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Abstract. Let G = (V,E) be a finite simple undirected graph without K2 components. A
bijection f : E → {1, 2, · · · , |E|} is called a local antimagic labeling if for any two adjacent
vertices u and v, they have different vertex sums, i.e., w(u) 6= w(v), where the vertex sum
w(u) =

∑
e∈E(u) f(e), and E(u) is the set of edges incident to u. Thus any local antimagic

labeling induces a proper vertex coloring of G where the vertex v is assigned the color (vertex
sum) w(v). The local antimagic chromatic number χla(G) is the minimum number of colors
taken over all colorings induced by local antimagic labelings of G. It was conjectured [6] that
for every tree T the local antimagic chromatic number l + 1 ≤ χla(T ) ≤ l + 2, where l is the
number of leaves of T . In this article we verify the above conjecture for complete full t-ary trees,
for t ≥ 2. A complete full t-ary tree is a rooted tree in which all nodes have exactly t children
except leaves and every leaf is of the same depth. In particular we obtain that the exact value for
the local antimagic chromatic number of all complete full t-ary trees is l + 1 for odd t.
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1. Background and introduction

By a graph G = (V,E) we mean a finite simple undirected graph without K2 components. For graph
theoretic terminology we refer to Chartrand and Lesniak [1]. Hartsfield and Ringel [2] introduced
the concept of antimagic labeling of a graph, and conjectured that every connected graph except K2

admits such an antimagic labeling, which remains unsettled till today.

Definition 1.1. Let G = (V,E) be a finite simple undirected graph without isolated vertices. Let
f : E(G) → {1, 2, · · · , |E(G)|} be a bijection. For each vertex u ∈ V (G), the weight w(u) =∑

e∈E(u) f(e), where E(u) is the set of edges incident to u. If w(u) 6= w(v) for any two distinct
vertices u and v ∈ V (G), then f is called an antimagic labeling of G. A graph G is called antimagic
if G has an antimagic labeling. Furthermore f is called a local antimagic labeling if w(u) 6= w(v)
for any two adjacent vertices u and v ∈ V (G).

Thus it is clear that any antimagic labeling must be local antimagic. Moreover, a local antimagic
labeling induces a proper vertex coloring of G where the vertex v is assigned the color (vertex sum)
w(v). This notation local antimagic labeling was raised in 2017 by the following two sets of authors
independently: Arumugam, Premalatha, Bača, Semaničová-Feňovčı́ková [3], and Bensmail, Senhaji
and Lyngsie [4]. Both groups also raised the following conjecture: Every connected graph other than
K2 is local antimagic. Bensmail et al. [4] propose the slightly stronger form of the previous conjecture
that every graph without component isomorphic to K2 has a local antimagic labeling and proved that
this conjecture is true for trees. However this conjecture has been proved by Haslegrave, using the
probabilistic method, in [5] more recently.

The local antimagic chromatic number χla(G) of a graph G is the minimum number of colors
taken over all colorings induced by local antimagic labelings of G. Let χ(G) be the usual chromatic
number of a graph G. For any graph G, χla(G) ≥ χ(G). It was noted by Arumugam et al. [3] that
the difference χla(G)− χ(G) can be arbitrarily large as shown in the following theorem.

Theorem 1.2. ([3], 2017) For any tree T with l leaves, χla(T ) ≥ l + 1.

Among others in [3] the local antimagic chromatic number of paths, cycles, friendship graphs,
wheels, complete bipartite graphs were studied. In this article we study the local antimagic vertex
coloring of the trees. The local antimagic chromatic numbers for various corona products of G with
Km, when the graph G is Pn, Cn,Kn, were reported in [6]. It was furthermore conjectured in [6] that
for any tree T with l leaves, the local antimagic chromatic number χla(T ) is either l+1 or l+2. In the
following sections we verify the above conjecture for complete full t-ary trees, t ≥ 2. The definition
of complete full t-ary trees is given below.

Definition 1.3. Let t ≥ 2 be a positive integer. A complete full t-ary tree is a rooted tree in which
all nodes have exactly t children except leaves and every leaf is of the same depth.

Definition 1.4. The edge set of a complete full t-ary tree, t ≥ 2, can be partitioned into n levels,
where the edges of level l, 1 ≤ l ≤ n, are the l-th edges from the root vertex. Note that there are tl

such edges of level l.
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See Figure 1 for a binary case.

←− Level 1

←− Level 2

←− Level n

Figure 1. Levels in a complete full binary tree.

2. Key observations

In literature Skolem [7] remarked that Steiner triple systems could be constructed from a sequence
of integers 1, 2, · · · , 2n if these integers could be arranged in disjoint pairs (n of them) such that the
differences are 1, 2, · · · , n. He showed that such sequence exists if and only if n ≡ 0, 1 (mod 4).
For the purpose of arrangement for labeling, we study an additive analogue and extensions for this
sequence as following. Note that we denote the set of consecutive integers {m,m + 1, · · · , n} by
[m,n].

Problem 2.1. For the first 2n positive integers [1, 2n], can one partition them into n pairs so that the
corresponding n pair sums are consecutive?

Note that the answer is positive if n is odd and is negative if n is even. Let us see the case n is odd
first. Assume n = 2k + 1. Then we have the following.

Lemma 2.2. Let [1, 4k + 2] be the set of consecutive 4k + 2 integers, where k is a positive integer.
Then there exists a partition for [1, 4k + 2] into 2k + 1 pairs for which the sums of these pairs form a
set of 2k + 1 consecutive integers [3k + 3, 5k + 3].

Proof:
We consider the partition for [1, 4k+2] into 2k+1 pairs as follows: (1, 3k+2), (3, 3k+1), · · · , (2k+
1, 2k + 2) and (2, 4k + 2), (4, 4k + 1), (6, 4k), · · · , (2k, 3k + 3). Therefore the set of pair sums are
[3k+3, 4k+3]∪ [4k+4, 5k+3], which is a set of 2k+1 consecutive integers [3k+3, 5k+3]. This
completes the proof. ut

The case when n is even is related our study and we put the details in the following lemma.
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Lemma 2.3. Let [1, 4k] be the set of consecutive 4k integers, where k is a positive integer. Then
there exists a partition for [1, 4k] into 2k pairs for which the sums of these pairs form a set of 2k − 1
consecutive integers [3k + 1, 5k − 1] with one isolated number 6k. Moreover this result is optimal in
the sense that for [1, 4k] there does not exist any partition into 2k pairs with consecutive pair sums.

Proof:
We use the following partition for [1, 4k] into 2k pairs: (1, 3k), (3, 3k− 1), · · · , (2k− 1, 2k+ 1) and
(2, 4k − 1), (4, 4k − 2), (6, 4k − 3), · · · , (2k − 2, 3k + 1). The remaining two integers are (2k, 4k).
Therefore the set of pair sums are [3k + 1, 4k] ∪ [4k + 1, 5k − 1] ∪ {6k}, which is a set of 2k − 1
consecutive integers with one isolated number 6k.

As to see the result is optimal, one can conclude from the parity check as follows. Suppose
[1, 4k] can be partitioned into pairs with consecutive sums, say a, a + 1, · · · , a + (2k − 1). Then
1 + 2 + · · ·+ 4k = a+ (a+ 1) + · · ·+ (a+ 2k − 1), and it follows that 2(4k + 1) = 2a+ 2k − 1,
which leads to a contradiction by parity. This completes the proof. ut

For the above lemmas, it is not hard to see they may be extended by translation to the following
general situations respectively for consecutive 4k and 4k + 2 integers to have consecutive pair sums.

Lemma 2.4. Let [m,n] be the set of consecutive n − m + 1 = 4k integers, where k be a positive
integer. Then there exists a partition for [m,n] into 2k pairs so that the pair sums form a set [m+ n−
k,m + n + k − 2] ∪ {m + n + 2k − 1}, i.e., a set of 2k − 1 consecutive integers with one isolated
number. Moreover this result is optimal in the sense that there does not exist any partition into 2k
pairs with consecutive pair sums.

Lemma 2.5. Let [m,n] be the set of consecutive n−m+ 1 = 4k+ 2 integers, where k be a positive
integer. Then there exists a partition for [m,n] into 2k+1 pairs for which the sums of these pairs form
a set of 2k + 1 consecutive integers [m+ n− k,m+ n+ k].

More generally, one may ask the following.

Problem 2.6. For t ≥ 3 and for first tn positive integers 1, 2, · · · , tn, can one partition them into
t-tuples (n of them) so that the sums of t-tuples are n consecutive integers?

For instance, for first 3n positive integers 1, 2, · · · , 3n, can one partition them into n triples so that
the n triple sums are consecutive? We have the following.

Lemma 2.7. For any 3n consecutive integers, n ≥ 1, one can partition into n triples so that the sums
of the triples are n consecutive integers.

Proof:
Without loss of generality may assume the consecutive 3n integers to be [1, 3n]. Write [1, 3n] =
[1, n]∪[n+1, 2n]∪[2n+1, 3n] = A∪B∪C, where [1, n] = A, [n+1, 2n] = B, and [2n+1, 3n] = C,
respectively. The philosophy of the proof is based upon adding corresponding elements in A and B
with reversed order to obtain constant partial sums, then put elements of C to make the total sums of
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triples consecutive. Then the following partition into triples (a, b, c), where a ∈ A, b ∈ B, c ∈ C, can
do the job: (1, 2n, 2n+1), (2, 2n− 1, 2n+2), (3, 2n− 2, 2n+3), · · · , (n, n+1, 3n). Note that the
set of the n consecutive integers are [4n+ 2, 5n+ 1]. ut

Similarly it can be seen that the above lemma can be extended to the following.

Lemma 2.8. For any tn consecutive integers, t ≥ 3 odd, one can partition into n of t-tuples so that
the sums of the t-tuples are n consecutive integers.

Proof:
Without loss of generality may assume the consecutive tn integers to be [1, tn]. We partition [1, tn]
into t consecutive subsets S1 ∪ S2 ∪ · · · ∪ St, where S1 = [1, n], S2 = [n + 1, 2n], up to St =
[(t− 1)n+1, tn]. Then one may pick first t− 1 elements of t-tuples in order from the pairs of subsets
(S1, S2), (S3, S4), and so forth, up to (St−2, St−1). By the same philosophy while obtaining constant
partial sums via adding reversed order elements and then pick the last element of the t-tuple from St
sequentially, one can see clearly the n of the sums for each of these t-tuples are consecutive. This
completes the proof. ut

For even t ≥ 2 and odd n, we have the following.

Lemma 2.9. For any tn consecutive integers, if t ≥ 2 is even and n is odd, one can partition into
t-tuples so that these n sums for each of the t-tuples are n consecutive integers.

Proof:
Again without loss of generality we may assume the consecutive tn integers to be [1, tn]. If t = 2, then
by Lemma 2.2 we are done. If t ≥ 4, then partition [1, tn] into t consecutive subsets S1∪S2∪· · ·∪St,
where S1 = [1, n], S2 = [n + 1, 2n], up to St = [(t − 1)n + 1, tn]. Then one may pick t-tuples in
order from subsets (S1, St), (S2, St−1), and so forth to (St/2−1, St/2+2) in the following way. While
obtaining constant partial sums 1+ tn with adding reversed order elements and then apply Lemma 2.2
to the remaining last two (St/2, St/2+1), one can see clearly these n sums for each of the t-tuples are
n consecutive integers. This completes the proof. ut

For even t ≥ 2 and even n, we have the following.

Lemma 2.10. For any tn consecutive integers, if t ≥ 2 is even and n is also even, one can partition
into t-tuples so that these n sums for each of the t-tuples are n − 1 consecutive integers with one
isolated number. Moreover this result is optimal in the sense that there does not exist any partition into
t-tuples with consecutive sums.

Proof:
Without loss of generality we may assume the consecutive tn integers to be [1, tn]. If t = 2, then by
Lemma 2.3 we are done. If t ≥ 4, then partition [1, tn] into t consecutive subsets S1 ∪ S2 ∪ · · · ∪ St,
where S1 = [1, n], S2 = [n+ 1, 2n], up to St = [(t− 1)n+ 1, tn]. Then one can partition [1, tn] into
t-tuples in the following way. One may pick first t− 2 coordinates of a t-tuple in reversed order from
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subsets (S1, St), (S2, St−1), and so forth to (St/2−1, St/2+2), to obtain constant partial sums 1 + tn.
Then apply Lemma 2.3 to the remaining last two (St/2, St/2+1) to get the last two coordinates of the
t-tuple, one can partition [1, tn] into t-tuples so that these n sums for each of the t-tuples are n − 1
consecutive integers with one isolated number.

As to see the result is optimal, one can conclude from the parity check as in Lemma 2.3. This
completes the proof. ut

To summarize with results of above lemmas, we have the following.

Theorem 2.11. For any tn consecutive integers, one can partition them into t-tuples (n of them) so
that the sums of t-tuples are n consecutive integers either for odd t ≥ 3, or for even t ≥ 2 and
odd n. Moreover, if t ≥ 2 is even and n is also even, then for first tn consecutive positive integers
1, 2, · · · , tn there does not exist any partition into t-tuples (n of them) so that the sums of t-tuples are
n consecutive integers. However one can partition them into t-tuples (n of them) so that the sums of
t-tuples are n− 1 consecutive integers with one isolated number.

3. Labeling scheme

For a complete full t-ary tree T , t ≥ 2, we use the following labeling scheme to show the local
antimagic chromatic number is l + 1 ≤ χla(T ) ≤ l + 2, where l is the number of leaves of T .

Let n be the number of levels of the complete full t-ary trees T . Note that if n = 1, the local
antimagic chromatic number is obviously l + 1. In case n = 2, it can be seen that the local antimagic
chromatic number is at most l + 2 since one may arrange the edge labels 1, 2, · · · , t for the level one
and t+ 1, t+ 2, · · · , t+ t2 in such a way that grouping t2 into t t-tuples with t− 1 consecutive sums
and one isolate by Lemma 2.3, then adding them reversely with 1, 2, · · · , t to make t − 1 constant
sums and another isolate, which give rise to two new colors other than that on leaves. The top vertex
receives the color 1 + 2 + · · · + t = t(t+ 1)/2 which is among t + 1, t + 2, · · · , t + t2 due to the
inequality t+1 ≤ t(t+ 1)/2 ≤ t+ t2. Therefore the local antimagic chromatic number is either l+1
or l + 2.

The labeling scheme for n ≥ 3 and the sketch of the proof are given as follows.

Step 1: When n is even, arrange labeling of edges of levels by sequential order 2, 4, · · · , n − 2, n −
1, n − 3, · · · , 3, 1, n. Whenever n is odd, arrange labeling of edges of levels by sequential order
2, 4, · · · , n−1, n−2, n−4, · · · , 3, 1, n. Note that the edge labels are used sequentially by consecutive
integers, and will be fixed in later steps by obtaining appropriate constant colors with possible isolated
numbers.

Step 2: We fix the edge labels from the top level to the bottom level sequentially according to the
requirement for colors. Start fixing the t edge labels for the level 1 arbitrarily. Hence the color for the
top vertex is done. Then in order to make constant colors (vertex sums) for vertices in the second row,
we may use Lemma 2.8 to arrange the t2 edge labels in level 2. Inductively we can assign edge labels
for levels one by one from the top to the bottom, so that we have the constant colors for vertices of the
same row until the row right above the row of leaves.
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Step 3: It may be checked that the above labeling scheme is feasible, as the adjacent vertices receive
the different color, the colors for all vertices till the third last row will be the colors of some leaves,
and the vertices of the second last row will receive the constant color which is not among those colors
for leaves. Therefore only one new color other than that of leaves and the result is obtained.

More precisely the edge labeling is as follows. Let n be the number of levels defined as before.
When n is even, arrange labeling of edges of levels 2, 4, · · · , n − 2, n − 1, n − 3, · · · , 3, 1, n. Thus
the range for integers used for these levels is [1, t2], [t2 + 1, t2 + t4], [t2 + t4 + 1, t2 + t4 + t6], up
to [1 + t2 + t3 + · · · + tn−1, t + t2 + t3 + · · · + tn] = [(tn − 1)/(t− 1), (tn+1 − t)/(t− 1)]. We
summarize up the edge labels level by level as following. A notion is used here for convenience.

Definition 3.1. Let t ≥ 2 be a positive integer. For non-negative integers n, k, a, with n ≥ k ≥
a ≥ 0 and k, a are of the same parity, we denote by (n, k, a)t the abbreviation of the t-ary number
tn + tn−1 + · · ·+ tk+1 + tk + tk−2 + tk−4 + · · ·+ ta+4 + ta+2 + ta.

Case 1: When n is even, arrange labeling of edges in the sequential order for levels 2, 4, · · · , n −
2, n− 1, n− 3, · · · , 3, 1, n.

Level 1: [(n− 1, 2, 0)t, (n− 1, 1, 1)t].
Level 2: [1, t2] = [(0, 0, 0)t, (2, 2, 2)t].
Level 3: [(n− 1, 4, 0)t, (n− 1, 2, 2)t].
Level 4: [t2 + 1, t2 + t4] = [(2, 2, 0)t, (4, 4, 2)t].
Level 5: [(n− 1, 6, 0)t, (n− 1, 4, 2)t].
Level 6: [t2 + t4 + 1, t2 + t4 + t6] = [(4, 4, 0)t, (6, 6, 2)t].
Level 7: [(n− 1, 8, 0)t, (n− 1, 6, 2)t].
· · ·
· · ·
Level n− 4: [(n− 6, n− 6, 0)t, (n− 4, n− 4, 2)t].
Level n− 3: [(n− 1, n− 2, 0)t, (n− 1, n− 4, 2)t].
Level n− 2: [(n− 4, n− 4, 0)t, (n− 2, n− 2, 2)t].
Level n− 1: [(n− 2, n− 2, 0)t, (n− 1, n− 2, 2)t].
Level n: [ t

n−1
t−1 ,

tn+1−t
t−1 ] = [(n− 1, 0, 0)t, (n, 1, 1)t].

Case 2: Whenever n is odd, arrange labeling of edges of levels 2, 4, · · · , n−1, n−2, n−4, · · · , 3, 1, n.

Level 1: [(n− 1, 2, 0)t, (n− 1, 1, 1)t].
Level 2: [1, t2] = [(0, 0, 0)t, (2, 2, 2)t].
Level 3: [(n− 1, 4, 0)t, (n− 1, 2, 2)t].
Level 4: [t2 + 1, t2 + t4] = [(2, 2, 0)t, (4, 4, 2)t].
Level 5: [(n− 1, 6, 0)t, (n− 1, 4, 2)t].
Level 6: [t2 + t4 + 1, t2 + t4 + t6] = [(4, 4, 0)t, (6, 6, 2)t].
Level 7: [(n− 1, 8, 0)t, (n− 1, 6, 2)t].
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· · ·
· · ·
Level n− 4: [(n− 1, n− 3, 0)t, (n− 1, n− 5, 2)t].
Level n− 3: [(n− 5, n− 5, 0)t, (n− 3, n− 3, 2)t].
Level n− 2: [(n− 1, n− 1, 0)t, (n− 1, n− 3, 2)t].
Level n− 1: [(n− 3, n− 3, 0)t, (n− 1, n− 1, 2)t].
Level n: [ t

n−1
t−1 ,

tn+1−t
t−1 ] = [(n− 1, 0, 0)t, (n, 1, 1)t].

Figure 2 illustrates the labeling scheme and the range for edge labeling for the complete full 3-ary
tree of five levels, that is the case t = 3 and n = 5. The precise way to get a proper coloring and
associated chromatic number can be seen in the next section.

317 317 317 317 317 317 317 317 317

134 134 134

357

254 254 254

776 776 776

254 254 254

776 776 776

← [121, 363]

← [10, 90]

← [91, 117]

← [1, 9]

← [118, 120]

Figure 2. Complete full 3-ary tree with 5 levels (t = 3, n = 5).

4. Complete full t-ary trees for odd t

In this section we calculate the local antimagic chromatic numbers for complete full t-ary trees, t ≥ 3
odd, is shown to be l+1, where l is the number of leaves of T . In particular, for the class of complete
full t-ary trees, where t ≥ 3 odd, the conjecture that for a tree T the local antimagic chromatic number
l + 1 ≤ χla(T ) ≤ l + 2 is verified as a byproduct.
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Theorem 4.1. For complete full t-ary trees T , t ≥ 3 odd, the local antimagic chromatic number
χla(T ) = l + 1, where l is the number of leaves of T .

Proof:
Let n be the number of levels in T . Follow the labeling scheme in previous section first. Then start
arranging the labeling by fixing the t edge labels for the level 1 arbitrarily. Hence the color (vertex
sum) for the first row (the top vertex) is done. Then we may use Lemma 2.8 to arrange the t2 edge
labels in level 2 as t consecutive t-tuple-sums and add them to corresponding integers reversely in
level 1, to make constant colors for vertices in the second row. Inductively we can assign edge labels
for levels 3, 4, etc. one by one while applying Lemma 2.8 again so that we obtain the constant vertex
sums (colors) for vertices of the same row, until the row right above the row of leaves.

Without loss of generality we use the case n is even for the sketch of the proof. Let h be odd
and 1 ≤ h ≤ n − 1, then the calculation shows that the constant color for the vertices between the
level h − 1 and level h is (2tn+1 + (−t3 + t2 − t + 1) · th−1 − t2 − 1)/(2t− 2) for 1 ≤ h ≤
n − 1. Note that in particular the vertex between level 0 and level 1 is the unique top vertex. Again
the calculation shows that the constant color for the vertices between the level h and level h + 1 is
(2tn + (t3 − t2 + t− 1) · th − t2 − 1)/(2t− 2) for 1 ≤ h ≤ n− 3. We calculate the local antimagic
chromatic number by the following steps.

Step 1: Show that the colors for the vertices of two adjacent rows are different.

Suppose on the contrary, for 1 ≤ h ≤ n− 3 we have

2tn+1 + (−t3 + t2 − t+ 1) · th−1 − t2 − 1 = 2tn + (t3 − t2 + t− 1) · th − t2 − 1

which implies −(t2 + 1)( t−12 ) · th−1 = tn, a contradiction due to the parity. For h = n − 2 (that is
the row between level n− 1 and n− 2, and the row between level n− 2 and n− 3), one sees that

2tn + (−t3 + t2 − t+ 1) · tn−2 = 2tn + (t3 − t2 + t− 1) · tn−4

which implies (t− 1) · (t2(t2 − 2) + 1) · tn−4 = 0, a contradiction since t ≥ 3 odd.

Step 2: Show that the colors for non-leaves of all rows except the last two rows are among colors of
leaves.

Notice that the colors for leaves are among the interval [(tn − 1)/(t− 1), (tn+1 − t)/(t− 1)]. On
the other hand, these constant colors for non-leaves (except the vertices over the second last rows) are
among those of some leaves, since it is not hard to check the following inequalities hold:

tn−1
t−1 ≤ 1

2(t−1)(2t
n+1 + (−t3 + t2 − t+ 1) · th−1 − t2 − 1) ≤ tn+1−t

t−1

for 1 ≤ h ≤ n− 1, and

tn−1
t−1 ≤ 1

2(t−1)(2t
n + (t3 − t2 + t− 1) · th − t2 − 1) ≤ tn+1−t

t−1

for 1 ≤ h ≤ n− 3, respectively.
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Step 3: Show that overall there is only one new color other than those colors of leaves.
We can see that the constant color for the vertices of the second last row is the only new color other

than those on leaves. By Lemma 2.8 it is obvious that this constant color is new, since it is the sum of
some selected t-tuple from the bottom level n with one corresponding edge of the level n− 1, which
is clearly strictly greater than (tn+1 − t)/(t− 1), since the largest edge label (tn+1 − t)/(t− 1) is
among one element of the t-tuples selected to make the constant color. Therefore we are done with
the proof for the result. ut

See again Figure 2 for the example of the labeling range and calculated coloring (numbers in red)
for the complete full 3-ary tree of five levels.

5. Complete full t-ary trees for even t

In this section, using the labeling scheme mentioned above, we verify the conjecture for the class of
complete full t-ary trees for even t ≥ 2.

Theorem 5.1. For complete full t-ary trees T , t ≥ 2 even, the local antimagic chromatic number
χla(T ) is either l + 1 or l + 2, where l is the number of leaves of T .

Proof:
Let n be the number of levels in T . It suffices to show that χla(T ) ≤ l + 2 for complete full t-ary
trees T , t ≥ 2 even, since we have the lower bound l + 1 from Theorem 1.2 in [3]. Without loss of
generality we use the case n is even for the sketch of the proof.

Let h be odd and 1 ≤ h ≤ n − 1, then the calculation shows the constant non-isolated color
N (resulted from adding the consecutive t-tuple-sums and reversely consecutive numbers) and the
isolated jump color J (resulted from adding the smallest consecutive t-tuple-sums and reversely the
largest of consecutive numbers) for the vertices between the level h−1 and level h are (2tn+1+(−t3+
t2−t+1) ·th−1−t2−3t+2)/(2t− 2) and (2tn+1+(−t3+t2+2t−2) ·th−1−t2−3t+2)/(2t− 2)
respectively for 1 ≤ h ≤ n− 1.

Again the calculation shows that the constant non-isolated color and the isolated color for the
vertices between the level h and level h+ 1 are (2tn + (t3 − t2 + t− 1) · th − t2 − 3t+ 2)/(2t− 2)
and (2tn + (t3 − t2 + 4t− 4) · th − t2 − 3t+ 2)/(2t− 2) respectively for 1 ≤ h ≤ n− 3.

As for the boundary row of vertices between level n− 1 and n− 2, the calculation shows that the
constant non-isolated color and the isolated color are (2tn+(t3− t2+ t−1) · tn−2− t2− t)/(2t− 2)
and (tn+1 + (t2 + 2t− 2) · tn−2 − t2 − 3t+ 2)/(2t− 2) respectively.

See Figure 3 and Figure 4 for the proof of the theorem as examples for binary cases, n = 4 and
n = 5, respectively.

We calculate the local antimagic chromatic number by the following steps.

Step 1: Show that the colors for the vertices of two adjacent rows are different.
Then we may check that the colors for the vertices of two adjacent rows are different. We split the

situation into six cases as follows according to all possibilities among the constant non-isolated colors
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30 22 23 21 24 19 29 16 25 17 27 20 26 15 28 18

64 52 52 52 52 52 52 52

24 18 18 18

20 17

27

30 22 23 21 24 19 29 16 25 17 27 20 26 15 28 18

12 8 9 7 10 5 11 6

4 2 3 1

14 13

← [15, 30]

← [5, 12]

← [1, 4]

← [13, 14]

Figure 3. Complete full binary tree of four levels (t = 2, n = 4).

62

46

31

54

128 104 104 104 104 104 104 104 104 104 104 104 104 104 104 104

60 48 48 48 48 48 48 48

56 50 50 50

36 32

59

62 46 31 54

20 12 13 11 9 14 19 6 18 8 5 16 7 15 10 17

28 24 25 23 22 27 26 21

4 2 1 3

30 29

← [31, 62]

← [5, 20]

← [21, 28]

← [1, 4]

← [29, 30]

Figure 4. Complete full binary tree of five levels (t = 2, n = 5).

N and the isolated colors J for two adjacent rows (from vertices of the h-th row to that of the next
lower (h+ 1)-th row), 1 ≤ h ≤ n− 2. Note that n is even.

Case 1: from J to J for h ≤ n− 2.

Suppose the isolated color J and the isolated color J are the same. In this case, simply switch the
t-tuple in the lower (h+1)-th level connecting the isolated color J in the h-th level with the t-tuple in
the lower (h + 1)-th level connecting the smallest number in the h-th level. All the other edge labels
stay the same. Then this will resolve the conflict of the case.
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Case 2: from J to N for h ≤ n− 3.
Suppose the isolated color J and the non-isolated color N are the same. In this case, one has

2tn+1 + (−t3 + t2 + 2t− 2) · th−1 − t2 − 3t+ 2 = 2tn + (t3 − t2 + t− 1) · th − t2 − 3t+ 2

which can be simplified to
2tn−h+1 = t3 + t2 + t− 2.

This leads a contradiction due to the following. Since n− h+ 1 ≥ 4, we have 2tn−h+1 ≥ 2t4. Let
f(t) = 2t4 − (t3 + t2 + t − 2). Note that for t ≥ 2 one has f ′(t) = 8t3 − 3t2 − 2t − 1 > 0, and
f(2) = 20, thus f(t) > 0, namely 2t4 > t3 + t2 + t− 2. Therefore 2tn−h+1 ≥ 2t4 > t3 + t2 + t− 2,
a contradiction.

Case 3: from N to J for h ≤ n− 3.
Suppose the non-isolated color N and the isolated color J are the same. In this case, one has

2tn+1 + (−t3 + t2 − t+ 1) · th−1 − t2 − 3t+ 2 = 2tn + (t3 − t2 + 4t− 4) · th − t2 − 3t+ 2

which can be simplified to
2tn−h+1 = t3 + t2 + 4t− 1,

again this reaches a contradiction due to the parity.

Case 4: from N to N for h ≤ n− 2.
Suppose the non-isolated color N and the non-isolated color N are the same. For 1 ≤ h ≤ n− 3

we have

2tn+1 + (−t3 + t2 − t+ 1) · th−1 − t2 − 3t+ 2 = 2tn + (t3 − t2 + t− 1) · th − t2 − 3t+ 2

which implies 2tn−h+1 = t3 + t2 + t+ 1, a contradiction due to the parity.

Case 5: from N to J for h = n− 2.
This is for the row between level n − 2 and n − 3, and the row between level n − 1 and n − 2.

Suppose the non-isolated color N and the isolated color J are the same. One sees that

tn+1 + (t2 + 2t− 2) · tn−2 − t2 − 3t+ 2 = 2tn + (t3 − t2 + t− 1) · tn−4 − t2 − t

which can be simplified to
(t4 + t2 − 1) · tn−4 = 2,

a contradiction since t4 + t2 − 1 is at least 19 and n− 4 ≥ 0.

Case 6: from J to N for h = n− 2.
Again this is for the row between level n−2 and n−3, and the row between level n−1 and n−2.

Suppose the isolated color J and the non-isolated color N are the same. One sees that

2tn + (t3 − t2 − t+ 1) · tn−2 − t2 − t = 2tn + (t3 − t2 + 4t− 1) · tn−3 − t2 − 3t+ 2
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which can be simplified to
−(t4 − 2t3 − 3t+ 1) t

n−3

2 = t− 1,

this reaches a contradiction due to the parity if n > 4, t ≥ 2. Also it is impossible for the remaining
situation n = 4, t = 2.

Step 2: Show that the colors for non-leaves of all rows except over last two rows are among colors of
leaves.

Notice that the colors for leaves are among the interval [(tn − 1)/(t− 1), (tn+1 − t)/(t− 1)]. On
the other hand, these constant colors for non-leaves (except the vertices over the second last rows) are
among those of some leaves, since it is not hard to check that the following inequalities hold:

tn−1
t−1 ≤ 1

2(t−1)(2t
n+1 + (t2 − t3 − t+ 1) · th−1 − t2 − 1) ≤ tn+1−t

t−1

for 1 ≤ h ≤ n− 1, and

tn−1
t−1 ≤ 1

2(t−1)(2t
n + (t3 − t2 + t− 1) · th−1 − t2 − 1) ≤ tn+1−t

t−1

for 1 ≤ h ≤ n− 3, respectively.

Step 3: Show that there are only two new colors other than those colors of leaves.
Lastly we can see that, for the vertices of the second last row, there are only two new colors other

than those colors of leaves. By Lemma 2.10 one may arrange edge labels of the last level as tn−1 pairs
so that they form tn−1 − 1 consecutive integers and one isolated number. Then adding these integers
to the consecutive edge labels for the (n − 1)-th level in a reverse way as usual to get two constants,
will give two colors of the vertices of the second last row. Note that both colors are again strictly
greater than the largest edge label (tn+1 − t)/(t− 1) as before. Therefore only two new colors other
than those colors of leaves will be created and we are done with the proof. ut

The feasible labeling and coloring for n = 2, 3 are in the Figure 5 and Figure 6, respectively. Note
that for n = 2 the coloring we obtain is of type l+ 1. In fact, while l+ 2 colors are used in the proof,
however we believe that the exact value of the local antimagic chromatic number for the complete
full t-ary tree, t ≥ 2 even, is l + 1, where l is the number of leaves. See Conjecture 6.1 in the next
concluding section.

3 2 5 6

6 15

5

3 2 5 6

1 4

Figure 5. Complete full binary tree of two levels (t = 2, n = 2).
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14 10 13 8 11 9 12 7

25 23 23 23

9 12

11

14 10 13 8 11 9 12 7

1 2 3 4

6 5

Figure 6. Complete full binary tree of three levels (t = 2, n = 3).

6. Future studies

In this article we are concerned with the local antimagic coloring of trees. It is interesting to observe
that, one may use the properties regarding the additive version of the Skolem sequence to give rise
to the arrangement of the labeling. Again this shows the intimate relationship between the integer
sequences and graph labeling and coloring.

Among others, we obtain the upper bound l + 2 for the local antimagic chromatic numbers of a
complete full t-ary tree T for all t ≥ 2, and in particular we obtain that the exact value for the local
antimagic chromatic number of a complete full t-ary tree T is l + 1 for odd t, where l is the number
of leaves of T . However the following conjectures are still open and need further exploration.

Conjecture 6.1. For any complete full t-ary tree T , t ≥ 2 even, χla(T ) = l+1, where l is the number
of degree one vertices (leaves) of T .

Conjecture 6.2. For any tree T on at least three vertices, l + 1 ≤ χla(T ) ≤ l + 2, where l is the
number of degree one vertices (leaves) of T .

Note that the Conjecture 6.2 was mentioned in [6]. It will be interesting to characterize trees T
such that χla(T ) = l + 1, where l is the number of degree one vertices (leaves) of T .
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