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Abstract. Reversible computations constitute an unconventional form of computing where any
sequence of performed operations can be undone by executing in reverse order at any point dur-
ing a computation. It has been attracting increasing attention as it provides opportunities for
low-power computation, being at the same time essential or eligible in various applications. In
recent work, we have proposed a structural way of translating Reversing Petri Nets (RPNs) –
a type of Petri nets that embeds reversible computation, to bounded Coloured Petri Nets (CPNs)
– an extension of traditional Petri Nets, where tokens carry data values. Three reversing seman-
tics are possible in RPNs: backtracking (reversing of the lately executed action), causal reversing
(action can be reversed only when all its effects have been undone) and out of causal reversing
(any previously performed action can be reversed). In this paper, we extend the RPN to CPN
translation with formal proofs of correctness. Moreover, the possibility of introduction of cycles
to RPNs is discussed. We analyze which type of cycles could be allowed in RPNs to ensure con-
sistency with the current semantics. It emerged that the most interesting case related to cycles in
RPNs occurs in causal semantics, where various interpretations of dependency result in different
net’s behaviour during reversing. Three definitions of dependence are presented and discussed.
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1. Introduction

The classical concept of reversibility in Petri nets is most commonly considered as the ability of
a system to achieve its initial state at any time of any computation (i.e., the initial state is a "home
state" [7]). This property is sometimes also called cyclicity [6]. The decades-long research in this
area was globally oriented, i.e., it concerned the entire system, not its individual actions [1, 5]. On the
other hand, in many fields of science, the concept of reversibility is defined for individual system’s
transitions as the ability to reverse an action, undo its execution, or perform an action "backward" with
exactly the same ease as "forward".

Reversible computations are essential in many fields, for example in large parallel simulations [17]
or databases transactions, where withdrawals of some operations are frequently required, like in loss
of internet connection during online payments. Reversible computations are also vital part of version
control systems, which are widely used in software developing and other disciplines. The whole idea
of version control systems is shifting between former and latter versions, hence adding and reversing
commits. Other field which attract much interest in reversing computations is biology. Catalytic reac-
tions can be seen as reversible processes, where binding between the catalyst and the first substrate is
reversed after the reaction. Other biological phenomena, where reversing is observed, are for example
activation cycle of G-proteins or oxygen transfer by hemoglobin tetramer.

In recent years, substantial work has been underway to study the concept of reversibility in Petri
nets in a local context, i.e., focusing attention on a single action and the possibility of undoing it,
not on the entire system. The first attempts were to inverse a single system action by adding a strict
reverse to it (the same transition, but in opposite direction). The problem of checking whether the set
of such obtained reachable markings changes is proven to be undecidable (for unbounded nets), while
for coverable markings - decidable. Additionally, it was shown that the set of markings reachable by
the system may change after the introduction of just one single strict reverse [4]. The attention was
therefore directed not only on the strict reverses, but also on actions that have exactly the same effect
as the reverse (i.e., having isomorphic behaviour - in the meaning of reachability graph) [3, 8, 12].
Another area of research involved action reversal in step semantics with auto-concurrency [9]. Re-
search attention was also given to Petri nets with causal-consistent local reversibility, obtained by
unfolding any place-transition net into occurrence nets and folding them back to a coloured Petri
net with an infinite number of colours [11]. Apart from adding the functionality of reversing (by
creating strict or behavioural reverses) to systems modelled with Petri nets, a new model was pro-
posed, namely reversing Petri nets (RPNs) [13]. In the newly introduced model, three (motivated by
real concurrent systems) computational semantics were considered, namely: backtracking, causal re-
versing and out-of-causal-order reversing. It was also shown how to encode reversing Petri nets into
coloured Petri nets with a finite number of colours, equivalent to the classical bounded place-transition
systems [2].

This paper has two goals. The first is to extend the results presented in [2]. The new type of
history is added and formal proofs of generation of CPNs from RPNs are presented. We also test the
generation on a number of examples, where the CPN Tools [15] have been employed to illustrate that
the translations conform to the semantics of reversible computation. The second goal is to discuss
possibility of the introduction of cycles to RPNs and how it would impact the reversibility.
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Paper organization. In the following two sections we give an overview of reversing Petri nets
(RPNs) and Coloured Petri nets (CPNs). Section 4 contains description of the generation of CPN
based on RPN. This is carried out in two steps: first CPN mimicking RPN behavior in forward exe-
cution of transitions is obtained, then possibility of reversing is added to the CPN. Section 5 focuses
on introduction of cycles to RPNs, whether it is possible and how it would impact the reversing of
transitions. The paper is concluded in Section 6.

2. Reversing Petri nets

In this section we present the basic concepts of reversing Petri nets (RPNs) based on [2, 13]. In gen-
eral, the idea of RPNs is to allow reversing computations as easily as the forward ones. Computations
in this context mean firing of transitions. Following the biological inspiration (for example catalytic
reactions), tokens in RPNs are persistent and distinguishable, and one may associate them with atoms
or chemical molecules. The role of transitions is to create bonds between tokens (similar to chemical
bonds) or to simply transport them. Reversing of transitions is equivalent to breaking of bonds. Hence,
RPNs are naturally suitable to model biological reactions. However, in general, tokens may represent
any objects, and bonds any interactions between those objects. An example of RPN is presented in
Figure 1.

Preliminaries

The set of non-negative integers is denoted by IN. Given a set X, the cardinality (number of elements)
of X is denoted by #X , the powerset (set of all subsets) by 2X – the cardinality of the powerset
is 2#X .

Definition 2.1. A reversing Petri net (RPN) is a tuple (P, T, F,A,B) where:

1. P and T are finite sets of places and transitions, respectively.

2. A is a finite set of bases or tokens. The set A = {a | a ∈ A} contains a “negative” instance for
every element in A1.

3. B ⊆ {{a, b} | a 6= b ∈ A} is a set of bonds. We use the notation a−b for a bond {a, b} ∈ B.
The set B = {β | β ∈ B} contains a “negative” instance for each bond in B, similarly as for
bases.

4. F : (P × T ∪ T × P ) → 2A∪A∪B∪B is a set of directed arcs associated with a subset of
A ∪A ∪B ∪B.

In the above definition the sets of places and transitions are understood in the standard way
(see [16]).

1Elements of A emblem the presence of the base, when elements of A the absence of the it. Utilising of the concept can be
found in Definition 2.4.
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For a transition t ∈ T we introduce •t = {p ∈ P | F (p, t) 6= ∅}, t• = {p ∈ P | F (t, p) 6= ∅}
(sets of input and output places of t), and pre(t) =

⋃
p∈P F (p, t), post(t) =

⋃
p∈P F (t, p) (unions of

labels of the incoming/outgoing arcs of t), as well as effect(t) = post(t) \ pre(t). If {a, b} ∈ B and
{b, c} ∈ B, instead of a−b, b−c we use the notation a−b−c (and similar for more bonds).

The following restrictions give rise to the notion of well-formed RPNs.

Definition 2.2. A reversing Petri net (P, T, F,A,B) is well-formed, if it satisfies the following con-
ditions for all t ∈ T :

1. A ∩ pre(t) = A ∩ post(t),

2. if a−b ∈ pre(t) then a−b ∈ post(t),

3. for every t ∈ T we have: •t 6= ∅ and #(t•) = 1,

4. if a, b ∈ F (p, t) and β = a−b ∈ F (t, q) then either β ∈ F (p, t), or β ∈ F (p, t).

Clause (1) indicates that transitions do not erase any tokens and clause (2) indicates that transi-
tions do not destroy bonds. In (3) forks are prohibited in order to avoid duplicating tokens that are
transferred into different output places but are already bonded in the input places. Finally, clause (4)
indicates that tokens/bonds cannot be recreated into more than one output place – if a bond appears on
the output of a transition, then either that bond have already existed and the transition only transports
it (case β ∈ F (p, t)), or it is being created and we need to make sure that it has not existed before (case
β ∈ F (p, t)). All those clauses are inspired by biological reactions (for example number of atoms is
substrates and products has to be constant).

A marking is a distribution of tokens and bonds across places,
M : P → 2A∪B , where for p ∈ P if a−b ∈M(p) then a, b ∈M(p).

For now we focus only on acyclic RPNs hence every transition can be executed only once. How-
ever, due to future assumptions (see Remark 5.5 related to cycles), we want to consider transitions
in RPNs which could be fired twice. Because of that, in the paper we would present definitions and
theorems where this fact is already taken into account.

Let IN2 be a set containing the empty set, singletons or two-elements sets of natural numbers:
i.e. IN2 ⊆ 2IN and ∀X∈IN2#(X) ≤ 2. A history assigns an index to each transition occurrence,
H : T → IN2. An empty-set history associated with a transition t ∈ T means that t has not been
executed yet or it has been reversed and not executed again, while a history of {ki, kj} indicates that
t was executed as the kthi , k

th
j transition in the computation (and not reversed until this moment). H0

denotes the initial history where H0(t) = ∅ for every t ∈ T . A state is a pair 〈M,H〉 of a marking
and a history.

Now we introduce the set con(a,C) containing a if a is a part of C and a set of tokens connected
with a via bonds which are in C as follows

Definition 2.3. For a ∈ A and C ⊆ A ∪B we define the following set:
con(a,C) = ({a}∩C)∪{b, c, {b, c}|∃w∈2Bw = 〈β1, β2, . . . , βn〉, βi ∈ C ∩B, βi = {ai−1, ai}, ai ∈
C ∩A, a0 = a, βn = {b, c}, i ∈ 1, . . . , n}.
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During biological reactions and other processes, various types of reversing are possible. In some
cases, only the last operation can be reversed (backtracking). In other instances, the action can be
rollbacked if all its effects have been undone (causal reversing), no matter when this action was per-
formed. In the last category of reversing, any previously executed operation can be undone (out of
causal reversing). All those three types of reversing are possible in RPNs - only the definition of en-
ableness and mechanism of bonds breaking should be changed to switch between reversing categories.

Note that, in this paper we only focus on backtracking and causal reversing. More information
about the third semantics one can find in [2].

2.1. Reversing Petri nets - forward execution

From now on we assume RPNs to be well-formed. Furthermore, as in [13], we assume that in the initial
marking M0 of RPN, there exists exactly one base of each type, i.e., #{p ∈ P | a ∈ M0(p)} = 1,
for all a ∈ A. Now we can indicate the conditions that must be met for a transition of a RPN to be
enabled.

Definition 2.4. Consider a reversing Petri net (P, T, F,A,B), a transition t ∈ T , a state 〈M,H〉,
a base a ∈ A, and a bond β ∈ B. We say that t is (forward) enabled in 〈M,H〉 if the following hold:

1. if a∈F (p, t), resp. β∈F (p, t), for p∈•t, then a∈M(p), resp. β∈M(p),

2. if a∈F (p, t), resp. β∈F (p, t) for p∈•t, then a 6∈M(p), resp. β 6∈M(p),

3. if β∈F (t, p) for p∈ t• and β∈M(q) for q∈•t then β∈F (q, t).

A transition t is enabled in a state 〈M,H〉 if all tokens from F (p, t) for every p ∈ •t (i.e., tokens
required for the firing of the transition) are available, and none of the tokens whose absence is required
exists in an input place of the transition (clauses 1 and 2). Clause 3 indicates that if a pre-existing bond
appears in an outgoing arc of a transition then it is also a precondition for the transition to fire.

Definition 2.5. Given a reversing Petri net (P, T, F,A,B), a state 〈M,H〉, and a transition t enabled
in 〈M,H〉, we write 〈M,H〉 t−→ 〈M ′, H ′〉 where:

M ′(p) =


M(p) \

⋃
a∈F (p,t) con(a,M(p)), if p ∈ •t

M(p) ∪ F (t, p) ∪
⋃
a∈F (t,p),q∈•t con(a,M(q)), if p ∈ t•

M(p), otherwise

and H ′(t′) = H(t′) ∪ {max{k|k ∈ H(t′′), t′′ ∈ T}+ 1}, if t′ = t, and H(t′) otherwise.

After the execution of transition t, all suitable (according to Definition 2.5) tokens and bonds
occurring in its incoming arcs together with elements connected to them by bonds are transferred from
the input places to the output place of t. Moreover, the history function H is changed by assigning the
next available integer number to the transition. An example of forward execution of transitions can be
seen in Figure 1.

In a natural way, we extend the notion of enabledness and transition execution to sequences of
transitions:
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Figure 1. Example of RPN and its forward execution. Transitions t1 and t2 only transport tokens (token a and
b, respectively). Transition t3 requires token a from place p3 and token b from place p4 and it creates a bond
between those tokens (a−b) and transport them to p5. Transition t4 requires token c from p6 and b from p5 –
which is present there after execution of t3. The fact that b is already connected with a is irrelevant for t4 –
it transports them both together and creates a bond between b and c. The whole molecule (a−b−c) is transported
to p7. Transitions history is presented as numbers above transitions.

Definition 2.6. Given a RPN (P, T, F,A,B) and a sequence of transitions σ = t1t2 . . . tn, where
ti ∈ T (i ∈ 1, . . . , n), we say that:

• sequence σ is enabled in state 〈M,H〉 if there exists a sequence of states 〈M1, H1〉, . . . , 〈Mn, Hn〉
such that 〈M,H〉 t1−→ 〈M1, H1〉

t2−→ . . .
tn−→ 〈Mn, Hn〉,

• state 〈Mn, Hn〉 is called a resulting state, and we write 〈M,H〉 σ−→ 〈Mn, Hn〉,

• a state 〈M0, H0〉 where for all t ∈ T , H0(t) = ∅ is called an initial state,

• a state 〈M,H〉 is reachable from the initial state 〈M0, H0〉 if there exists a sequence σ, such
that 〈M0, H0〉

σ−→ 〈M,H〉.

We now present the semantics for the various forms of reversibility as proposed in [13].

2.2. Backtracking

A transition is backward enabled (bt-enabled) if the following holds:

Definition 2.7. Consider a reversing Petri net (P, T, F,A,B) a state 〈M,H〉 and a transition t ∈ T .
We say that t is bt-enabled in 〈M,H〉 if k ∈ H(t) with k ≥ k′ for all k′ ∈ H(t′), t′ ∈ T .

Thus, only the last executed transition can be backward executed in this semantics. The effect of
backtracking a transition in a reversing Petri net is as follows:
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Definition 2.8. Given a RPNN = (P, T, F,A,B), a state 〈M,H〉, and a transition t that is bt-enabled
in 〈M,H〉, we write 〈M,H〉 t

 b 〈M ′, H ′〉 where:

M ′(p) =


M(p) ∪

⋃
a∈F (p,t)∩F (t,q) con(a,M(q) \ effect(t)), if p ∈ •t

M(p) \
⋃
a∈F (t,p) con(a,M(p)), if p ∈ t•

M(p), otherwise

H ′(t′) = H(t′) \ {max{k | k ∈ H(t′)}}, if t′ = t, H ′(t′), otherwise

The crucial element in the reversing is to establish a set of tokens in a given place p that are
connected by bonds to a token a in marking M - this element is described as con(a,M(p)). When
transition t is reversed (in backtracking semantic) we add to its input places elements (tokens and
bonds between them) obtained after undoing the effect of t, but only those elements which are included
in the description of the arc between the input place and transition t (the first line in the definition). For
the output places of t we remove element (tokens and bonds between them) containing token, which
was put there by that transition. Moreover the history function H of t has to be changed by removing
the maximal element of the set to capture that the transition has been reversed.

Example 2.9. In part (d) of Figure 1, if we decide to reverse t4, a bond between b and c would be
broken - because it is an effect of t4. Token c would go back to p6 and element a−b to p5 – it would
lead to the marking presented in part (c). Similar situation would occur during reversing of t3 from
the marking depicted in part (c). Transitions t2 and t1 have only one input and output place each,
hence their reversing would result in transferring token b or a (respectively) from their output to input
places.

2.3. Causal reversing

In causal reversing semantic, transition t ∈ T can be reversed if all transitions dependent on t, and
executed after t, have been reversed. Therefore, causal enabledness is defined as follows.

Definition 2.10. Consider a reversing Petri net (P, T, F,A,B) and a state 〈M,H〉. Transition t is
co-enabled in 〈M,H〉 if H(t) 6= ∅ and for all t′ that are dependent on t then either H(t′) = ∅ or
max(H(t)) ≥ max(H(t′)).

Notice, that behavior of RPN in causal semantics would be determined by the definition of depen-
dence. This will be discussed more in the second part of the paper (Section 5). So far, we would focus
on the classical definition:

Definition 2.11. Let (P, T, F,A,B) be RPN, and t1, t2 ∈ T . Transitions t1, t2 are (structurally)
dependent (we use the notation: (t1, t2) ∈ Dep) if an input place of one of them is an output place of
the other: (t1, t2) ∈ Dep⇒ (t•1 ∩ •t2 6= ∅) ∨ (•t1 ∩ t•2 6= ∅).2

The effect of causally reversing of transition in reversing Petri net is as follows:
2Note that the definition clearly determines the symmetry of the relation, i.e., (t1, t2) ∈ Dep ⇐⇒ (t2, t1) ∈ Dep.
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Definition 2.12. Given a RPN N = (P, T, F,A,B), a state 〈M,H〉, and a transition t with history k
co-enabled in 〈M,H〉, we write 〈M,H〉 t

 c 〈M ′, H ′〉 for M ′ as in Definition 2.8 and

H(t′) =

{
H(t′)− {max{k | k ∈ H(t′)}}, if t′ = t

{k′ | k′ ∈ H(t′), k′ < k} ∪ {k′ − 1 | k′ ∈ H(t′), k′ > k}, otherwise

In many cases reversing according to the backtracking and causal semantic would be the same.

Example 2.13. In Figure 1 part (d) in both semantics only transition t4 could be reversed. It would
lead to the state presented in part (c) of the figure. Then, once again, only one transition could be
reversed - transition t3 and it would lead to the marking presented in part (b). At this point we can
see the difference between both semantics. In backtracking, transition t2 has to be reversed before
transition t1, because their were fired in that (opposite) order. For causal reversing, both transitions
could be reversed, because they are not dependent. Hence, transition t1 could be reversed before t2,
even if in forward execution t1 was fired before t2.

2.4. Returning to the initial state

The following theorem states that starting from the initial marking and executing a sequence of tran-
sitions we may return back (using backtracking or causal reversing semantics) to the initial marking
if all the forward transitions are reversed. Let σ7−→ denotes a sequence of both forward and reversed
transitions. Moreover, for a sequence σ ∈ (T ∪{t | t ∈ T})∗, the occurrence of t, written without un-
derlining, means that transition t ∈ T was executed in the forward direction in σ, while the occurrence
of t, underlined, indicates that transition t ∈ T was executed in the reverse direction.

Theorem 2.14. If 〈M,H〉 σ7−→ 〈M ′, H ′〉 where {t|t ∈ σ} = {t|t ∈ σ} then M = M ′ and H = H ′.

Proof of Theorem 2.14: Suppose that 〈M,H〉 σ7−→ 〈M ′, H ′〉 where σ ∈ T ∗ is a sequence of forward
and reverse transitions such that {t|t ∈ σ} = {t|t ∈ σ}. We prove the theorem by induction on the
length n of σ (n = |σ|). If n = 0, there are no transitions in σ and the theorem is trivially satisfied. If
not, we assume that the theorem holds for k < n and proceed by induction. Let t be the first transition
in the sequence executed in the reverse direction. We distinguish two cases:

1. If the pair of transitions tt constitutes a factor of the sequence σ, then we can remove tt from σ.
This operation is correct because reversing t just after its execution undoes the effect of t and
leads to the marking before execution of t. This way we obtain a shorter sequence σ′, which is
equivalent to the former one (in the meaning of reachable markings). Since |σ′|< |σ| the proof
follows by induction. Note that this part holds both for backtracking and co-reversing.

2. If the pair of transitions t′t (for t′ 6= t) constitutes a factor of the sequence τ , then it means that
for t to be executed (strictly speaking: for t to be reversed) it must be that t has been executed
before t′. Note that in backtracking semantics, this situation is impossible, as reversing can
only happen immediately after the execution of transition t, hence this part is crucial only for
causal-order reversing semantics. By Definition 2.10, all transitions located in the sequence σ
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between t and t are independent of t (if not, it would not be possible for t to be reversed before
their reversal and we assume that t is the first occurrence of a reverse transition). As a result t
can be swapped with all of them, resulting in a new equivalent sequence containing tt. In this
situation, the previous case applies.

This completes the proof. �

3. Coloured Petri nets

Recall that RPNs constitute a model in which transitions can be reversed according to three semantics:
backtracking, causal, and out-of-causal-order reversing. A main characteristic of RPNs is the concept
of a history, which assigns a set of natural numbers to transitions. However, it imposes the need of
a global control in order to reverse computations. Our goal is to recast the model of RPNs into one
without any form of global control while establishing the expressiveness relation between RPNs and
the model of bounded coloured Petri nets. In this section we recall the notion of coloured Petri nets
(CPNs).

Note that, according to the utilised CPN Tools [18], EXPRV is the set of net inscriptions (over
a set of variables V , possibly empty, i.e., using only constant values) provided by CPN ML. Moreover,
by Type[e] we denote the type of values obtained by the evaluation of expression e. The set of free
variables in an expression e is denoted by V ar[e]. The setting of a particular value to free variable v
is called a binding b(v). We require that b(v) ∈ Type[v] and denote with the use of 〈〉 filled by the list
of valuations and written next to the element to whom it relates. The set of bindings of t is denoted
by B(t). The binding element is a transition t together with a valuation b(t) of all the free variables
related to t. We denote it by (t, b), for t ∈ T and b ∈ B(t).

Definition 3.1. ([10])
A (non-hierarchical) coloured Petri net is a nine-tuple CPN = (P, T,D,Σ, V, C,G,E, I), where:

• P and T are finite, disjoint sets of places and transitions;

• D ⊆ P × T ∪ T × P is a set of directed arcs;

• Σ is a finite set of non-empty colour sets;

• V is a finite set of typed variables such that Type[V ] ∈ Σ for all v ∈ V ;

• C : P → Σ is a colour set function that assigns colour sets to places;

• G : T → EXPRV is a guard function that assigns a guard to each transition t such that
Type[G(t)] = Bool;

• E : D → EXPRV is an arc expression function that assigns an arc expression to each arc
d ∈ D such that Type[E(d)] = INC(p), where p is the place connected with the arc d;

• I : P → EXPR∅ is an initialisation function that assigns an initialisation expression to take
each place p such that Type[I(p)] = INC(p).
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A marking M in coloured Petri nets is a function which assigns a set of tokens M(p) ∈ 2C(p) to
each p ∈ P . An initial marking is denoted by M0 and defined for each p ∈ P as follows: M0(p) =
I(p)〈〉.

A binding element (t, b) is enabled at a markingM ifG(t)〈b〉 is true and at each place p ∈ P there
are enough tokens inM to fulfil the evaluation of the arc expression functionE(p, t)〈b〉. The resulting
marking is obtained by removing the tokens given by E(p, t)〈b〉 from M(p) and adding those given
by E(t, p)〈b〉 for each p ∈ P .

We define the enabledness of transition in CPN as follows: a transition t ∈ T is enabled at M and
its execution leads to marking M ′ (denoted M [t〉M ′) if there exists a binding b ∈ B(t), such that the
binding element (t, b) is enabled at M .

4. Generation of CPN from RPN

In this section we describe how to create CPN corresponding to a given RPN. The process is divided
into two steps: in the first we present how to generate CPN only for the structure of RPN and for-
ward execution semantic, without implemented reversing semantics (Section 4.1 and Section 4.2).
In the second the reversing semantics are added to CPN in a form of additional transitions and arcs
(Section 4.3).

4.1. Generation of CPN - the structure and forward executions

We design the transformation of RPN NR = (PR, TR, FR, AR, BR) to a new equivalent CPN CR =
(PC , TC , DC ,ΣC , VC , CC , GC , EC , IC) as follows.

The set of places is PC = PR ∪ PTHP ∪ PCHP , where:

• PR is a set of places from the original RPN NR,

• PTHP = {hi | ti ∈ TR} is a set of transitions history places (one new place for every transition
from the original net),

• PCHP = {hij | ti, tj ∈ TR, i < j} is a set of connection history places (one new place for
every pair of transitions from the original net).

The set of transitions of the net CR is the same as in the RPN, namely TC = TR. The set of
variables VC should contain all elements necessary to describe each input token of a transition.

New arcs have to be added to CR to connect newly added places. Each transition ti is connected
with its history place hi3 and all its connection history places (hij or hji, depending on the order of i
and j, where j is a number of transition, different from i) in both directions. Hence:

DC = Domain(FR) ∪ {(ti, hi) | ti ∈ TR} ∪ {(hi, ti) | ti ∈ TR}
∪ {(ti, hij) | ti ∈ TR, i < j} ∪ {(ti, hji) | ti ∈ TR, j < i}
∪ {(hij , ti) | ti ∈ TR, i < j} ∪ {(hji, ti) | ti ∈ TR, j < i}.

3Whenever the denotation hi is used without explanation, we assume this is a transition history place for transition ti ∈ TR.
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The set of colours ΣC contains:

• Base = AR;

• Bond = BR;

• Bases (subsets of Base - in CPN Tools represented as lists);

• Bonds (subsets of Bond - in CPN Tools represented as lists);

• Molecule = Bases×Bonds – molecules, as in a biochemical system, are considered to be a set
of bases or atoms with the corresponding bonds between them;

• HIST = {(n, i, j) | i, j, n ∈ N} (local history for a pair of transitions) and

• boundInt – bounded natural numbers belonging to INb (the bound is equal to #TR · 2).

The colour function CC assigns:

• to every place p ∈ PR – a molecule colour;

• to every connection history place hij ∈ PCHP – boundInt colour, which is a bounded integer
number which describes how many times transitions from the pair ti, tj were executed;

• to every transition history place hi ∈ PTHP – HIST colour 4.

The guard function GC has to be equivalent to the labels of input arcs defined in the RPN PR.
Consequently, if a ∈ FR(p, ti) (β ∈ FR(p, ti), respectively) for a transition ti and its input place p,
thenGC(ti) should contain a condition, assuring that the binding of an input token for place p contains
a (β, respectively).

The arc expression function EC for arcs between transitions ti ∈ TR and places pi ∈ PR should
be analogous to FR(ti, pi). If ti only transfers tokens then EC(ti, pi) should be a union of bonds and
bases of all inputs for ti. If ti creates a bond β, then EC(ti, pi) should be an union of bonds and bases
of all inputs for ti, together with the newly created bond β.

Places hij and hi control the history of a transition ti, (here, without lost of generality, we can
assume that i < j). Let historyij ∈ VC represents the value obtained from place hij by ti. The
arc expression function is defined as: EC(hij , ti) = historyij , EC(ti, hij) = historyij + 1. Hence,
the current value of the connection history place hij denotes the next history value for the pair of
transitions ti and tj .

For the transition history place hi, the following arc expressions should be assigned: EC(hi, ti) =
listi, where listi is a list of triples, which describes the previous history of the transition ti and
EC(hi, ti) = listi ∪ {(historyij , j, i) | tj ∈ TR,M(hij) = historyij}. Understanding the history
mechanism is crucial for understanding the transformation idea. Since we assumed that each path in
RPN is finite, values in places hi and hij are bounded by the definition.

4If a triple (n, j, i) is present in place hi, it means that transition ti occurred at the nth position in a sequence of executions
of transitions ti and tj .
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The initialization function IC may be understood as an assignment of the initial marking to places.
From now on by markings we understand the value of tokens in places (according to definitions of
CPNs the concept of marking is more complex, hence this statement). For places p ∈ PC originated
from PR we assign the same initial marking (the same set of bases and bonds) as in the original net.
For hi ∈ PTHP we have IC(hi) = ∅ (empty list), while for hij ∈ PCHP we have IC(hij) = 0.

Let us now define the correspondence between states of RPN and markings of the corresponding
CPN. First, recall that in acyclic RPNs transitions may be fired at most once (because every base
or bond appears only once in any marking), but in Section 5 we discuss transitions which may be
executed twice, hence here we would already present result with this assumption. Recall that:

• a state in RPN is a pair 〈MR, HR〉, where MR : P → 2A∪B and HR : T → IN2,

• a state in CPN generated from RPN can be considered as a marking M : P → 2CC(p).

Remark 4.1. A marking in RPN is a set of bases and bonds, while a marking in CPN for places
originating from RPN is a set of pairs of the form (bases, bonds). Of course, one representation can
be easily transformed to the equivalent one.

In what follows we describe how to generate a marking M of CPN on the basis of 〈MR, HR〉 of
RPN or how to obtain the original state 〈MR, HR〉 of RPN from M of CPN. Such marking M and
state 〈MR, HR〉 are called corresponding.

A marking M of CPN generated from 〈MR, HR〉 of RPN is a function as follows:

• M(p) ∈ 2A∪B for p ∈ PR - if a base belongs to MR(p) then it belongs to the first coordinate of
M(p), and if a bond belongs to MR(p) then it belongs to the second coordinate of M(p),

• M(hi) ∈ 2(IN×IN×IN), for hi ∈ PTHP where
M(hi) =

⋃
k∈HR(ti);ti,tj∈T ;i 6=j(#{h ∈ HR(ti) ∪HR(tj);h < k}+ 1, j, i),

• M(hij) ∈ 2IN, for hij ∈ PCHP where M(hij) = #HR(ti) + #HR(tj).

On the other hand, having a marking M of CPN indicates the original state 〈MR, HR〉 of RPN in
the following way:

• MR(p) =
⋃

(x,y)∈M(p)(x ∪ y), for p ∈ P ;

• As mentioned before, we assume that transitions in reversing Petri net can be executed at most
twice. For that reason, for any ti ∈ T we can distinguish three cases of the content of transition
history place hi:

1. #M(hi) = 0 (i.e., transition ti has not been executed yet);
in that case HR(ti) = ∅.

2. #M(hi) = #TR − 1 (i.e., ti has been executed once);
in that case HR(ti) = {1 + Σ(k,j,i)∈M(hi)(k − 1)}
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3. #M(hi) = 2 · (#TR − 1) (i.e., ti has been executed twice);
in that case let us define sets:
maxHist(hi) = {(km, j, i) ∈ M(hi)|km = max{k|(k, j, i) ∈ M(hi)}} - for each pair
of selected transition ti and every other transition tj we choose only the triple with the
maximal value of k.
minHist(hi) = M(hi) \maxHist(hi)
Considering above formulas the history of any transition ti, which was fired twice would
contain:
HR(ti) = {1 + Σ(k,j,i)∈minHist(hi)(k − 1),
1 + Σ(kj ,j,i)∈maxHist(hi)(kj − 1)−#{(kg, j, i) ∈M(hi)|kg < kj ∧ (kj , j, i) ∈M(hi)} ∗
#TR−2
#TR−1}.

The case, when a transition has not been executed yet is trivial. In other cases we have to calculate
the index of the transition in the sequence of executions. However, this number in CPN is not given
directly, but is scattered among history places, or more precisely among factors k in triples stored in
those history places. When transition t is executed for the first time, a triple is added to its history
place for every other transition t′ ∈ TR. Factor k in such a triple means that the discussed transition
was executed as k-th when you consider only transitions from the set {t, t′}. Hence, if the transition t
is k-th - it means that the other transition (t′) has been executed k − 1 times earlier or in other words,
there have been k − 1 executions before the discussed transition fired. To calculate the index of the
transition in the whole sequence, all executions before the considered one have to be added plus one
for the considered execution. It gives the formula presented above (case 2). Similar situation occurs
when the transition is executed for the second time (case 3). However, in that case there are two
groups of triples in the history place. A part of them is related to the first execution (those belong to
minHist(hi)) and can be used to calculate the index in the sequence of executions related to the first
execution of the transition. Others are related to the second execution - those belong tomaxHist(hi).
However, we cannot simply add k−1 executions before the considered one as it was described in case
2, because values k in triples from maxHist(hi) contain also information about the first execution
(after the execution, counters are not reset). Hence, we need to subtract that redundant information.

Theorem 4.2. Consider RPN R = (PR, TR, FR, AR, BR) and the corresponding CPN
C = (PC , TC , DC ,ΣC , VC , CC , GC , EC , IC) constructed according to the above transformation. Let
〈MR, HR〉 be a reachable state in R and M be a corresponding marking in C. Then a transition ti is
enabled at MR in PR if and only if it is enabled at M in C. Moreover, if 〈MR, HR〉

ti−→ 〈M ′R, H ′R〉
and M [ti〉M ′ then 〈M ′R, H ′R〉 corresponds to M ′.

Proof:
Let 〈MR, HR〉 be a reachable state in R and M be the corresponding marking in C. The enabledness
of transitions (in the forward direction) depends only on the molecules located in its input places
(which in coloured Petri net C is expressed by the guard function). The correspondence between RPN
and CPN described above, assumes that the content of such places is equivalent. Hence, transition ti
is enabled at 〈MR, HR〉 if and only if ti is enabled at M .



286 K. Barylska and A. Gogolińska / Acyclic and Cyclic Reversing Computations in Petri Nets

Let 〈MR, HR〉
ti−→ 〈M ′R, H ′R〉 and M [ti〉M ′. We need to show that 〈M ′R, H ′R〉 corresponds

to M ′. According to the definition of the effect in RPN and the transformation procedure, we know
that the contents of places belonging to PR before and after the firing of ti in R and C are equivalent.
We only need to focus on historiesHR andH ′R inR and markings of transition and connection history
places in C. We know that after execution of ti in RPN, the new element, indicating the number of
transitions executed in the current computation, is added to its history. It is the only difference between
HR and H ′R. On the other hand, the difference between M and M ′ considering only history places is
as follows:

• All tokens (i.e., natural numbers) in connection history places related to ti are increased by 1,
but those places are not considered during computation of the corresponding state in RPN.

• New elements, in the number of #TR − 1, are added to the transition history place hi of ti.

Let us notice, that due to our future assumption (see Remark 5.5), for a given transition ti the set
HR(ti) can be an empty set, a singleton or a two-elements set. In the last case, the transition cannot
be forward executed any more. Hence, we consider two cases:

1. HR(ti) = ∅, then after the execution of ti we have H ′R(ti) = {l1}, for some natural number
l1 indicating the index of the transition in the current computation, hence l1 − 1 equals to the
number of transitions executed before ti in the sequence. On the other hand, based on the
fact that M corresponds to state 〈MR, HR〉, we have M(hi) = ∅. After the execution of ti
at M in C, we add #TR − 1 triples (k, j, i) to hi to obtain M ′(hi). From every such triple,
based on k, we can deduce whether some transition tj has been executed before ti. We only
need to count such transitions and add 1 to obtain l1. Strictly speaking, we use the formula:
H ′R(ti) = {1 + Σ(k,j,i)∈M ′(hi)(k − 1)}.

2. HR(ti) = {l1} for l1 ∈ IN \ {0}, then after the execution of ti we have H ′R(ti) = {l1, l2}, l2 >
l1, for some natural number l2 indicating the second index of the transition in the current com-
putation. On the other hand, based on the fact that M corresponds to state 〈MR, HR〉, we have
M(hi) consisting of #TR − 1 elements. After the execution of ti at M in C, we add new
triples (k, j, i) to hi, obtaining M ′(hi) = M(hi) ∪ X , where #X = #TR − 1. Similarly to
the previous case, from every triple (k, j, i), based on k, we can deduce whether some transition
tj has been executed before ti. However, there are two triples in M ′(hi) for every transition
tj . We do not want to double the information, hence based on the inclusion-exclusion principle,
we use the following formula to compute l2: 1 + Σ(kj ,j,i)∈maxHist(hi)(kj − 1)−#{(kg, j, i) ∈
M ′(hi) | kg < kj ∧ (kj , j, i) ∈M ′(hi)} · #TR−2#TR−1 , where maxHist(hi) is defined above. ut

4.2. Generation of CPN – modification for causal-order reversing

The construction described to this point requires a refinement for causal-order reversing. Based on the
structural dependence approach, as described in Section 2.3, two transitions are said to be dependent
if an input place of one of them is an output place of the other (see Definition 2.11). In order to
implement this form of dependence we need a different approach to define the set PC than the one
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used for backtracking. We still create the same transition and connection history places like described
in Section 4. However, during the evaluation of the guard function for reversing, we consider instead
of the PCHP its subset, called PSHP defined: PSHP = {hij | ti, tj ∈ TR; ti, tj ∈ Dep; i < j}.
All assignments connected to places in PSHP stay the same like in PCHP .

4.3. Generation of CPN – adding reverses

The coloured Petri net CR described in Section 4.1 is prepared for reversing. This can be achieved by
adding supplementary reversal transitions. The new CPN CR

′ = (PC , TC
′, DC

′,ΣC , VC
′, CC , GC

′,
EC
′, IC) is based on CR (which is CPN corresponding to RPN PR). The set of places PC and colours

ΣC , the function CC and the initialization expression IC are the same as in CR.
For every transition in CR, a new reversed transition tr is added to the net. Hence, TC ′ = TC ∪

{tri | ti ∈ TR}. The execution of tri is equivalent to a rollback of an execution of ti corresponding
to tri.

Each transition tri is connected to the same set of places as ti ∈ TC but in opposite directions.
Moreover tri is connected with all transition history places and connection history places related to it,
namely DC

′ = DC ∪ {(tri, p) | (p, ti) ∈ DC} ∪ {(p, tri) | (ti, p) ∈ DC} ∪{(tri, hj) | ti, tj ∈ TR}
∪{(hj , tri) | ti, tj ∈ TR} ∪ {(tri, hij) | ti ∈ TR, i < j} ∪ {(tri, hji) | ti ∈ TR, j < i} ∪ {(hij , tri) |
ti ∈ TR, i < j} ∪ {(hji, tri) | ti ∈ TR, j < i}.

The set of variables VC ′ should contain all elements necessary to describe the input tokens of all
transitions (including reversed transitions).

The guard function GC ′ has to be modified to take into account the newly created reversing transi-
tions. Hence, guards contain conditions checking whether the input places of tri, which are originally
from PR, contain bases transferred by ti (for transition which only transfer molecules) or bonds cre-
ated by ti (for transition which creates a bond). Moreover, the conditions used in the guard function
for transitions tri, in the case of backtracking, have to guarantee that the transition ti was the last one
executed in a system. On the other hand, in the case of causal-order reversing, the guard has to assure
that no transition dependent on ti was executed after ti. Let ti ∈ TC be the transition to be reversed
and tri ∈ TC ′ – its reverse. To define the guard function for tri, we have to look through the content of
the transition history place hi and the connection history places hij and hji for i 6= j. For transparency
in the following paragraph, having fixed i, we use the denotation hij , regardless of the actual order of
i and j (i.e., hij := hij if i < j and hij := hji if i > j).

For every pair ti, tj (i – fixed, i 6= j) we proceed as follows:

1. Let historyij be the value obtained from place hij .

2. Let listi be the value obtained from place hi.

3. We check whether listi contains the element (historyij , j, i). If ‘yes’, it means that transition
ti was the most recently executed one from the pair ti, tj .

4. If the answer for at least one tj is ‘no’ then the guard function returns value false , otherwise
it returns true .
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Due to the different definitions of backtracking and causal-order reversing, in the procedure de-
scribed above, we use different sets of connection history places {hij |i−fixed; i 6= j}. For backtrack-
ing we use the whole PCHP , for casual reversing set PSHP defined in Section 4.2.

The arc expression function EC ′ for arcs between transitions tri and places pi ∈ PR describes the
reversal of the execution of ti. Hence, if ti just transfers tokens, then the arc description contains only
the transfer of molecules. If ti creates a bond β = a−b then during the execution of tri the bond
has to be broken. This may result in the production of two separate molecules, one of them including
a while the other one including b. Hence, EC(pi, tri) contains only the transfer of a molecule, and
EC(tri, pj) contains the transfer of a molecule obtained after breaking bond β = a−b, which includes
a (b respectively) if a (b respectively) has been transferred from place pj during execution of ti. If the
molecule is still a connected component after breaking the bond, thenEC(tri, pj) indicates the transfer
of the whole molecule back to the place from which it was taken by ti (this situation is possible only
when ti has one input place). All of these computations can be done using the CPN semantics in
combination with the use of functions, allowed in CPN ML and graph operations.

The arc expression function for the pair (hi, tri) (i.e., EC(hi, tri)) allows collecting execution
history of the ti, presented as a list of triples. For arcs in the opposite direction the arc expression
function returns the list without elements (n, j, i) for tj ∈ TR describing the last execution of ti.

For the other transition history places hj , i 6= j, the arc expressionEC ′′(hj , tri) includes the trans-
fer of a token from hj . The expression EC ′′(tri, hj) contains the modification of the token value. We
consider the triple (n, j, i) from hi and selected triples (m, i, j) from hj , all those triples determined
by the last execution of transition ti (the one to be reversed). If m is larger than n, the arc expression
EC
′′(tri, hj) exchanges the value of triple (m, i, j) by (m − 1, i, j). No matter whether the value of

the token is modified or not, it needs to be transferred back to the place hj . Note that, in the case
of backtracking, such modification never happens (because in backtracking we can reverse only the
recently executed transition, hence m < n).

Example 4.3. Figure 2 depicts an example of CPN generated from RPN. For legibility place h2 and
transition tr2 is omitted. Transition t1 creates the bond a−c, transition t2 transports base a. The
operations described in the transformation are implemented as functions in CPN Tools semantics:

fun nei [] x = [x] | nei ((y,z)::xs) x = if y=x orelse z=x then [y,z] ^^ (nei xs y) ^^ (nei xs

z) else nei (if ia xs x then xs ^^ [(y,z)]) else []) x

fun cbs x [] = []| cbs x ((y,z)::yr) = if x=y orelse x=z then [(y,z)] ^^ cbs x yr else cbs x yr

fun cb [] [] = [] | cb (x::xr) [] = [] | cb [] l = [] | cb (x::xr) l = cbs x l ^^ cb xr l

fun con x l = (remdupl (nei l x), remdupl (cb (nei l x) l)).

More elaborated examples (in form of high-resolution images and CPN Tools files) are available here:
https://www-users.mat.umk.pl/∼leii/cycles/.

When it comes to the connection history places hij (hji respectively), the values in those places
are decreased by one during the execution of tri, and this operation has to be indicated by the arc
expression function.

Finally we are ready to prove the correctness of the transformation for reversed executions.

https://www-users.mat.umk.pl/~leii/cycles/
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Figure 2. Example of CPN generated for RPN.

Theorem 4.4. Consider RPN R = (PR, TR, FR, AR, BR) and the associated CPN
C = (PC , TC , DC ,ΣC , VC , CC , GC , EC , IC) constructed on the basis of P according to the transfor-
mation described in Section 4.3. Let 〈M ′R, H ′R〉 be a reachable state in R and M ′ be a correspond-
ing marking in C. Then a transition ti is enabled in the reverse direction (according to backtrack-
ing or causal order semantics) at M ′R in PR if and only if tri is enabled at M ′ in C. Moreover, if

〈M ′R, H ′R〉
ti 〈MR, HR〉 and M ′[tri〉M then 〈MR, HR〉 corresponds to M .

Proof:
The proof is similar to the proof of Theorem 4.2. Due to the assumption that ti is enabled in the reverse
direction in R and M ′ corresponds to the state 〈M ′R, H ′R〉, the content of places belonging to PR in
R and C is equivalent. Hence, we can focus on histories H ′R and HR in R and markings of transition
and connection history places in C. As in the previous theorem, we consider two cases:

– Transition ti has been executed once, and #M ′(hi) = #TR − 1. After reversing it HR(ti) = ∅ in
R, and in C we have to remove all the elements from its history place hi, hence M(hi) = ∅.
– Transition ti has been executed twice, H ′R(ti) = {l1, l2}, l1 < l2, and #M ′(hi) = 2 · (#TR − 1).
After reversing ti, we remove the greater index for the history obtainingHR(ti) = {l1}. In C we have
two triples of the form (k, j, i) in M ′(hi) for every transition tj . After reversing we have to remove
the elements belonging to maxHist(hi) = {(km, j, i) ∈ M ′(hi)|km = max{k|(k, j, i) ∈ M ′(hi)}}
which are related to the second execution. Clearly the remaining triples are related to the first execution
(i.e., the remaining l1 in HR(ti)). Similarly, as in the previous proof, we can make use of formulas
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defined in Section 4 for computing the exact values. Moreover, we also need to decrease the first
coordinate in the triples in other transition history places, according to the Definition 2.12. ut

5. Cycles

In this Section we discuss possibilities of reversing of cycles in RPNs and corresponding CPNs.
We now proceed to define cycles in reversing Petri nets.

Definition 5.1. A cycle of reversible Petri net (P, T, F,A,B) is a sequence x0 . . . xm, with xi ∈
P ∪ T for 0 ≤ i ≤ m, such that F (xi, xi+1) 6= ∅ for 0 ≤ i < m− 1, and x0 = xm. A cycle is simple
when no elements (except x0 = xm) occurs more than once in it.

For the purpose of this paper, we assume that every cycles starts with a place (i.e., x0 ∈ P ).

5.1. Infinite and finite cycles

To distinguish cycles, which could be executed infinite and finite number of times, we define two types
of transitions: those that transfer tokens and those that create bonds.

Definition 5.2. Let (P, T, F,A,B) be a reversing Petri net and t ∈ T . Transition t is called:

• a transferring transition if
⋃
p∈•t F (p, t) =

⋃
p∈t• F (t, p);

• a bond-creating transition if t is not a transferring transition, i.e., there exists p ∈ t• such that
β ∈ F (t, p) for some β ∈ B and β 6∈

⋃
p∈•t F (p, t).

Remark 5.3. Note that, according to previous assumption (Definition 2.2), the set t• consists of one
element only.

To create infinite cycles in RPNs only transferring transitions could be used. According to assump-
tions from Section 2, one token of each type can be preset in RPN, hence bond-creating transitions
can be fired only once. Even if this restriction would be relaxed, to obtain infinite execution of a bond-
creating transition, initial marking of at least one of its input places would have to be infinite. This
condition goes against the definition of Petri nets in general. Hence, a cycle, executed infinite number
of times, can be created only by transferring transitions.

Unfortunately, infinite cycles in RPNs would cause problems with infinite values of history, both
in RPNs and CPNs corresponding to them. One of our goals was to eliminate infinite numbers from
this model to avoid Turing power complexity, and - as a consequence - undecidability of decision
problems. This is the first reason why this type of cycles is undesirable.

Moreover, and maybe even more importantly, when we consider biological motivation, cycles
created only by transferring transitions are unnatural. No organism would waste energy on endless
transportation of molecules. Substances are transported only in order to finally perform some reactions
or operations on them. Those reactions or operations are the goals of the transportation.

Because of the above reasons, we would focus on cycles created not only by transferring transi-
tions, but also at least one bond-creating transition.
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Definition 5.4. Let (P, T, F,A,B) be a reversing Petri net. It is called trans-acyclic if it does not
contain any cycle consisting of transferring transitions only.

Remark 5.5. Note that every cycle in trans-acyclic RPN has to contain at least one bond-creating
transition. Also, as assumed, bonds cannot be recreated. Consequently, every bond-creating transition,
even in cycles, can be executed at most once. Transferring transition can be executed at most two times
– it can be executed twice only if it occurs in a cycle before a bond-creating transition. Transferring
transition following a bond-creating transition in a cycle can be executed only once. Therefore, the
state space of a trans-acyclic RPN is finite.

Example 5.6. For better understanding of the issue, look at Figure 3a. Transitions can fire in a se-
quence: t1t2t3 - all of them would be executed once. Then transition t1 could be fired for the second
time (also transitions t4 and t6 are enabled). However, after the second execution of t1 no other
transition is enabled because place p3 is empty and t2 cannot fire.

Figure 3. Examples of trans-acyclic RPNs.
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Having in mind that every transition can be executed at most twice, notice that for a given RPN =
(P, T, F,A,B) we have: if k ∈ H(t) for some t ∈ T then k ≤ 2 ·#(T ). For this reason any value of
any history belongs to the set INb = {0, 1, ..., 2 ·#(T )}.

From now on, only trans-acyclic RPNs are considered.

5.2. Reversing of cycles in causal semantic

Now, we consider how reversing of cycles is performed in various reversing semantics.
In out of causal method (which has been only briefly mentioned in this paper) every transition,

which was executed, can be reversed, and cycles would not change that. From the point of view of
cycles, this is not very entrancing situation and that is the reason why out of causal semantic is not
considered in this paper. In backtracking only the recently fired transition could be reversed and this
is also not very intriguing when we consider trans-acyclic RPNs.

The most interesting case of cycles reversing in trans-acyclic RPNs is causal reversing. We can
say that it lies between other two approaches. Here, by adopting different definition of dependence we
can control, to some point, the order in which transitions could be reversed.

According to the definition of structural dependence presented in Section 2.3 (see Definition 2.11)
two transitions are structurally dependent when at least one output place of the first transition is also the
input place of the second or vice versa. However, the structural approach to dependencies is somewhat
strict. Please consider Figure 3a. The dependence relation in this case is as follows: Depstr =
{(t1, t2), (t1, t3), (t1, t5), (t2, t3), (t3, t6), (t3, t4), (t4, t5), (t5, t6)} (for clarity we do not specify the
symmetrical elements). After sequence of executions: t1t2t3t4t5 only transition t5 can be reversed.
Transition t3 cannot be reversed because it is dependent on t4 (they have common place p1), hence
t4 has to be reversed first. However, when one consider changes of markings, it is easy to notice that
both cycles seem to be independent because it is not important which bond (a−c or b−d) is created
first. Moreover, transitions t3 and t5 even do not use the same tokens.

Presented example shows that to distinguish dependent and independent transitions, instead of
using the structural dependence, more suitable approach is to consider marking and tokens used by
transitions. Hence, let us define the marking-oriented dependence (this type of dependence is investi-
gated in details in [14]).

Definition 5.7. Consider reversing Petri net (P, T, F,A,B). Transitions t1 and t2 from T are marking-
oriented dependent if there exist: a place p ∈ P , a base a ∈ A and a reachable state 〈M,H〉
(such that H(t1) 6= ∅, and H(t2) 6= ∅) for which, having C = con(a,M(p)), the following holds:
C ∩ post(t1) ∩ post(t2) 6= ∅.

According to the above definition, two transitions are marking-oriented dependent if they manip-
ulate the same token, i.e., both components produced or transferred by those transitions contain the
same base. Notice, that it is not required that the token appears on the label of the arcs in the net.
Since location of tokens is a dynamic aspect of Petri net, this type of dependence is determined by the
initial state of RPN and can be described only by observing the current marking.

Let us look again at Figure 3a. According to marking-oriented definition of dependence transitions
t3 and t5 are independent because t3 manipulates tokens a and c, when t5 manipulates tokens b and
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d. Transitions t2 and t6 in Figure 3c are depended because they both transfer token a, however, this
situation can be seen by looking at the net structure, it is not necessary to test the individual marking.
On the other hand, t3 and t5 at Figure 3b are marking-oriented dependent because they both transfer
components containing token a. It is impossible to discover this dependence only by observing the
structure of the net, without looking at its marking.

One can say that the marking-oriented dependence is finer. However, implementation of this
dependence requires large modifications in the model, especially in a way of generation of CPNs
from RPNs and functions related to those CPNs. Even with structural dependence, arcs and guards
expressions are quite complex, with the marking-oriented one they would be even more difficult to
implement. Moreover, marking-oriented dependence has other feature, which in some situations may
be considered as disadvantage. The sets of dependent and independent transitions in one RPN may
differ between executions. All of this together is the reason why we would like to find a different
definition of dependence, which is less strict than the structural one and would allow some flexibility
with reversing of cycles in trans-acyclic RPNs. At the same time, to avoid large modifications of the
RPN semantic and the CPN generation, we need to obtain flexibility based on the structure of RPN,
not on the dynamics of the net. It results in the co-dependence relation.

Definition 5.8. Let PR = (P, T, F,A,B) be a reversing Petri net, and t1, t2 ∈ T . We say that
t1, t2 are co-backward-conflicted (or in co-backward-conflict relation, or co-dependent), denoted by
(t1, t2) ∈ Depco (and (t2, t1) ∈ Depco, as the relation is symmetric), if there exists a place p ∈ P
where p ∈ t•1 ∩ t•2 and there exists a cycle in PR such that p belongs to the cycle, and, moreover: at
least one of the transitions t1 and t2 does not belong to any simple cycle. Additionally, we assume that
(t, t) ∈ Depco for every t ∈ T .

We say that two transitions t1, t2 ∈ T are co-independent when they are not in the co-backward-
conflict relation, hence the co-independence is defined as follows: Indco = T 2 \Depco.

Moreover, we define Indco|T= {t ∈ T | ∃t′∈T (t, t′) ∈ Indco} as the set of all transitions for
which there exist at least one independent transition in T .

With the assumption of co-dependence transitions t3 and t5 in Figure 3a are independent. Hence,
after sequence of executions: t1t2t3t4t5 both t3 and t5 can be reversed in any other. However, transi-
tions t4 and t6 in Figure 3c are independent. They both are co-dependent on t1, and t1 can be reversed
only when both of them are undone earlier, but t4 and t6 can be rollbacked in any order. It cause some
unwanted consequences explained further in this section.

The huge advantage of co-dependence relation is the possibility of implementing it quite easily in
CPNs generated for RPNs - only minor changes are necessary. First, similarly to structural dependence
(Definition 2.11), let us introduce a set PBHP ⊆ PCHP , called a set of backward-conflicted history
places, as follows PBHP = {hij | ti, tj ∈ TR; ti, tj ∈ Depco; i < j}. Then, we need to adjust the
procedure described in Section 4.3. Recall that in the case of structural dependence, while checking
whether an action could be reversed, we examine the content of connection history places belonging
to PSHP , in order to find the value historyij . Now, for co-independent transitions we do not need to
explore all those places. Depending on the type of transition ti ∈ T we consider two possibilities:

• for ti ∈ Indco|T we only need to explore places belonging to PBHP
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• for ti /∈ Indco|T we take into account the following set of connection history places PCHP \
{hij | ti, tj ∈ TR; ti, tj ∈ Dep, tj ∈ Indco|T }.

Figure 4. A net which cannot reach (by reversing) its initial marking after reversing co-independent transitions
t2 and t4. The connected component (molecule) in place p1 in part (b) is a−b−c−d.

Unfortunately, the example presented in Figure 4 shows that in the co-backward-conflict relation
approach a system cannot always be brought back to the initial state.

Let us look at the example depicted in Figure 4. Part (a) shows the initial marking, while part
(b) the marking after the execution of transitions sequence t1t2t3t4 (in place p1 we have connected
component: a−b−c−d). Note that transitions t2 and t4 are co-independent, hence they can be reversed
in any order. Let us reverse transition t2 as the first one (see Figure 4c). In the marking depicted in
(c) base d is still bonded with base c in place p4. Please notice that we cannot move base d from
place p4 by reversing – we can say that base d is stuck in place p4. At the same time, presence of d
in place p1 is required to reverse transition t4, and only then t3 could be rollbacked. Therefore we
cannot reach the initial marking only by reversing of transitions. To obtain the initial marking in the
presented situation (Figure 4c), we should execute transition t2 in forward direction – it would mean
that we actually “undo the reversing”, and then reverse t4 first.

This example shows that the order of reversing co-independent transitions is crucial, which is
against the idea of causal reversing and, unfortunately, we need to be careful with this definition of
dependence.

6. Conclusions and future work

This paper is an improved version of [2], enriched with discussion related to cycles. Here, in com-
parison to [2], we focus more on backtracking and causal reversing semantics, because they are more
interesting in the context of cycles. Moreover, we change the form of history in RPNs, from the sin-
gle integer to a set of numbers. Furthermore, formal proofs of generation of CPNs from RPNs are
presented in this paper.
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In the second part of the paper we discuss the possibility of introduction of cycles to RPNs, and
thus their introduction to CPNs generated from RPNs. It turned out that the most interesting case
is reversing of cycles in the causal semantic, where possibility of reversing depends on definition
of dependence. Three definitions of dependence have been presented: structural, marking-oriented
and co-backward conflict. The structural one is most strict, reversing of cycles is the same as in
backtracking. With the marking-oriented one, in some cases cycles can be reversed in different order
than they were executed in forward direction. Unfortunately, this dependence is based on dynamic
behaviour and its introduction to the current version of CPNs generation algorithm is not possible
without large modifications. We tried to find a new type of dependence, which would allow more
flexibility in cycles reversing but would be based on the structure of RPNs. It resulted in co-backward
conflict dependence. Unfortunately, we discovered that this dependence lead to unwanted behaviour,
and should be used with caution. We would like to find a different, structure based, definition of
dependence, which would allow "proper" causal reversing of cycles. It rises a question, if is it even
possible? We would study it more in the future.

In this paper, we applied the limitation of the number of bases of a given type to one element.
However, we believe that the presented results would be valid even if this limitation is lifted (multi-
token semantics). This would rise a need of token identification, but the overall behaviour of the net
would remain unchanged. Moreover, the extension of the formulas for the enumeration of indexes in
histories, analogous to the present ones, would be needed.

As a general aim, we plan on implementing an algorithmic translation that transforms RPNs to
CPNs in an automated manner using the transformation techniques discussed in this paper. We also
aim to explore how our framework applies in fields outside computer science, since the expressive
power and visual nature offered by Petri nets coupled with reversible computation has the potential of
providing an attractive setting for analysing systems (for instance in biology, chemistry or hardware
engineering).
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