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Abstract. This paper presents algorithms for computing the length of a sum of squares and a

Pythagoras element in a global field K of characteristic different from 2. In the first part of the

paper, we present algorithms for computing the length in a non-dyadic and dyadic (if K is a

number field) completion of K . These two algorithms serve as subsidiary steps for computing

lengths in global fields. In the second part of the paper we present a procedure for constructing

an element whose length equals the Pythagoras number of a global field, termed a Pythagoras

element.

Keywords: Algorithms, Quadratic forms, Global fields, Length, Sum of squares, Pythagoras

number, Pythagoras element. MSC: 11Y16, 11E12

1. Introduction

The problem of representing an element in a ring as a sum of squares is well known in mathematics,

ranging from the works of Lagrange and Gauss, through the works of Waring and Hilbert, to con-

temporary papers (see e.g. [1] or [2]). For example, in papers [3] and [4] the Pythagoras number is

considered, while [5] gives an answer to Hilbert’s seventeenth problem, announced in 1900.
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In this paper, we pursue the continuation of the recent work by P. Koprowski and A. Czogała

in [6] on the computational aspects of the theory of quadratic forms over global fields. In [6] the

authors focused on algorithms over number fields (i.e. finite extensions of Q). The authors in their

paper developed algorithms for checking the isotropy of forms, and computing some field invariants.

The aim of this article is to present algorithms for computing the length of a sum of squares and a

Pythagoras element (see Definition 1) in a global field of characteristic different from 2. In this paper

we make a free use of the standard results from the theory of quadratic forms over global fields. The

reader is referred to [7, 8, 9] for a proper exposition of the theory.

Throughout this paper, if K is a number field whose multiplicative group of non-zero elements

is K̇ , then OK denotes the integral closure of Z in K , while if K is a finite extension of F(X),
where F is a finite field of characteristic not 2, then OK denotes the integral closure of F[X] in K .

We denote by Ω(K) the set of all places of K . If p is a place of K , then we call any valuation

belonging to p the p-adic valuation (if p is finite, then we call it dyadic and non-dyadic if p divides

and does not divide 2, respectively). The completion of K under a p-adic valuation is denoted by

Kp and called the p-adic completion of K . We denote by (·, ·)p the p-adic Hilbert symbol and by

hp(q) the p-adic Hasse invariant of a quadratic form q (for definitions and properties see [7]). If q is

a quadratic form over K (over Kp, respectively), then we write D(q) (Dp(q), respectively) for the set

of all elements of K (Kp, respectively) which are represented by q. The symbol 〈a1, . . . , an〉 denotes

a diagonal quadratic form over K (or Kp) of dimension n. Next, if p is a finite place, then vp(a)
denotes the p-adic valuation of an element a in K . The square class group of the local field Kp has

the form K̇p/K̇
2
p = {K̇2

p , upK̇
2
p , πpK̇

2
p , upπpK̇

2
p }, where vp(up) ≡ 0 (mod 2) is a p-adic unit, and

vp(πp) ≡ 1 (mod 2) is a p-adic uniformizer (see e.g. [7, Theorem VI.2.2] for further details).

Recall that the level s(K) of K is defined as the smallest positive integer n (if it exists) such that

−1 is a sum of n squares of elements of K .

Let a ∈ K̇ . If a is not a sum of squares of elements of K , then we say that a has length ∞ and

write ℓ(a) =∞. Otherwise, we define it’s length ℓ(a) to be the minimal number of summands needed

to express a as a sum of squares of elements of K . If p ∈ Ω(K) is a place of K , then similarly we

define the length of a in the field Kp and denote it by ℓp(a)

The Pythagoras number of K (see e.g. [7, XI.5.5]), denoted P (K), is the smallest positive integer

n such that every sum of squares in K is a sum of n squares. If no such integer n exists, then

P (K) :=∞. A Pythagoras element is defined as follows.

Definition 1. A Pythagoras element of a global field K , denoted aK , is defined to be an element

whose length is equal to the Pythagoras number of K . Thus ℓ(aK) = P (K).

For example, the Pythagoras number of the rationals is P (Q) = 4 and 7 ∈ Q is a Pythagoras

element. The Pythagoras element is not unique, e.g. 15 is another Pythagoras element of Q.

The paper is organized as follows: in Section 2 we present algorithms (see Algorithms 3 and 4)

for computing the length of a sum of squares in a number and global function field, respectively.

These algorithms use subsidiary procedures (Algorithms 1 and 2) for deciding the lengths in a non-

dyadic and dyadic completion of K , respectively. Next, in Section 3, Algorithms 5 and 6 construct a

Pythagoras element in a given number field and global function field, respectively.
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2. Length of a sum of squares

Let K be a global field.

Observation 2. If a ∈ K̇ , then a ∈ D(〈1, 1, . . . , 1〉) for 〈1, 1, . . . , 1〉 of dimension n if and only if

the quadratic form 〈a,−1,−1, . . . ,−1〉 of dimension n+ 1 is isotropic.

The above observation implies that if ℓ(a) <∞, then

ℓ(a) = min{n ∈ N | 〈a,−1,−1, . . . ,−1〉 of dimension

n+ 1 is isotropic}
(1)

Obviously, it is true for ℓp(a) and every p ∈ Ω(K).

Assume p ∈ Ω(K) is a place of K . If p is finite, then the u-invariant of Kp is 4 (see e.g. [7,

Theorem VI.2.12]), so the form 〈1, 1, 1, 1〉 is universal over Kp. Therefore a ∈ Dp(〈1, 1, 1, 1〉) and

ℓp(a) ≤ 4. If K is a number field and p is infinite, then

ℓp(a) =

{

1 if (a,−1)p = 1

∞ if (a,−1)p = −1

in the case when Kp
∼= R and ℓp(a) = 1 in the case when Kp

∼= C.

Proposition 3. Let K be a global field and a ∈ K̇ with ℓ(a) <∞, then

ℓ(a) = max
p∈Ω(K)

ℓp(a)

Proof:

From (1), it follows that ℓ(a) is the minimal natural number such that the form 〈a,−1,−1, . . . ,−1〉 of

dimension ℓ(a)+1 is isotropic. By the Local-global principle [7, Principle VI.3.1], 〈a,−1,−1, . . . ,−1〉
is isotropic over K if and only if it is isotropic over Kp for all p ∈ Ω(K). Therefore 〈a,−1,−1, . . . ,−1〉
of dimension ℓ(a) + 1 is isotropic over Kp for all p ∈ Ω(K). Again from (1) and the Local-global

principle, it follows that there is at least one q ∈ Ω(K) such that the form 〈a,−1,−1, . . . ,−1〉 of

dimension ℓ(a) is not isotropic over Kq, hence ℓq(a) = ℓ(a) and ℓ(a) is the maximal length among

all ℓp(a), p ∈ Ω(K). ⊓⊔

Now we present the first algorithm for computing the length of a in a non-dyadic completion of

the field K .

Proof of correctness of Algorithm 1:

Assume that vp(a) is even. Then either a = 1 or a = up (modulo squares). If a is a square, then

ℓp(a) = 1. Otherwise, (−1, a)p = (−1, up)p = 1, i.e. 1 ∈ Dp(〈−1, a〉), which is equivalent to the

fact that a ∈ Dp(〈1, 1〉). Therefore ℓp(a) = 2.
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Algorithm 1: Length in a non-dyadic completion

Input: A nonzero element a of a global field K and a finite non-dyadic place p of K .

Output: Length of a in the completion Kp

if vp(a) ≡ 1 (mod 2) then

if −1 is a local square in Kp then

return 2;

else

return 3;

else

if a is a local square in Kp then

return 1;

else

return 2;

Now assume that vp(a) is odd. Then either a = πp or upπp (modulo squares) and hence

(−1, a)p = (−1, upπp)p = (−1, πp)p =
{

1 if − 1 ∈ K̇2
p

−1 if − 1 /∈ K̇2
p

If −1 ∈ K̇2
p , then similarly as in the previous paragraph, ℓp(a) = 2. If −1 /∈ K̇2

p , then the level of Kp

is equal to 2, so the form 〈1, 1, 1〉 is isotropic over Kp. Hence a ∈ Dp(〈1, 1, 1〉) and ℓp(a) = 3. ⊓⊔

Remark 4. A procedure for testing whether an element a is a square in a completion Kp is equiv-

alent to testing whether x2 − a is irreducible in Kp[x]. Algorithms for testing the irreducibility of

polynomials are already in existence and can be found for example in [10], [11] or [12].

Next, we present an algorithm for computing the length of a in a dyadic completion of K (if K is

a number field).

Algorithm 2: Length in a dyadic completion

Input: A nonzero element a of a number field K and a dyadic place d of K .

Output: Length of a in the completion Kd

if a is a local square in Kd then

return 1;

Compute the Hilbert symbol (−1, a)d;

if (−1, a)d = 1 then

return 2;

Compute the Hilbert symbol (−1,−1)d;

if (−1,−1)d = 1 or −a is not a square in Kd then

return 3;

return 4;

The proof of correctness is preceded by the following lemma.
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Lemma 5. Let a be a nonzero element of a number field K , and d a dyadic place of K . The form

〈a,−1,−1,−1〉 is isotropic over Kd if and only if either (−1,−1)d = 1 or −a /∈ K̇2
d .

Proof:

Assume−a ∈ K̇2
d . Then 〈a,−1,−1,−1〉 ∼= 〈−1,−1,−1,−1〉 over Kd and hd(〈−1,−1,−1,−1〉) =

(−1,−1)6d = 1. From the assumption it follows that 〈−1,−1,−1,−1〉 is isotropic, so by the means

of [7, Proposition V.3.23] we have (−1,−1)d = 1.

Conversely, suppose that (−1,−1)d = 1. Then 1 ∈ Dd(〈−1,−1〉), so the the form 〈a,−1,−1,−1〉
is isotropic over Kd. Now assume−a /∈ K̇2

d and consider the quadratic extension LD := Kd(
√
−a) of

Kd. From [7, Example XI.2.4(7)], it follows that (−1,−1)D = 1 since [LD : Q2] = [Kd(
√
−a) : Q2]

is even. Moreover, 〈a,−1,−1,−1〉 ∼= 〈−1,−1,−1,−1〉 over LD, and hD(〈−1,−1,−1,−1〉) = 1.

Finally, we have hD(〈a,−1,−1,−1〉) = (−1,−1)D, hence by [7, Remark V.3.24] 〈a,−1,−1,−1〉 is

isotropic over Kd. ⊓⊔

Proof of correctness of Algorithm 2:

Let d be a dyadic place. If a ∈ K̇2
d , then of course ℓd(a) = 1. Assume a /∈ K̇2

d . We consider

the d-adic Hilbert symbol (−1, a)d. If (−1, a)d = 1, then a ∈ Dd(〈1, 1〉) and ℓd(a) = 2. Suppose

(−1, a)d = −1. Then a /∈ Dd(〈1, 1〉). By Lemma 5, if either (−1,−1)d = 1 or −a /∈ K̇2
d , then

ℓd(a) = 3. Otherwise, ℓd(a) = 4. ⊓⊔

Remark 6. An algorithm for computing the Hilbert symbol in a completion of a number field can be

found in [13, Algorithm 6.6].

Remark 7. In the next algorithms, Algorithms 3, 4, 5 and 6, we perform two kinds of factorization in

like manner as in [6]. The first one is to find all dyadic primes of a given field, i.e. to factor 2OK . The

second one is to find all primes dividing an element in a given field. Algorithms for factorization of

ideals are well known. One may refer for example to [14, §6.2.5], [15] or in [16, §2.2].

Now we present an algorithm for computing the length of a sum of squares in a number field.

Proof of correctness of Algorithm 3:

Let ρ1, . . . , ρr be all real embeddings of K for r ≥ 0. If ρi(a) < 0 for some i ≤ r, then a is not a sum

of squares in the corresponding completion, hence it cannot be a sum of squares in K either.

Assume either r = 0 or ρi(a) > 0 for all i ∈ {1, . . . , r}. If a ∈ K̇2, then ℓ(a) = 1. Therefore

suppose a /∈ K̇2. Let D and Q be the set of prime factors of 2 and the set of prime factors of a in

OK that do not divide 2, respectively. Moreover, put P := D ∪ Q and fix a finite place p ∈ Ω(K).
If p /∈ P, then vp(a) = 0. It implies either a = 1 or a = up (modulo squares). If a is a square, then

ℓp(a) = 1. Otherwise, similarly as in the proof of correctness of Algorithm 1, ℓp(a) = 2. Suppose

p ∈ P. If p is a dyadic place, then we use Algorithm 2. Otherwise, we use Algorithm 1. Finally, by

Proposition 3, ℓ(a) = maxp∈Ω(K) ℓp(a). ⊓⊔

Next, we present an algorithm for computing the length of a sum of squares in a global function

field.
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Algorithm 3: Length of a sum of squares in a number field

Input: A nonzero element a of a number field K
Output: Length of a in K
if K is formally real then

Let R = {ρ1, . . . , ρr} be the list of all real embeddings of K , r ∈ N;

for ρ ∈ R do

if ρ(a) < 0 then
return∞

if a is a square in K then
return 1

Let D = {d1, . . . , dm} be the list of prime factors of 2 in OK ;

ℓ← 2;

for d ∈ D do

Compute ℓd(a) in Kd using Algorithm 2;

if ℓd(a) = 4 then
return 4

ℓ← max{ℓ, ℓd(a)};
if ℓ = 3 then

return 3

Let Q = {q1, . . . , qn} be the list of prime factors of a in OK that do not divide 2;

for q ∈ Q do

Compute ℓq(a) in Kq using Algorithm 1;

if ℓd(a) = 3 then
return 3

return 2;

Algorithm 4: Length of a sum of squares in a global function field

Input: A nonzero element a of a global function field K
Output: Length of a in K
if a is a square in K then

return 1

Let P = {q1, . . . , qn} be the list of places dividing a in K;

for q ∈ P do

Compute ℓq(a) in Kq using Algorithm 1;

if ℓq(a) = 3 then
return 3

return 2;

Proof of correctness of Algorithm 4:

Assume P is the set of places dividing a in K . The proof of correctness is similar to the proof of

correctness of Algorithm 3, the second paragraph. ⊓⊔
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3. Pythagoras element

In this section, we devise algorithms that construct Pythagoras elements in global fields. We start with

the following theorem.

Theorem 8. Let K be a number field, then

(i) P (K) = 2 iff s(K) = 1.

(ii) P (K) = 3 iff s(K) 6= 1 and every dyadic place of K has even degree.

(iii) P (K) = 4 iff there is a dyadic place of K of odd degree.

Proof:

(i) Similarly as in the proofs of correctness of Algorithms 1 and 2, P (K) = 2 iff −1 ∈ K̇2
p for every

finite non-dyadic place p of K , and (−1, a)d = 1 for every dyadic place d of K and any a ∈ K̇ .

Hence P (K) = 2 iff −1 ∈ K̇2
q for every finite place q ∈ Ω(K) which is equivalent to s(K) = 1.

(iii) By Lemma 5, P (K) = 4 iff (−1,−1)d = −1 for some dyadic place d of K , so P (K) = 4
iff there is a dyadic place of K of odd degree by means of [7, Example XI.2.4(7)].

(ii) Follows from (i) and (iii). ⊓⊔

Remark 9. Observe that if K is a number field and P (K) = 2, then K is a nonreal field.

Algorithm 5: Pythagoras element in a number field

Input: A number field K
Output: A Pythagoras element in K
if s(K) = 1 then

return any a ∈ K̇ \ K̇2;

Let D = {d1, . . . , dm} be the list of prime factors of 2 in OK ;

for d ∈ D do

if (−1,−1)d = −1 then
return 7

Set flag← FALSE;

Set p← 2;

while flag = FALSE do

Let p← smallest prime number ≥ p+ 1;

if p ≡ 3 (mod 4) then

Let P = {p1, . . . , pn} be the list of prime factors of p in OK ;

for p ∈ P do

if vp(p) ≡ 1 (mod 2) then

Set flag← TRUE;

return p;
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Proof of correctness of Algorithm 5:

Assume P (K) = 2 and let a ∈ K̇ \ K̇2. Then s(K) = 1 and −1 ∈ K̇2, so −1 ∈ K̇2
q for every finite

place q ∈ Ω(K). If q is a finite place such that a ∈ K̇2
q , then ℓq(a) = 1. Otherwise, similarly as in the

proofs of correctness of Algorithms 1 and 2, ℓq(a) = 2 so ℓ(a) = 2 and a is a Pythagoras element.

Next, assume P (K) = 3, then s(K) 6= 1 and (−1,−1)d = 1 for every dyadic place d of K . Since

−1 /∈ K̇2, there exists a finite non-dyadic place p of K such that −1 /∈ K̇2
p . If a is an element of K

such that vp(a) is odd, then a = πp or upπp (modulo squares) and ℓp(a) = 3. If d is a dyadic place

of K , then (−1,−1)d = 1 so by Lemma 5, ℓd(a) ≤ 3. Moreover, if a is a totally positive element

(in the case when K is formally real), then ℓ(a) = 3 and a is a Pythagoras element of K . Now let

p ≡ 3 (mod 4) be any prime number factoring into prime ideals of the form pOK = pe11 · · · penn ,

and let p be any of those factors such that e(p|p) ≡ 1 (mod 2). Then by [7, Corollary VI.2.6], since

p ≡ 3 (mod 4), it implies that −1 /∈ K̇2
p , and p is the sought element.

Finally, if P (K) = 4, then choose a dyadic place d of K such that (−1,−1)d = −1. We prove that

7 is a Pythagoras element of K . Indeed, −7 ∈ Q̇2
2 ⊂ K̇2

d . By Lemma 5, it implies that 〈7,−1,−1,−1〉
is anisotropic over Kd and ℓd(7) = 4. Therefore ℓ(7) = 4 and 7 is a Pythagoras element. ⊓⊔

Theorem 10. Let K be a global function field with full field of constants Fq of order q, then

(i) P (K) = 2 iff q ≡ 1 (mod 4)

(ii) P (K) = 3 iff q ≡ 3 (mod 4)

Proof:

(i) Similarly as in the proof of correctness of Algorithm 1, P (K) = 2 if and only if −1 ∈ K̇2
p for

every place p ∈ Ω(K). Therefore

P (K) = 2 ⇐⇒ −1 ∈ Ḟq
2 ⊂ K̇2 ⇐⇒ q ≡ 1 (mod 4)

(ii) Follows from (i). ⊓⊔

Proof of correctness of Algorithm 6:

The full field Fq of constants is algebraically closed in K . Hence a /∈ Ḟq
2

implies that a /∈ K̇2.

Therefore if P (K) = 2, we have ℓ(a) = 2 = P (K).

Conversely, if q ≡ 3 (mod 4), then −1 /∈ K̇2 by Theorem 10, so there is a place p ∈ Ω(K) such

that −1 /∈ K̇2
p . If a ∈ K and vp(a) is odd, then similarly as in the proof of correctness of Algorithm 5,

ℓp(a) = 3 which is the maximal length in K and a is a Pythagoras element. Further, for any positive

integer m, it is well known that the polynomial xq
m − x in Fq[x] factors into a product

∏

d|m P (d, q)
of monic irreducible polynomials P of degree d (see e.g. [17, Chap. 7, Theorem 2]). If P is any monic

irreducible polynomial factoring into a product of powers of prime ideals pe11 · · · p
ek
k in OK such that

ei(pi|P ) ≡ 1 (mod 2) for any i ≤ k, then (−1, P )pi = −1 which implies −1 /∈ K̇2
pi

, and P is the

sought element. ⊓⊔
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Algorithm 6: Pythagoras element in a global function field

Input: A global function field K with full field of constants Fq of order q.

Output: A Pythagoras element in K
if q ≡ 1 (mod 4) then

return any a ∈ Ḟq \ Ḟq

2

;

Set flag← FALSE;

Set m← 0;

while flag = FALSE do

m← m+ 1;

Factor (xqm − x) into monic irreducible polynomials in the form of a list: P = {p1, . . . , pk};
for p ∈ P do

Let P = {p1, . . . , pn} be the list of places dividing p in K;

for p ∈ P do

if vp(p) ≡ 1 (mod 2) then

Set flag← TRUE;

return p;

The presented algorithms can be implemented in existing computer algebra systems. In fact, they

have currently been implemented in CQF – a free, open-source Magma package for doing computa-

tions in quadratic forms theory (see [18]). CQF determines the length of an element and a Pythagoras

element in a global field using the functions LengthOfSumOfSquares (or LengthOfSOS for short)

and PythagorasElement, respectively.
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