the weighted generalisation
of CLIQUE.

In weighted k-clique, denoted MAX-WEIGHT K-CLIQUE, the input is a weighted graph, a goal
value v, and a natural number k. An instance of MAX-WEIGHT K-CLIQUE is satisfiable if and only if
there exist a clique of size k such the sums of the weight of the edges in the clique is at least v.
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Given an instance of MINIMAL-k≥-CHARGE REMOVAL I = (G, k) = {(V,E), k}, an instance I ′

of MAX-WEIGHT K-CLIQUE is created as follows. A value k′ is chosen as |V
+|−k
c rounded down to the

nearest natural number. The reason for this choice is to ensure that the optimal clique has size equal
to the number of vertices left after removing k charges. Note that if (|V +| − k)( mod c) 6≡ 0, then
there is no valid solution to k-CHARGE REMOVAL, however there may still be some valid solution to
MINIMAL-k≥-CHARGE REMOVAL. A new graph G′ = (V ′, E′) is created which is initially empty.
For each pair of vertices with different charges a new associated vertex in V ′ is created. An edge is
created between each new vertex if and only if the corresponding charges are all unique, i.e. given the
set of charges V + = {vi, vj}, and v− = {vk, vl} an edge would be placed between the new vertex
representing (vi, vk) and the one representing (vj , vl), but not from either to the vertex representing
(vi, vl). Give two connected vertices corresponding to charges (vi, vk) and (vj , vl) the edge between

them is assigned a value of−
(
Uij + Uil + Ujk + Ukl +

Uij+Ujl

k′−1

)
. The intuition behind this is for the

edge to maintain the weights of the edges in G. Uik+Ujl

k′−1 is added to this so that within a clique of size
k′, the edge between the two vertices is fully represented. An example of this construction is shown
in Figure 1, omitting weights for legibility.

a+ b+ c+

d− e− f−

a, d a, e a, f

b, d

c, d

b, e

c, e

b, f

c, f

Figure 1. Example of the construction from k≥-CHARGE REMOVAL to clique. Note that vertices a, b, and c
have a positive weight, while d, e, and f have a negative weight. Also note that any clique of size 3 corresponds
to the original graph.

It is now be claimed that any clique of size m corresponds to a neutrally weighted subset A ⊆ V ,

where

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ = mc. This is shown by noting that vertices are only connected if they do not

represent a common vertex. As such a clique of size m must contain m unique positively weighted
and m unique negatively charged vertices for the corresponding vertices to be connected as a clique.
Therefore by selecting any clique of size k′ in this graph, there is a valid structure left with exactly k′

unique positively weighted and k′ unique negatively charged vertices. From the definition of k′ this
corresponds to a subgraph of G after a minimal removal of k.
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It may now be claimed that a maximum weight clique of size k′ corresponds to the best subset of
ions after a removal of k charges. Note that given a clique with total weight w corresponds to a set
of ions with total energy −w. It is a straightforward extension to see that a maximum weight clique
corresponds to a minimum energy subset of ions. This is seen by noting that by choosing k′ as the size

of the clique, the corresponding arrangement A ⊆ V has

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ = ck′. From the definition of

k′, this requires

∣∣∣∣∣ ∑vi∈A+

wt(vi)

∣∣∣∣∣ ≤
∣∣∣∣∣ ∑vi∈V +

wt(vi)

∣∣∣∣∣− k, which satisfies the requirements for a k-Charge

Removal. Conversely the definition of k′ ensures that the removal must be minimal. Therefore the
optimal solution to the MAX-WEIGHT K-CLIQUE instance must correspond to an optimal solution to
the MINIMAL-k≥-CHARGE REMOVALk-CHARGE REMOVAL instance. Similarly any valid solution to
the MAX-WEIGHT K-CLIQUE instance corresponds to some solution to the MINIMAL-k≥-CHARGE

REMOVAL instance. ut

4. Bounded number of species with Buckingham-Coulomb potential

In Section 3 NP-Hardness was shown for the case that there was an unbounded number of species, and
NP-completeness in the case that there is a bounded number of charge values. This is strengthened by
considering instances with only two unique species. Only the Buckingham-Coulomb potential func-
tion with charges of ±1 is considered in this section. All three problems are again considered, noting
that for charges of ±1 k-CHARGE REMOVAL is equivalent to MINIMAL-k≥-CHARGE REMOVAL. NP-
Hardness is shown by a reduction from Independent Set problem denoted INDEPENDENT-SET, on
penny graphs - adapting it to the Euclidean settings of a crystal graph of ions within a unit cell. The
Independent Set problem takes as input a graph, G, and a natural number k. The goal is to find an
independent set, i.e. a set of vertices such that no two are adjacent, of size k in G, or report that one
does not exist. A Penny graph is a graph where each vertex may be drawn as a unit circle such that no
two circles overlap, and an edge between two vertices exists if and only if the corresponding circles
are tangent, i.e. they intersect at only a single point. Finding an independent set on this class of graphs
was shown to be NP-Hard by Cerioli et al. [16]. The NP-Hardness result for this problem is shown
by a reduction from MAX-DEGREE 3 PLANAR VERTEX COVER, shown to be NP-Complete by Garey
and Johnson [24].

Construction of the k-CHARGE REMOVAL instance: Let I = (G, k) be an instance of INDEPENDENT-
SET where G = (V,E) is a planar graph with a maximum degree of 3 and k ∈ N is the size of the
target independent set. An instance of k-CHARGE REMOVAL is created as follows. Using Theorem
1.2 from Cerioli et al. create a new penny graph realisation, G′, and a new natural number k. The
class of graphs created by this process is denoted as the long orthogonal penny graphs. The radius of
each circle for G′ is chosen as n

2 .
A region of space in R3 with a height of at least 1 and a width and length allowing G′ to be drawn

is created. This space is the parallelepiped for the unit cell. In this space, two copies of G′ are drawn
such that one is directly above the other at a distance of 1. For every circle in G′ two ions are created,
one in the lower copy of G′ and the other in the higher copy. Each ion is labelled with the vertex from
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G′ it corresponds to. In this context pair refers to the two ions in the new crystal graph, labelled with
the same vertex from G′. Two pairs are neighbouring if they represent vertices that are adjacent in G′.
The lower ions are assigned the positive specie and the upper ions the negative. An example of this
arrangement is provided in Figure 2. Note that the minimum distance between two pairs in the same
plane that are non-adjacent for circles with a radius of n2 is

√
2n, as shown in Figure 3.

The positive and negative species are assigned charges of +1 and−1 respectively. In general there
are 3 sets of parameters to choose determining the interaction between two positive ions, two negative
ions, and one positive and one negative ion. For simplicity, the parameters determining the interaction
between two positive ions and the parameters determining the interaction between two negative ions
are treated as being the same. Informally, this means the the energy between two negative ions at a
distance of r from each other is the same as the energy between two positive ions at a distance of r.
For brevity, 1 and 2 are used to denote the positive and negative specie respectively. With this notation,
the parameters that may be set are A11, B11, C11, A12, B12, and C12.

An independent set is said to be left if the ions left after a removal of k′ charges have labels
corresponding to an independent set in G′. Let k′ = n− k, be the number of charges that are required
to be removed to be left with an independent set of size k. Note that as the charge of each ion has a
magnitude of one, a removal of k′ can only be achieved by removing k′ positive and k′ negative ions.
The goal energy for the construction is set as g = (k− 1)( A12

eB12
−C12− 1). To simplify the equations

regarding the interaction between planes, r̂ is used to denote
√
r2 + 1. To ensure that an independent

set is left of size k if and only if one exists, the following three inequalities must be satisfied:

A11

eB11n
− C11

n6
+

1

n
+

A12

eB12n̂
− C12

n̂6
− 1

n̂
≥
∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ (1)

n2
∣∣∣∣ A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂

∣∣∣∣ ≤ ∣∣∣∣ A12

eB12
− C12 − 1

∣∣∣∣ , r ≥
√
2n (2)

A11

eB11r
− C11

r6
+

1

r
+

A12

eB12r̂
− C12

r̂6
− 1

r̂
> 0, r ≥

√
2n (3)

At a high level, these inequalities are used as follows. Inequality 1 ensures that the positive interaction
between some ion i and the adjacent pair is greater than the interaction between i and the other ion j
in the same pair. This ensures that the cost of keeping two adjacent pairs is greater than the negative
energy gained by keeping it. Inequality 2 ensures that the total positive interaction energy between
some ion i and every ion further than n is no more than the negative energy given by maintaining the
pair containing i. This ensures that, given a pair of ions representing a vertex that is not adjacent to any
other pairs, it is better to keep the pair in the structure rather than to remove the pair. Finally, Inequality
3 is used to ensure that the interaction between two ions on the same plane leads to a positive energy
penalty no matter the distance. This is used to bound the total energy from above.

The following Lemmas use these inequalities as follows. Lemma 4.1 show that there exists some
parameters for the Buckingham-Coulomb potential satisfying the inequalities, allowing them to be
used as a tool when considering the subsequent Lemmas. Lemmas 4.2 and 4.3 assume that it is
preferable to choose k′ pairs over any other set of charges in the arrangement. Lemma 4.2 shows that
the optimal removal will result in an independent set. Lemma 4.3 provides an upper bound on the
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interaction energy for this setting. Finally Lemma 4.4 proves that it is always preferable to choose k′

pairs over any other set of charges in the arrangement.

Lemma 4.1. There exists, for any structure created from a long orthogonal penny graph, some pa-
rameters for the Buckingham-Coulomb potential such that Inequalities (1, 2) and (3) are satisfied.

Proof:
Values are chosen for A12, B12 and C12 such that the energy for any pair of ions of opposite vertex at
a distance of 1 is −1. This is achieved by choosing a value of 1

2n2 for A12, 0 for B12, and 1
2n2 for C12.

This simplifies the energy equation to:

UBC(r) =
A11

eB11r
− C11

r6
+

1

r
+

1

2n2
− 1

2n2r̂6
− 1

r̂
.

To satisfy Inequality 1, UBC(n) > 1. This may be satisfied by choosing values for A11, B11, and C11

such that A11

eB11n
− C11

n6 = 1, noting that 1
2n2 − 1

2n2r̂6
+ 1

r −
1
r̂ > 0 for all positive distances greater

than 1. This is satisfied by solving the equation A11

eB11n
− C11

n6 = 1, choosing A11 =
C11eB11n

n6 + eB11n.

Inequality (2) requires that at a distance of at least
√
2n the total energy is no more than 1

n2 .
This is satisfied at a distance of

√
2n by ensuring that the A11

eB11
√
2n
− C11

8n6 = 0, which is satisfied

after substituting in the appropriate value for A11 with C11 = eB11n

eB11
√
2n

(
1

(
√
2n)6
− eB11n

n6eB11
√
2n

) , which

simplifies to 8n6

e(
√
2−1)B11·n−8

. Finally, consider the value of B11. Note that the value of both A11 and
C11 depend greatly on B11, with a small increase in B11 leading to a very rapid increase in the value
of A11 and a rapid decrease in C11. Similarly, the value of the energy given by A11

eB11r
− C11

r6
rapidly

decreases initially before converging at approximately 0, noting that the first derivative with respect
to r of this equation for a given n is −B11

A11

eB11r
+ 6C11

r7
. As such by choosing a suitably large B11

Inequality (2) is easily satisfied, one obvious choice for this would be B11 = n.

Note that both A11

eB11r
and C11

r6
strictly decrease, therefore if

∣∣∣ A11

eB11r

∣∣∣ ≤ 1
2n2− 1

r+
1
r̂ and

∣∣C11
r6

∣∣ ≤ 1
r−

1
r̂

both Inequalities (2) and (3) are satisfied. From the value of B11 this becomes n6

e(
√
2−1)n2−8

, which

is positive and less than 1
n2 for any n ≥ 6. Note that 1

r −
1
r̂ ≥

1
r6

for any r ≥ 1.3, hence it is
clear that C11

r6
≤ 1

r −
1
r̂ for n ≥ 6. Considering A11

eB11r
at a distance of

√
2n, the equation becomes

A11

en2
√
2
= C11

n6en2
√
2
+ 1

e(
√
2−1)n2 , from the previous arguments it follows that this is considerably less

than ≤ 1
2n2 − 1

r +
1
r̂ for n ≥ 6.

Noted that due to the constant 1
2n2 term there is a positive value for any distance greater than

√
2n,

satisfying Inequality (3). Using these values, it has now been shown how to design parameters for the
Buckingham-Coulomb potential which satisfy the Inequalities. ut

Lemma 4.2. Inequalities (1) and (2) are sufficient to ensure that an independent set is left if one exists
in the original INDEPENDENT-SET instance.
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Proof:
Inequality (1) ensures that if there are two pairs corresponding to points that intersect, the total energy
always decreases by removing one of the pairs. Inequality (2) complements (1) by ensuring that
given a pair corresponding to a vertex with no adjacent neighbours, the total energy would increase
by removing it. This holds even in the case that all other pairs are at a distance of

√
2n. Inequalities

(1) and (2) combined means that the global minimum total energy for any subset is the maximum
independent set. Note that the total energy decreases with the cardinality of the given independent
set. ut

Lemma 4.3. Given k pairs, the energy is less than (k − 1)( A12

eB12
− C12 − 1) if and only if the pairs

correspond to an independent set of size k, for A12

eB12
− C12 − 1 < 0.

Proof:
Given k pairs, the energy between the ions in each pair is A12

eB12
−C12−1, for a total of k( A12

eB12
−C12−1).

Inequality (2) ensures that the maximum energy gained from pairs of ions corresponding to non-
intersecting circles is at most | A12

eB12
− C12 − 1|. Inequality (3) ensures that having vertices on the

same plane leads to a slight positive charge. From this it follows that the maximum energy a set of
ions corresponding to an independent set is (k − 1)( A12

eB12
− C12 − 1). Conversely, from Inequality

(1) it is known that if there is a pair of intersecting circles the total energy must be greater than
(k − 1)( A12

eB12
− C12 − 1).

Note that for k≥-CHARGE REMOVAL that if greater than k′ pairs were removed this energy could
not be achieved as the minimum energy would be (k − 1)( A12

eB12
− C12 − 1) for the interaction within

pairs. As there is a positive interaction between pairs, the total energy must be slightly greater than
this for any k > 1. Therefore the total energy is less than (k− 1)( A12

eB12
−C12 − 1) if and only if there

is an independent set of size k left. Note that under the choice of variables from Lemma 4.1, the upper
bound is −(k − 1). ut

Lemma 4.4. When removing k′ charges from the construction from a long orthogonal penny graph,
it is always preferable to remove pairs provided that Inequalities (1-3) hold.

Proof:
Assume that this statement is false, there must be some assignment, where it is preferable to re-
move some set of at least two vertices, v+i and v−j , that do not form a pair with any ions that
have been removed. Assume that there are t positive and t negative vertices in the graph. If in-
stead v−j was left in, while v+i was removed, the remaining energy would change by at least −1 +

t

(
A11

eB11
√
2n
− C11

(
√
2n)6

+ 1√
2n

+ A12

eB12
√̂

2n
− C12
√̂
2n

6 − 1
√̂
2n

)
. From the arguments in Lemma 4.2 and the

construction in Lemma 4.1 this leads to a decrease in total energy, making it preferable and therefore
contradicting the assumption. Note that given a positively charged vertex of the maximum degree, in
this case 3, it could contribute at most 3

2n2 − 3
2n8 − 3

n which has a magnitude less than 1 for any n ≥ 3.
Therefore, by contradiction this holds. ut

Theorem 4.5. k-CHARGE REMOVAL, MINIMAL-k≥-CHARGE REMOVAL and k≥-CHARGE REMOVAL

are NP-Complete when limited to only two species of ion and restricted to the Buckingham-Coulomb
potential energy function.



D. Adamson et al. / On the Hardness of Energy Minimisation for Crystal Structure Prediction 199

Proof:
Building on the results from Lemmas 4.2, 4.1, 4.3, and 4.4, the next step is to show NP-Completeness.
Lemma 4.2 shows that, provided Inequalities (1) and (2) hold, the optimal solution is to leave an
independent set. From Lemma 4.1 it follows that these inequalities are satisfiable for any graph under
the given construction, noting that the assignment of parameters gives an energy of −1 within pairs.
Lemma 4.3 shows that the upper bound is reachable if and only if an independent set has been left.
It follows from Lemma 4.4 that the assumption that it is preferable to remove a set of pairs over any
other set of charges holds when the inequalities also do.

Therefore there is a satisfiable instance of k-CHARGE REMOVAL or any generalisation if and only
if the instance of INDEPENDENT SET for the maximum degree 3 planar graph instance is satisfiable.
Conversely if the INDEPENDENT SET instance is satisfiable, the corresponding k-CHARGE REMOVAL

instance is satisfied by leaving the vertices corresponding to the independent set in the long orthogonal
penny graph construction. Hence under these restriction all three problems are NP-complete. Note
that this may be extended to vertices with charges ±c for any given c. ut

Corollary 4.6. It is NP-Hard to approximate the optimal solution to k-CHARGE REMOVAL, MINIMAL-
k≥-CHARGE REMOVAL, or k≥-CHARGE REMOVAL within a factor 1 + 3

n−k−1 for the Buckingham-
Coulomb potential.

Proof:
Following Lemma 4.3, given a set of k ion pairs corresponding to an independent set the total energy
is (k − 1)( A12

eB12
− C12 − 1). In terms of the k-CHARGE REMOVAL problem this can be rewritten as

(n− k− 1)( A12

eB12
−C12− 1). In the case that there exists some pair of ion-pairs representing adjacent

vertices, there must be an energy penalty of 4
(

A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
. Therefore, a

lower bound on the energy in the case that there is at least some pair of ions adjacent to each other is
(n−k)( A12

eB12
−C12−1)+4

(
A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
≥ (n−k−1)( A12

eB12
−C12−1)+

4
(

A11

eB11n
− C11

n6 + 1
n + A12

eB12n̂
− C12

n̂6 − 1
n̂

)
. Therefore any approximation algorithm that can achieve

an approximation ratio smaller than
(n−k−1)( A12

eB12
−C12−1)+3

(
A11

eB11n
−C11

n6 + 1
n
+

A12

eB12n̂
−C12

n̂6 −
1
n̂

)
(n−k−1)( A12

eB12
−C12−1)

= 1 +

3
(

A11

eB11n
−C11

n6 + 1
n
+

A12

eB12n̂
−C12

n̂6 −
1
n̂

)
(n−k−1)( A12

eB12
−C12−1)

≥ 1 + 3
n−k−1 would be able to find the optimal solution to the

underlying k-independent set problem in polynomial time unless P = NP . ut

v1

v2 v3

v+1

v+2 v+3

v−1

v−2 v−3

Figure 2. Example of the construction of an arrangement from a penny graph, in this example v1 and v2 are
adjacent, as are v2 and v3, but not v1 and v3
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n

n

√
2n

√
3n

√
3n

n

n

n
n

Figure 3. Illustration of the distances between the centre of non-adjacent pennies using the construction of
Cerioli et al. [16].

5. Restriction to the Coulomb potential with unbounded charges

The final case that is considered in this work is when the energy function is the Coulomb potential.
NP-Hardness for this case is shown by a reduction from KNAPSACK to k≥-CHARGE REMOVAL. Note
that with an unbounded number charge values this problem is not in NP for MINIMAL-k≥-CHARGE

REMOVAL due to Proposition 2.11 and is trivially NP-Hard for k-CHARGE REMOVAL due to Corollary
2.12. This reduction requires using an unbounded number of charge values, thus it follows from
proposition 2.11 that it is NP-Hard to verify if a solution to an instance of k≥-CHARGE REMOVAL is
minimal. In this reduction it is shown that an instance of k≥-CHARGE REMOVAL such that the set of
ions left correspond to the items for the knapsack instance if and only if there is a set satisfying the
knapsack instance.

Theorem 5.1. k≥-CHARGE REMOVAL and MINIMAL-k≥-CHARGE REMOVAL remains NP-Hard when
the energy function is limited to the Coulomb potential.

Proof:
In the knapsack problem, henceforth KNAPSACK, the input is a bag with capacity C, and a set of items
S. Each item i ∈ S has a weight wi, and a value pi. In this problem the goal is to find the subset
S′ ⊆ S such that

∑
i∈S′

pi is maximised conditional on
∑
i∈S′

wi ≤ C. Alternatively this may phrased as

a decision problem by taking some goal value g and asking if there is an S′ such that
∑
i∈S′

pi ≥ g.

NP-completeness for k≥-CHARGE REMOVAL and MINIMAL-k≥-CHARGE REMOVAL is shown by
a reduction from the knapsack problem. Given an instance, I , of the knapsack problem as described
above, an instance, I ′, of k≥-CHARGE REMOVAL is created as follows. For every i ∈ S, two charges
are created denoted v+i and v−i and label with the corresponding item. These are assigned a weight of
wi to v+i and −wi to v−i .

The values u and α are defined such that u is some value such that there does not exist any pair of
items, i and j, such that pi > pj but pj + u ≥ pi, and u is less than the smallest unit of precision for
the value of the items. Using this, α is defined as some value satisfying the inequality u > 4n2w2

max
α ,

where wmax is the weight of the heaviest item. This ensures that α is some distance such that if all
vertices are at least α away from each other there is a difference of no more than u in energy, which is
sufficient to ensure that vertices at that distance may be safely ignored.



D. Adamson et al. / On the Hardness of Energy Minimisation for Crystal Structure Prediction 201

These vertices are now placed such that, for each item, the distance between the two vertices v+i
and v−i has a potential energy of −pi. Recall that UCij =

qiqj
rij

. This is achieved by placing them at a

distance of w
2
i
pi

. Each of the pair of vertices representing an item is placed in a line so that the distance
between any two pairs is no less than α. An example of this construction is provided in Figure 4.

Item Weight Value
I1 9 3
I2 6 2
I3 3 3

+9 −9 +6 −6 +3 −3

27 α 18 α 3

Figure 4. Example of construction of the structure from the knapsack instance. In this u < 1 and α > 2916

The value k is chosen as k =

(∑
i∈S

wi

)
− c, ensuring that there are no more than c vertices left

after removing k, corresponding to a valid assignment for the knapsack instance. Finally, the goal
value is chosen as g′ = −g + u.

It follows from this construction that any removal of k≥ charges are a valid packing in terms of
the capacity.

If the k≥-CHARGE REMOVAL instance is satisfiable then there must be some valid packing of no
more than g′ energy. As the interaction between vertices corresponding to different items is trivially
small, the only way to achieve this is to choose a set of vertex pairs with an energy between them
no more than g′. As the energy between pairs is equal to the value of the items, the only way this
is achieved is to have items corresponding to a packing with value at least g. Conversely if the k≥-
CHARGE REMOVAL instance is not satisfiable, there does not exist a packing of value g by the same
arguments.

Similarly if the KNAPSACK instance is satisfiable then the k≥-CHARGE REMOVAL instance may be
satisfied by removing all charges not corresponding to a satisfying packing of the KNAPSACK instance.
Finally if the KNAPSACK instance is not satisfiable then by the previous arguments the KCR instance
also can not be satisfied. Therefore this problem is NP-Complete. Note that as the weights on all
items is positive, with a corresponding negative energy in I ′, given a non-minimal satisfying solution
there exists some minimal satisfying solution. Therefore MINIMAL-k≥-CHARGE REMOVAL is also
NP-Hard. ut

6. Conclusions and future work

In this work we have presented the new problem of k-CHARGE REMOVAL, and a class of functions for
which the general case is NP-Complete. In the general case, we show that this problem is APX-Hard.
We have also shown that the problem remains NP-Complete under both the restriction that we have
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only two species of ions and the Buckingham-Coulomb energy function and the restriction we only
use the Coulomb potential on an unbounded number of ion species.

These results provide a strong indication on the general hardness of CSP. By constructing an
instance of k-CHARGE REMOVAL, where every position is simultaneously occupied by every possible
ion, the optimal solution to k-CHARGE REMOVAL for some k is also the optimal solution to CSP.
While this paper does not look at the this specific case, the hardness of k-CHARGE REMOVAL both in
general, and under the restriction to 2 ion species, suggests that CSP is also NP-Hard. These results do
show that CSP when restricted to the constructions used in the paper is NP-Hard. More specifically,
CSP is NP-hard for a discrete grid, where each position has some restriction on the allowed ion species.

From a chemistry stand point, while we have made progress towards physical constructions there
is still a lot that could be done in this regard. As such investigation into the restrictions of having
more realistic physical values remains an important unexplored direction. Another question would be
if we can investigate the convergence of these interactions, particularly the Coulomb potential, over a
periodic structure to more fully understand the energy function.
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