
ar
X

iv
:2

20
3.

00
14

5v
3

 [
cs

.P
L

]
 1

5
A

pr
 2

02
2

Fundamenta Informaticae 185(2) : 115–183 (2022) 115

DOI 10.3233/FI-222106

IOS Press

Getting There and Back Again

Olivier Danvy*

Yale-NUS College & School of Computing

National University of Singapore

danvy@acm.org

Abstract. “There and Back Again” (TABA) is a programming pattern where the recursive calls

traverse one data structure and the subsequent returns traverse another. This article presents new

TABA examples, refines existing ones, and formalizes both their control flow and their data flow

using the Coq Proof Assistant. Each formalization mechanizes a pen-and-paper proof, thus mak-

ing it easier to “get” TABA. In addition, this article identifies and illustrates a tail-recursive vari-

ant of TABA, There and Forth Again (TAFA) that does not come back but goes forth instead with

more tail calls.

Keywords: TABA, recursion pattern, list processing, symbolic convolutions, eta redexes, Coq

Proof Assistant, There and Forth Again (TAFA), defunctionalization and refunctionalization,

lambda-lifting and lambda-dropping, lightweight fusion and lightweight fission, continuations.

Dear Reader:

Unless you are already acquainted with “There and Back Again,” could you first spend

a few minutes thinking about the following programming exercises before proceeding

any further? Thank you.

Convolving a list with itself:

Given a list [x1, x2, ..., xn−1, xn], where n is unknown,

construct [(x1, xn), (x2, xn−1), ..., (xn−1, x2), (xn, x1)] in n recursive calls.

The implementation should be expressible using a fold function for lists.

*Address for correspondence: Yale-NUS College & School of Computing, National University of Singapore.

Received August 2020; accepted April 2022.

http://arxiv.org/abs/2203.00145v3

116 O. Danvy / Getting There and Back Again

Convolving a list with itself (continued):

Here is a non-solution in OCaml:

let self_convolve xs = (* ’a list -> (’a * ’a) list *)

List.map2 (fun x x_op -> (x, x_op)) xs (List.rev xs);;

(This implementation is not a solution because it incurs two independent traversals:

one for reversing the second list (with List.rev), and one for zipping the given list

and its reverse (with List.map2).)

Deciding whether two lists are reverses of each other:

Given two lists of unknown lengths, test whether one list is the reverse of the other, if

they have the same length n. Each list should be traversed only once, no intermediate

list should be created, and the implementation should proceed in n recursive calls,

i.e., be expressible using a fold function. Here is a non-solution in OCaml:

let rev2 vs ws =

vs = List.rev ws;;

(This implementation is not a solution because it incurs two independent traversals:

one for reversing the second list (with List.rev), and one for comparing the first list

and the reversed second list (with =).)

Deciding whether a lambda term has the shape of an eta redex:

Given the abstract-syntax tree of a λ term, test whether it is shaped like the η redex

λx1.λx2. · · · λxn.e x1 x2 · · · xn, where e and n are unknown, in n recursive calls.

Indexing a list from right to left:

Given a list and a non-negative integer, index this list from the right:

let test_list_index_rtl candidate =

(candidate [3; 2; 1; 0] 0 = Some 0) &&

(candidate [3; 2; 1; 0] 3 = Some 3) &&

(candidate [3; 2; 1; 0] 4 = None);;

The list should be traversed only once and no intermediate list should be created.

Here are two non-solutions in OCaml:

let list_index_rtl_rev_list vs n = (* ’a list -> int -> ’a option *)

if 0 <= n && n < List.length vs

then Some (List.nth (List.rev vs) n)

else None;;

let list_index_rtl_rev_index vs n = (* ’a list -> int -> ’a option *)

if 0 <= n

then let length_vs = List.length vs

in if n < length_vs

then let last_index = pred length_vs

in Some (List.nth vs (last_index - n))

else None

else None;;

O. Danvy / Getting There and Back Again 117

Indexing a list from right to left (continued):

(The first implementation passes the unit test but is not a solution because it inde-

pendently traverses the given list three times: once for computing its length (with

List.length), once for reversing it (with List.rev), and once for indexing it from

left to right (with List.nth). Also, it constructs an intermediate list (with List.rev).

The second implementation also passes the unit test but is not a solution either be-

cause it independently traverses the given list twice: once for computing its length

and once for indexing it from left to right.)

1. Background and introduction

“There and Back Again” (TABA for short [1]) was a new programming pattern of structural recursion

where one data structure is traversed at call time (as usual) and another at return time (which was new).

This pattern makes it possible, for example, to symbolically convolve the lists [v1; v2; . . . ; vn−1; vn]
and [w1;w2; . . . ;wn−1;wn] into [(v1, wn); (v2, wn−1); . . . ; (vn−1, w2); (vn, w1)] in one recursive tra-

versal of either list at call time and one iterative traversal of the other list at return time, without con-

structing any intermediate list in reverse order. Other examples include, e.g., multiplying polynomials,

computing Catalan numbers, testing whether a given list is a palindrome, and testing whether a given

abstract-syntax tree is a generalized β redex without constructing any intermediate data structure. All

of these examples are therefore expressible using primitive iteration, i.e., a fold function.

The essence of TABA is that traversing a data structure recursively at call time accumulates enough

computing power to traverse another data structure iteratively at return time. This second traversal can

be either implicit in direct style—which at first sight may feel as unusual as seeing Charlie Chaplin or

Marcel Marceau walking against the wind or someone performing the moonwalk dance—or explicit

in continuation-passing style, where the continuation is delimited and takes the form of an iterator.

Defunctionalizing this continuation gives rise to the intermediate data structure that is explicitly iter-

ated upon and that one would naturally use in a tail-recursive solution, paving the way to constructing

TABA examples by refunctionalizing non-solutions [2].

By now, TABA is often cited as a programming pattern that illustrates recursion and continua-

tions [3, 4, 5, 6]. It has inspired a new calculation rule, IO swapping [7], and it has proved useful to

express filters in XML [8], to illustrate advances in type inference [9], to process tail-aligned lists [10],

to illustrate introspection [11], and to carry out backpropagation compositionally [12, 13, 14]. TABA

programs have been implemented in many languages, from Prolog and C to Agda. At least two have

been formalized in Why3 [15].

In this article, we present new TABA examples and we suggest a variation that simplifies the

original treatment of convolutions to handle the pathological case where the two lists to convolve do

not have the same length. This new convolving function traverses both given lists at call time instead

of only one of them and its continuation is only applied when these two lists have the same length.

The codomain of this continuation then no longer needs to be an option type to accommodate the

118 O. Danvy / Getting There and Back Again

pathological case. The new convolving function is still primitive iterative and thus it can be expressed

using a fold function, whether in direct style or in continuation-passing style. We also identify a

tail-recursive variant of TABA, “There and Forth Again” (TAFA), where there is no going back.

All of the above was formalized with the Coq Proof Assistant [16]. For clarity, the proofs use no

automation and correspond to what one would traditionally write by hand [17, 18, 19]. Also, they are

all equational, even for implementations that use a continuation.

The rest of this article is structured as follows. We start by solving the first exercise in the opening

“Dear Reader” box, namely we implement a function that convolves any given list of (unknown) length

n with itself in n recursive calls (Section 2). We then treat another simple example of TABA that is

also new: given two lists of unknown length, we determine whether one is the reverse of the other,

without reversing either list (Section 3). As for the pathological case where the two lists do not have

the same length, we propose to handle it a priori (i.e., at call time) instead of a posteriori (i.e., at return

time), which simplifies both the program and its proof (Section 3.6 and beyond). We then revisit the

canonical example of TABA, convolving two lists (Section 4). Turning to the third exercise in the

opening “Dear Reader” box, we show how to detect whether a lambda term has the shape of an eta

redex in one recursive descent of its abstract-syntax tree and without constructing an intermediate data

structure (Section 5). Solving the last exercise in the opening “Dear Reader” box suggests a “There

and Forth Again” programming pattern that is a tail-recursive variant of TABA in the case where the

order in which to traverse the data structure at return time does not matter (Section 6). We then return

to convolving two lists that may not have the same length (Section 7) before concluding (Section 8)

and closing with another “Dear Reader” box containing more programming exercises.

Prerequisites and notations: This article assumes an elementary knowledge of OCaml and of the

Coq Proof Assistant (and its pure and total functional programming language Gallina). It also hinges

on an awareness of continuations and defunctionalization, which are reviewed in the appendix. No-

tationally, the Haskell plural convention is used throughout: if v denotes a value, vs denotes a list of

values and if p denotes a pair, ps denotes a list of pairs.

2. Convolving a list with itself

The goal of this section is to implement a function that, given a list, convolves this list with itself.

For example, in OCaml, this function maps [1; 2; 3; 4] to [(1, 4); (2, 3); (3, 2); (4, 1)].

The result is a symbolic self-convolution of the given list because enumerating the first projections of

its successive pairs yields the given list, and enumerating their second projections yields the reverse

of the given list. (Both enumerations are achieved using the unzip function. By that book, the zip

function achieves a symbolic dot product.)

We first program this function in OCaml recursively using the TABA programming pattern and

illustrate this pattern with a trace (Section 2.1) before formalizing this implementation using the Coq

Proof Assistant (Section 2.2). We then program this function in OCaml tail recursively with continua-

tions using the TABA programming pattern and illustrate this pattern with a trace (Section 2.3) before

formalizing this implementation using the Coq Proof Assistant (Section 2.4).

O. Danvy / Getting There and Back Again 119

2.1. First-order programming

The following implementation uses the TABA programming pattern in that its auxiliary function tra-

verses the given list (denoted by vs) at call time and then traverses the given list (denoted by ws) again

at return time, constructing the resulting list of pairs (denoted by ps):

let self_cnv vs = (* ’a list -> (’a * ’a) list *)

let rec visit vs_sfx = (* ’a list -> ’a list * (’a * ’a) list *)

match vs_sfx with

[] -> (vs, [])

| v :: vs_sfx’ -> let (ws, ps) = visit vs_sfx’

in (List.tl ws, (v, List.hd ws) :: ps)

in let (_, ps) = visit vs

in ps;;

where “cnv” stands for “convolution” in the name of this function.

Let us visualize the induced computation with a trace:

• when a function is called, its name and its argument(s) are printed and followed by a right arrow;

• when a function returns, its name and its argument(s) are printed and followed by a left arrow, itself

followed by the result that is being returned; and

• the printed names are indented to reflect the nested calls, in the tradition of tracing in Lisp.

To wit:

traced_self_cnv show_int [1; 2; 3];;

self_cnv [1; 2; 3] ->

visit [1; 2; 3] ->

visit [2; 3] ->

visit [3] ->

visit [] ->

visit [] <- ([1; 2; 3], [])

visit [3] <- ([2; 3], [(3, 1)])

visit [2; 3] <- ([3], [(2, 2); (3, 1)])

visit [1; 2; 3] <- ([], [(1, 3); (2, 2); (3, 1)])

self_cnv [1; 2; 3] <- [(1, 3); (2, 2); (3, 1)]

- : (int * int) list = [(1, 3); (2, 2); (3, 1)]

#

In this example, the self-convolution function is called with the list [1; 2; 3], and then calls the

visit function recursively as it traverses this list. That the given list is traversed is visualized by the

successive calls to the visit function, and that the calls are nested is rendered by the indentations.

When the end of the list is reached, a pair is returned that contains the given list and an empty list of

pairs, which initiates a series of returns that matches the series of calls. That the given list is traversed

is visualized by the successive returns from the visit function, and that the returns match the calls is

rendered by the vertically aligned indentations. The list of pairs is constructed (1) using the head of

the list that was accessed at call time and that is still available in the lexical environment and (2) using

the head of the returned list. After the last return, the returned list is empty and the list of pairs is the

symbolic convolution.

120 O. Danvy / Getting There and Back Again

2.2. Formalizing and proving the first-order program

The implementation above cannot directly be formalized in the Coq Proof Assistant because of the

accessors List.hd and List.tl that optimistically assume that they are applied to a non-empty list

(and otherwise raise an error). This optimistic assumption actually holds, but the type system is not

strong enough to account for it, and so we have to use an option type, which incurs a proof obligation

that the implementation is total, i.e., always returns a result constructed with Some. We also lambda-

lift the implementation (see Appendix C), declaring the auxiliary function visit globally too instead of

locally, to reason about it using its global name:

Fixpoint self_cnv’ (V : Type) (vs_sfx vs : list V) : option (list V * list (V * V)) :=

match vs_sfx with

nil => Some (vs, nil)

| v :: vs_sfx’ => match self_cnv’ V vs_sfx’ vs with

Some (ws, ps) => match ws with

nil => None (* impossible case *)

| w :: ws’ => Some (ws’, (v, w) :: ps)

end

| None => None

end

end.

The codomain uses an option type to account for the impossible case where the returned list does not

have the same length as the given list (too short above, too long below):

Definition self_cnv (V : Type) (vs : list V) : option (list (V * V)) :=

match self_cnv’ V vs vs with

Some (ws, ps) => match ws with

nil => Some ps

| w :: ws’ => None (* impossible case *)

end

| None => None

end.

The list returned by self_cnv’, ws, is supposed to be empty. The result is the returned list of pairs, ps.

The following theorem captures that the implementation is sound and complete as well as total:

Theorem soundness_and_completeness_of_self_cnv :

forall (V : Type) (vs : list V) (ops : option (list (V * V))),

self_cnv V vs = ops <-> exists ps : list (V * V),

ops = Some ps /\ map fst ps = vs /\ map snd ps = rev vs.

where fst and snd respectively denote the first and the second pair projections. In words – self_cnv

is total in that it always maps a list to an optional list of pairs that is constructed with Some; it is sound

in that enumerating the first projections of the resulting list of pairs coincides with the given list and

enumerating the second projections of this list of pairs coincides with the reverse of the given list,

which is the definition of a symbolic self-convolution; and it is complete in that given the symbolic

self-convolution ps of a list vs, applying self_cnv to vs totally yields ps.

This theorem is a corollary of the following lemma about self_cnv’ which captures the essence

of TABA’s control flow and of TABA’s data flow:

O. Danvy / Getting There and Back Again 121

Lemma about_self_cnv’ :

forall (V : Type) (vs_sfx ws_pfx : list V),

length vs_sfx = length ws_pfx ->

forall ws_sfx : list V,

exists ps : list (V * V),

self_cnv’ V vs_sfx (ws_pfx ++ ws_sfx) = Some (ws_sfx, ps) /\

map fst ps = vs_sfx /\ map snd ps = rev ws_pfx.

The second argument of self_cnv’, vs_sfx, is the list traversed by the calls so far and its third

argument, vs, is the given list. So vs_sfx is a suffix of vs. In this lemma, this given list is also

expressed as the concatenation of a prefix, ws_pfx, and a suffix, ws_sfx, which are such that the length

of this prefix is the same as the length of the list traversed so far, vs_sfx.

Control flow: The lemma expresses how the given list is traversed at return time: the lengths of

vs_sfx and of ws_pfx are the number of remaining calls to traverse vs_sfx. By the very nature

of structural recursion, this number is also the number of returns that yield Some (ws_sfx, ps).

Therefore the returns have traversed the current prefix of the given list, ws_pfx, and the returned list

is its current suffix, ws_sfx.

Data flow: The lemma also captures that the returned list of pairs is a symbolic convolution of the

list that remains to be traversed at call time, namely vs_sfx, and of the list that has been traversed

at return time, namely ws_pfx.

The control-flow aspect of the lemma expresses that ws_pfx has been traversed by the returns and that

vs_sfx remains to be traversed by the calls. The data-flow aspect of the lemma expresses that the

returned list of pairs is a symbolic convolution of these two lists.

The lemma is proved by induction on vs_sfx. In the course of this proof, the following property

came handy to connect the first element of a non-empty list and its following suffix and the last element

of this non-empty list and its preceding prefix:

Property from_first_and_suffix_to_prefix_and_last :

forall (V : Type) (v : V) (vs : list V),

exists (ws : list V) (w : V),

v :: vs = ws ++ w :: nil /\ length vs = length ws.

This property is proved by induction on vs.

2.3. Higher-order programming

The following implementation uses the TABA programming pattern in that its auxiliary function tra-

verses the given list at tail-call time and accumulates a two-argument continuation to traverse the given

list again and construct the resulting list of pairs:

let self_cnv_c vs = (* ’a list -> (’a * ’a) list *)

let rec visit vs_sfx k = (* ’a list -> (’a list -> (’a * ’a) list) -> (’a * ’a) list *)

match vs_sfx with

[] -> k vs []

| v :: vs_sfx’ -> visit vs_sfx’ (fun ws ps -> k (List.tl ws) ((v, List.hd ws) :: ps))

in visit vs (fun _ ps -> ps);;

122 O. Danvy / Getting There and Back Again

Let us visualize the induced computation with a trace:

traced_self_cnv_c show_int [1; 2; 3];;

self_cnv_c [1; 2; 3] ->

visit [1; 2; 3] continuation_0 ->

visit [2; 3] continuation_1 ->

visit [3] continuation_2 ->

visit [] continuation_3 ->

continuation_3 [1; 2; 3] [] ->

continuation_2 [2; 3] [(3, 1)] ->

continuation_1 [3] [(2, 2); (3, 1)] ->

continuation_0 [] [(1, 3); (2, 2); (3, 1)] ->

- : (int * int) list = [(1, 3); (2, 2); (3, 1)]

#

In this example, the self-convolution function is called with the list [1; 2; 3], and then calls the visit

function tail-recursively as it traverses this list and accumulates a continuation. That the given list is

traversed is visualized by the successive calls to the visit function, and that the calls are tail calls is

rendered by the lack of indentation. When the end of the list is reached, the current continuation is

passed the given list and an empty list of pairs, and then tail-calls the accumulated continuations in

a way that matches the series of tail-calls to visit. That the given list is traversed is visualized by

the successive tail-calls to the continuations, and that these tail-calls match the corresponding calls is

rendered with the name of these continuations. The list of pairs is constructed (1) using the head of

the list that was accessed at tail-call time and that is still available in the lexical environment and (2)

using the head of the list that is passed to the continuation. When the initial continuation is passed a

list and a list of pairs, the former list is empty and the latter list is the symbolic convolution.

2.4. Formalizing and proving the higher-order program

As in Section 2.2, using the partial functions List.hd and List.tl is not an option in the Coq Proof

Assistant, and so we need to use an option type in the codomain, which also incurs a proof obliga-

tion that the implementation is total. Likewise, the implementation is lambda-lifted and so the local

function is defined globally too, as a recursive equation:

Fixpoint self_cnv_c’ (V : Type)

(vs_sfx vs : list V)

(k : list V -> list (V * V) -> option (list (V * V)))

: option (list (V * V)) :=

match vs_sfx with

nil =>

k vs nil

| v :: vs_sfx’ =>

self_cnv_c’ V vs_sfx’ vs (fun ws ps =>

match ws with

nil => None (* impossible case *)

| w :: ws’ => k ws’ ((v, w) :: ps)

end)

end.

O. Danvy / Getting There and Back Again 123

Definition self_cnv_c (V : Type) (vs : list V) : option (list (V * V)) :=

self_cnv_c’ V vs vs (fun ws ps => match ws with

nil => Some ps

| w :: ws’ => None (* impossible case *)

end).

The initial continuation expects a list and a list of pairs. This list is supposed to be empty, and the

result is this list of pairs.

As in Section 2.2, the following theorem captures soundness, completeness, and totality:

Theorem soundness_and_completeness_of_self_cnv_c :

forall (V : Type) (vs : list V) (ops : option (list (V * V))),

self_cnv_c V vs = ops <-> exists ps : list (V * V),

ops = Some ps /\ map fst ps = vs /\ map snd ps = rev vs.

Similarly to Section 2.2, this theorem is a corollary of the following lemma about self_cnv_c’

which captures the essence of TABA’s control flow and of TABA’s data flow:

Lemma about_self_cnv_c’ :

forall (V : Type) (vs_sfx ws_pfx : list V),

length vs_sfx = length ws_pfx ->

forall (ws_sfx : list V)

(k : list V -> list (V * V) -> option (list (V * V))),

exists ps : list (V * V),

self_cnv_c’ V vs_sfx (ws_pfx ++ ws_sfx) k = k ws_sfx ps /\

map fst ps = vs_sfx /\ map snd ps = rev ws_pfx.

In Section 2.2, self_cnv’ returns Some (ws_sfx, ps) whereas self_cnv_c’ continues with ws_sfx

and ps here. This lemma is also proved by induction on vs_sfx.

2.5. Summary, synthesis, and significance

Through functional programming and proving, we have illustrated the TABA programming pattern

with one simple example, the symbolic self-convolution of a list. The illustration was both visual,

using a trace of the successive calls and returns, and logical, with a lemma that characterizes both the

control flow and the data flow of the TABA programming pattern, be it recursive or tail-recursive with

continuations.

3. Testing whether two lists are reverses of each other

The goal of this section is to implement a predicate that decides whether two given lists of unknown

length are reverses of each other. We are going to inter-derive a spectrum of polymorphic functions

rev2 : forall V : Type, (V -> V -> bool) -> list V -> list V -> bool, each of which satisfies the

following theorem:

Theorem soundness_and_completeness_of_rev2 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, beq_V v v’ = true <-> v = v’) ->

forall vs_given ws_given : list V,

rev2 V beq_V vs_given ws_given = true <-> rev vs_given = ws_given.

124 O. Danvy / Getting There and Back Again

In words – given a type V of comparable values (and an associated equality predicate beq_V that is

sound and complete), rev2 is sound in that if applying it to two lists yields true, then the two lists are

reverses of each other, and it is complete in that applying it to two lists that are reverses of each other

yields true.

In each of the implementations, rev2 is a main function that uses one or two auxiliary functions.

Accordingly, the main theorem is a corollary of auxiliary lemmas that we will state. Some of these

auxiliary lemmas are about the soundness and completeness of the auxiliary functions, and some

others are about a useful property of these auxiliary functions.

We first start from the “non-solution” that reverses the first list and then traverses the reversed first

list together with the second list (Section 3.1). As it happens, this non-solution is a candidate both for

lightweight fusion (Appendix D) and for refunctionalization (Appendix A):

Section 3.1
refunct. //

fusion

��

We successively lightweight-fuse it (Section 3.2) and then refunctionalize the result (Section 3.3), but

the converse would do as well, as the end result is the same:

Section 3.1
refunct. //

fusion

��

fusion

��
Section 3.2

refunct.
// Section 3.3

As it happens again, this end result is both structurally recursive and thus expressible using a fold

function (Appendix B) and in continuation-passing style (Appendix E). We map it back to direct

style (Section 3.4) and then lambda-drop the result (Appendix C) from two recursive equations to one

block-structured, lexically scoped program (Section 3.5).

We then turn to the pathological case where the two given lists do not have the same length, We

simplify this case by treating it at call time rather than at return time, i.e., by traversing both lists

at call time instead of only one of them, and by only returning if the two given lists have the same

length (Section 3.6). Henceforth, we adjust the block-structured, lexically scoped program, and then

lambda-lift it into two recursive equations, CPS-transform them into a continuation-passing program,

and then defunctionalize and defuse this program into a non-solution that reverses the first list and

then traverses the reversed first list together with the second list if they have the same length. And at

each step, we state the corresponding auxiliary lemmas. Diagrammatically, and with an unambiguous

abuse of notation – the section numbers are duplicated [20] – this spectrum can be rendered as follows:

O. Danvy / Getting There and Back Again 125

Section 3.1,

page 125, v1

fusion // Section 3.2,

page 126, v2

refunct. // Section 3.3,

page 127, v3

DS // Section 3.4,

page 128, v4

λ-drop // Section 3.5,

page 129, v5

Section 3.1,

page 136, w1
Section 3.2,

page 135, w2fission
oo Section 3.3,

page 134, w3defunct.
oo Section 3.4,

page 134, w4CPS
oo Section 3.5,

page 132, w5λ-lift
oo

In both Sections 3.2, the program is tail recursive and implements a pushdown automaton where

the intermediate list acts as the stack. In both Sections 3.3, the program is tail recursive and the stack

is represented as an explicit continuation. And in both Sections 3.4, the program is not tail recur-

sive and the explicit continuation is represented by the implicit control stack that underlies language

processors since Dijkstra [21] to implement nested calls in general and recursive calls in particular,

an implementation technique which is so salient that it is used nowadays to explain recursion. The

continuation-passing programs in Sections 3.3 and the direct-style programs in Sections 3.4 and 3.5

also illustrate TABA in that one of the lists is traversed at call time and the other at return time. These

programs are structurally recursive, or more precisely they are primitive iterative in that they can be

expressed with a fold function: they can therefore be reasoned about using structural induction.

3.1. A first-order implementation in two passes

Let us start from the non-solution below:

1. The first list is reversed, tail recursively with an accumulator, using rev2’_v1.

2. The reversed first list and the second list are traversed together, tail recursively, using rev2’’_v1.

The result is a Boolean: either these two lists have the same length and the same elements, i.e., are

structurally equal, or they do not.

In Gallina:

Fixpoint rev2’’_v1 (V : Type) (beq_V : V -> V -> bool) (vs_op ws : list V) : bool :=

match vs_op with

nil => match ws with

nil => true

| w :: ws’ => false

end

| v :: vs’_op => match ws with

nil => false

| w :: ws’ => if beq_V v w

then rev2’’_v1 V beq_V vs’_op ws’

else false

end

end.

Fixpoint rev2’_v1 (V : Type) (vs vs_op : list V) : list V :=

match vs with

nil => vs_op

| v :: vs’ => rev2’_v1 V vs’ (v :: vs_op)

end.

Definition rev2_v1 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

rev2’’_v1 V beq_V (rev2’_v1 V vs_given nil) ws_given.

126 O. Danvy / Getting There and Back Again

The two auxiliary definitions give rise to two auxiliary lemmas, a corollary of which is the soundness

and completeness of rev2_v1. The first is proved by induction on vs_op and the second by induction

on vs:

Lemma soundness_and_completeness_of_rev2’’_v1 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, beq_V v v’ = true <-> v = v’) ->

forall vs_op ws : list V,

rev2’’_v1 V beq_V vs_op ws = true <-> vs_op = ws.

Lemma soundness_and_completeness_of_rev2’_v1 :

forall (V : Type) (vs vs_op vs_given_op : list V),

rev2’_v1 V vs vs_op = vs_given_op <-> rev vs ++ vs_op = vs_given_op.

In words – rev2’’_v1 is a sound and complete implementation of structural equality, and rev2’_v1 is

a sound and complete implementation of list reversal with an accumulator. (To say it again, soundness

means that if the implementation yields a result, this result is correct, and completeness means that if

a result is expected, then the implementation provides it.)

3.2. A first-order and tail-recursive implementation

The goal of lightweight fusion by fixed-point promotion [22] is to make an implementation tail re-

cursive, and the implementation in Section 3.1 is a fitting case for it: in the definition of rev2_v1,

the tail-recursive function rev2’_v1 is called, and its result is used to call rev2’’_v1. Lightweight

fusion relocates the context of the call to rev2’_v1 from the definition of rev2_v1 to the definition of

rev2’_v1, making it not return, but instead perform a tail call to rev2’’_v1:

Fixpoint rev2’_v2 (V : Type) (beq_V : V -> V -> bool) (vs vs_op ws_given : list V) : bool :=

match vs with

nil => rev2’’_v1 V beq_V vs_op ws_given

| v :: vs’ => rev2’_v2 V beq_V vs’ (v :: vs_op) ws_given

end.

Definition rev2_v2 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

rev2’_v2 V beq_V vs_given nil ws_given.

In words – whereas rev2’_v1 was called non-tail recursively in the definition of rev2_v1, which then

tail-called rev2’’_v1, rev2’_v2 is called tail recursively in the definition of rev2_v2, which then

tail-calls rev2’’_v1.

The auxiliary definition above gives rise to an auxiliary lemma, a corollary of which is the sound-

ness and completeness of rev2_v2:

Lemma about_rev2’_v2 :

forall (V : Type) (beq_V : V -> V -> bool) (vs vs_op ws_given : list V),

exists vs_given_op : list V,

rev2’_v2 V beq_V vs vs_op ws_given = rev2’’_v1 V beq_V vs_given_op ws_given /\

rev vs ++ vs_op = vs_given_op.

In words – rev2’_v2 ends up tail-calling rev2’’_v1 on the reverse of the first list. This lemma is

proved by induction on vs.

O. Danvy / Getting There and Back Again 127

3.3. A higher-order and tail-recursive implementation

The implementation in Section 3.2 is in defunctionalized form (see Appendix A) in that the inter-

mediate list (i.e., vs_op), together with the second pass (i.e., rev2’’_v1) that consumes it, can be

represented as a function, h_vs_op:

Fixpoint rev2’_v3 (V : Type) (beq_V : V -> V -> bool)

(vs : list V) (h_vs_op : list V -> bool) (ws_given : list V) : bool :=

match vs with

nil => h_vs_op ws_given

| v :: vs’ => rev2’_v3 V beq_V vs’ (fun ws => match ws with

nil => false

| w :: ws’ => if beq_V v w

then h_vs_op ws’

else false

end) ws_given

end.

Definition rev2_v3 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

rev2’_v3 V beq_V vs_given (fun ws => match ws with

nil => true

| w :: ws’ => false

end) ws_given.

In words – in Sections 3.1 and 3.2, the elements of the first list were accumulated into a list in reverse

order (vs_op) and then this list was traversed together with the second list to check for structural

equality in rev2’’_v1. Here, the elements of the first list are accumulated into a function (h_vs_op)

to traverse the second list and then this function is applied to the second list to carry out this traversal.

The auxiliary definition above gives rise to two auxiliary lemmas, a corollary of which is the

soundness and completeness of rev2_v3:

Lemma soundness_of_rev2’_v3 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, beq_V v v’ = true -> v = v’) ->

forall (vs : list V) (h_vs_op : list V -> bool) (ws_given : list V),

(exists ws : list V,

rev2’_v3 V beq_V vs h_vs_op ws_given = h_vs_op ws /\ rev vs ++ ws = ws_given) \/

rev2’_v3 V beq_V vs h_vs_op ws_given = false.

In words – either rev2’_v3 ends up tail-calling h_vs_op on a suffix of ws_given such that the corre-

sponding prefix is the reverse of vs or it yields false. This soundness lemma is proved by induction

on vs.

Lemma completeness_of_rev2’_v3 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, v = v’ -> beq_V v v’ = true) ->

forall vs ws_pfx ws_sfx ws_given : list V,

rev vs = ws_pfx ->

ws_pfx ++ ws_sfx = ws_given ->

forall h_vs_op : list V -> bool,

rev2’_v3 V beq_V vs h_vs_op ws_given = h_vs_op ws_sfx.

128 O. Danvy / Getting There and Back Again

In words – if vs is the reverse of a prefix of ws_given, then rev2’_v3 ends up tail-calling h_vs_op on

the corresponding suffix. This completeness lemma is proved by induction on vs.

Lightweight-fusing Version 1 and then refunctionalizing the result (as done above) or refunction-

alizing Version 1 and then lightweight-fusing the result yield the same result—and what a remarkable

result it is: an implementation which is (1) structurally recursive and therefore can be expressed using

fold-right (see Appendix B), and (2) in continuation-passing style (see Appendix E) where all calls

are tail calls and h_vs_op acts as the continuation. This implementation is characteristic of TABA: the

first list is traversed at call time (when the continuation is accumulated) and the second at return time

(when the continuation is applied).

3.4. A first-order and recursive implementation, lambda-lifted

In the implementation of Section 3.3 the continuation is delimited: it is initialized in rev2_v3, and it

is only applied in rev2’_v3 if the second list is long enough and its current first element coincides

with the corresponding current first element of the first list; otherwise, the current continuation is not

applied and the computation is discontinued. In other words, this implementation can be expressed in

direct style with an exception to account for the current continuation not being applied.

Gallina being a pure functional language, it does not feature exceptions. To express this imple-

mentation in direct style, we first need to encode the exceptional behavior using an option type, which

makes the continuation linear (each continuation is defined once and used once, last in, first out). The

corresponding direct-style implementation reads as follows:

Fixpoint rev2’_v4 (V : Type) (beq_V : V -> V -> bool)

(vs : list V) (ws_given : list V) : option (list V) :=

match vs with

nil => Some ws_given

| v :: vs’ => match rev2’_v4 V beq_V vs’ ws_given with

Some ws => match ws with

nil => None

| w :: ws’ => if beq_V v w then Some ws’ else None

end

| None => None

end

end.

Definition rev2_v4 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

match rev2’_v4 V beq_V vs_given ws_given with

Some ws => match ws with

nil => true

| w :: ws’ => false

end

| None => false

end.

This implementation is characteristic of TABA: the successive calls to rev2’_v4 traverse the first

list and its successive returns traverse the second, without creating any intermediate list. In case of

mismatch, None is incrementally returned until the initial call to rev2’_v4 in the definition of rev2_v4.

O. Danvy / Getting There and Back Again 129

The auxiliary definition gives rise to two auxiliary lemmas, a corollary of which is the soundness

and completeness of rev2_v4. These lemmas are proved by induction on vs:

Lemma soundness_of_rev2’_v4 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, beq_V v v’ = true -> v = v’) ->

forall vs ws_given : list V,

(exists ws : list V,

rev2’_v4 V beq_V vs ws_given = Some ws /\ rev vs ++ ws = ws_given) \/

rev2’_v4 V beq_V vs ws_given = None.

Lemma completeness_of_rev2’_v4 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, v = v’ -> beq_V v v’ = true) ->

forall vs ws ws_given : list V,

rev vs ++ ws = ws_given ->

rev2’_v4 V beq_V vs ws_given = Some ws.

In words – if applying rev2’_v4 to vs returns a list, this list is a suffix of ws_given whose prefix is

the reverse of vs; and if a list is the reverse prefix of ws_given, applying rev2’_v4 to this list totally

yields the corresponding suffix of ws_given.

OCaml, however, provides exceptions. Here is a direct-style implementation in OCaml:

exception Mismatching_lists;;

let rec rev2’_v4 vs ws_given =

match vs with

[] -> ws_given

| v :: vs’ -> (match rev2’_v4 vs’ ws_given with

[] -> raise Mismatching_lists

| w :: ws’ -> if v = w then ws’ else raise Mismatching_lists);;

let rev2_v4 vs_given ws_given =

try match rev2’_v4 vs_given ws_given with

[] -> true

| _ :: _ -> false

with Mismatching_lists -> false;;

The codomain of rev2’_v4 is bool, not bool option, and an exception is raised in case of mismatch.

Otherwise, the successive calls to rev2’_v4 traverse the first list and its successive returns traverse the

second, without creating any intermediate list, which is the hallmark of TABA.

3.5. A first-order and recursive implementation, lambda-dropped

As it happens, the implementations of Section 3.4 are recursive equations, i.e., they are in lambda-

lifted form (see Appendix C). They can be lambda-dropped into a block-structured, lexically scoped

program where the exception is used locally, the auxiliary function is defined locally, and ws_given

occurs free since it is lexically visible [23]:

130 O. Danvy / Getting There and Back Again

let rev2_v5 vs_given ws_given = (* ’a list -> ’a list -> bool *)

try let rec rev2’_v5 vs = (* ’a list -> ’a list *)

match vs with

[] -> ws_given

| v :: vs’ -> (match rev2’_v5 vs’ with

[] -> raise Mismatching_lists

| w :: ws’ -> if v = w then ws’ else raise Mismatching_lists)

in match rev2’_v5 vs_given with

[] -> true

| _ :: _ -> false

with Mismatching_lists -> false;;

Again, this implementation is structurally recursive and therefore it can be expressed using fold-right

(see Appendix B). It is also is characteristic of TABA: the first list is traversed at call time and the

second at return time, and no intermediate data structure is created.

Let us visualize the induced computation with traces:

• In the first example, rev2_v5 is called with the lists [1; 2; 3] and [3; 2; 1], and then calls

rev2’_v5 recursively as it traverses [1; 2; 3]. When the end of the list is reached, the second

list is returned, and the successive heads of [1; 2; 3] that were accessed at call time are compared

with the successive heads of [3; 2; 1] as they are accessed at return time, until the initial return

from rev2’_v5. The final result is true since all the (traced) tests succeeded and the returned list is

empty:

traced_rev2_v5 show_int [1; 2; 3] [3; 2; 1];;

rev2_v5 [1; 2; 3] [3; 2; 1] ->

rev2’_v5 [1; 2; 3] ->

rev2’_v5 [2; 3] ->

rev2’_v5 [3] ->

rev2’_v5 [] ->

rev2’_v5 [] <- [3; 2; 1]

3 = 3 <-> true

rev2’_v5 [3] <- [2; 1]

2 = 2 <-> true

rev2’_v5 [2; 3] <- [1]

1 = 1 <-> true

rev2’_v5 [1; 2; 3] <- []

rev2_v5 [1; 2; 3] [3; 2; 1] <- true

- : bool = true

#

• In the second example, rev2_v5 is called with the lists [1; 2; 3; 4] and [4; 0; 2; 1], and then

calls rev2’_v5 recursively as it traverses [1; 2; 3; 4]. When the end of the list is reached, the

second list is returned, and the successive heads of [1; 2; 3; 4] that were accessed at call time are

compared with the successive heads of [4; 0; 2; 1] as they are accessed at return time. The two

first heads, 4, match, but the two next heads, 3 and 0 do not. So an exception is raised and the final

result is false:

O. Danvy / Getting There and Back Again 131

traced_rev2_v5 show_int [1; 2; 3; 4] [4; 0; 2; 1];;

rev2_v5 [1; 2; 3; 4] [4; 0; 2; 1] ->

rev2’_v5 [1; 2; 3; 4] ->

rev2’_v5 [2; 3; 4] ->

rev2’_v5 [3; 4] ->

rev2’_v5 [4] ->

rev2’_v5 [] ->

rev2’_v5 [] <- [4; 0; 2; 1]

4 = 4 <-> true

rev2’_v5 [4] <- [0; 2; 1]

3 = 0 <-> false

rev2_v5 [1; 2; 3; 4] [4; 0; 2; 1] <- false

- : bool = false

#

• The third example illustrates what happens when the second list is shorter than the first, namely the

remaining returns are skipped:

traced_rev2_v5 show_int [1; 2] [2];;

rev2_v5 [1; 2] [2] ->

rev2’_v5 [1; 2] ->

rev2’_v5 [2] ->

rev2’_v5 [] ->

rev2’_v5 [] <- [2]

2 = 2 <-> true

rev2’_v5 [2] <- []

rev2_v5 [1; 2] [2] <- false

- : bool = false

#

• The fourth example illustrates what happens when the second list is longer than the first, namely the

final test fails:

traced_rev2_v5 show_int [1] [1; 0];;

rev2_v5 [1] [1; 0] ->

rev2’_v5 [1] ->

rev2’_v5 [] ->

rev2’_v5 [] <- [1; 0]

1 = 1 <-> true

rev2’_v5 [1] <- [0]

rev2_v5 [1] [1; 0] <- false

- : bool = false

#

3.6. A more perspicuous solution where both lists are first traversed

In the implementations above, the job of the first pass (the calls) is to get to the end of the first list,

and the job of the second pass (the returns) is to traverse the second list, testing whether it is long

enough and whether its successive elements coincide with the corresponding successive elements of

the first list, and then finally testing whether the second list is actually too long. But there is a simpler

algorithm:

1. traverse both the given lists in the first pass, to establish whether they have the same length; and

then if they do, and only if they do,

132 O. Danvy / Getting There and Back Again

2. traverse the second list, only testing whether its successive elements coincide with the correspond-

ing successive elements of the first list, knowing that the two lists have the same length.

Analysis: the number of recursive calls is the same if the two lists have the same length, and otherwise

this number is the length of the shorter list; also, the second pass is simpler since it only takes place if

the two lists have the same length.

The following sections walk back the path of the previous sections, using this simpler algorithm

and assuming that the reader concurs with its tenet.

3.5. A more perspicuous first-order and recursive implementation, lambda-dropped

Compared to the implementation in Section 3.5 page 129, the auxiliary function now traverses both of

the given lists and raises an exception if they do not have the same length:

let rev2_w5 vs_given ws_given =

try let rec rev2’_w5 vs ws =

match vs, ws with

[], [] -> ws_given

| [], _ :: _ -> raise Mismatching_lists

| _ :: _ , [] -> raise Mismatching_lists

| v :: vs’, _ :: ws’ -> match rev2’_w5 vs’ ws’ with

[] -> [] (* impossible case *)

| x :: xs’ -> if v = x then xs’ else raise Mismatching_lists

in let _ = rev2’_w5 vs_given ws_given

in true

with Mismatching_lists -> false;;

Since rev2’_w5 only returns if the two given lists have the same length, the nil case in the induction

step is impossible, and if the initial call to rev2’_w5 completes, the result is the empty list.

Let us visualize the induced computation with traces, using the same examples as in Section 3.5

page 129:

• In the first example, rev2_w5 is called with the lists [1; 2; 3] and [3; 2; 1], and then calls

rev2’_w5 recursively as it traverses these two lists. When the end of the two lists is reached, the

second list is returned, and the successive heads of [1; 2; 3] that were accessed at call time are

compared with the successive heads of [3; 2; 1] as they are accessed at return time, until the initial

return from rev2’_w5: the final result is true:

traced_rev2_w5 show_int [1; 2; 3] [3; 2; 1];;

rev2_w5 [1; 2; 3] [3; 2; 1] ->

rev2’_w5 [1; 2; 3] [3; 2; 1] ->

rev2’_w5 [2; 3] [2; 1] ->

rev2’_w5 [3] [1] ->

rev2’_w5 [] [] ->

rev2’_w5 [] [] <- [3; 2; 1]

3 = 3 <-> true

rev2’_w5 [3] [1] <- [2; 1]

2 = 2 <-> true

rev2’_w5 [2; 3] [2; 1] <- [1]

O. Danvy / Getting There and Back Again 133

1 = 1 <-> true

rev2’_w5 [1; 2; 3] [3; 2; 1] <- []

rev2_w5 [1; 2; 3] [3; 2; 1] <- true

- : bool = true

#

• In the second example, rev2_w5 is called with the lists [1; 2; 3; 4] and [4; 0; 2; 1], and then

calls rev2’_w5 recursively as it traverses these two lists. When the end of the two lists is reached,

the second list is returned, and the successive heads of [1; 2; 3; 4] that were accessed at call time

are compared with the successive heads of [4; 0; 2; 1] as they are accessed at return time. The

two first heads, 4, match, but the two next heads, 3 and 0 do not. So an exception is raised and the

final result is false:

traced_rev2_w5 show_int [1; 2; 3; 4] [4; 0; 2; 1];;

rev2_w5 [1; 2; 3; 4] [4; 0; 2; 1] ->

rev2’_w5 [1; 2; 3; 4] [4; 0; 2; 1] ->

rev2’_w5 [2; 3; 4] [0; 2; 1] ->

rev2’_w5 [3; 4] [2; 1] ->

rev2’_w5 [4] [1] ->

rev2’_w5 [] [] ->

rev2’_w5 [] [] <- [4; 0; 2; 1]

4 = 4 <-> true

rev2’_w5 [4] [1] <- [0; 2; 1]

3 = 0 <-> false

rev2_w5 [1; 2; 3; 4] [4; 0; 2; 1] <- false

- : bool = false

#

• The third example illustrates what happens when the second list is shorter than the first, and is where

rev2_w5 shines compared to rev2_v5. The two lists are traversed until the second one reaches the

empty list. Then an exception is raised, and the final result is false:

traced_rev2_w5 show_int [1; 2] [2];;

rev2_w5 [1; 2] [2] ->

rev2’_w5 [1; 2] [2] ->

rev2’_w5 [2] [] ->

rev2_w5 [1; 2] [2] <- false

- : bool = false

#

• The fourth example illustrates what happens when the second list is longer than the first, and is also

where rev2_w5 shines compared to rev2_v5. The two lists are traversed until the first one reaches

the empty list. Then an exception is raised, and the final result is false:

traced_rev2_w5 show_int [1] [1; 0];;

rev2_w5 [1] [1; 0] ->

rev2’_w5 [1] [1; 0] ->

rev2’_w5 [] [0] ->

rev2_w5 [1] [1; 0] <- false

- : bool = false

#

134 O. Danvy / Getting There and Back Again

3.4. A more perspicuous first-order and recursive implementation, lambda-lifted

Lambda-lifting the implementation of Section 3.5 page 132, yields two recursive equations:

let rec rev2’_w4 vs ws ws_given =

match vs, ws with

[], [] -> ws_given

| [], _ :: _ -> raise Mismatching_lists

| _ :: _ , [] -> raise Mismatching_lists

| v :: vs’, _ :: ws’ -> match rev2’_w4 vs’ ws’ ws_given with

[] -> [] (* impossible case *)

| x :: xs’ -> if v = x then xs’ else raise Mismatching_lists;;

let rev2_w4 vs_given ws_given =

try let _ = rev2’_w4 vs_given ws_given ws_given in true

with Mismatching_lists -> false;;

The auxiliary function now takes ws_given as an extra parameter since it is no longer lexically visible

in the nil-nil case.

3.3. A more perspicuous higher-order and tail-recursive implementation

CPS-transforming the implementation of Section 3.4 page 134, yields a purely functional program

that we can express in Gallina:

Fixpoint rev2’_w3 (V : Type) (beq_V : V -> V -> bool)

(vs ws ws_given : list V) (k : list V -> bool) : bool :=

match vs, ws with

nil, nil => k ws_given

| nil, _ :: _ => false

| _ :: _ , nil => false

| v :: vs’, _ :: ws’ => rev2’_w3 V beq_V vs’ ws’ ws_given (fun xs =>

match xs with

nil => false

| x :: xs’ => if beq_V v x

then k xs’

else false

end)

end.

Definition rev2_w3 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

rev2’_w3 V beq_V vs_given ws_given ws_given (fun xs => match xs with

nil => true

| _ :: _ => false

end).

In words – rev2_w3 accumulates the successive elements of the first list into a function k to traverse

the second list and compare it to the first one. Then, if the two lists have the same length, k is applied

to the second list to carry out this comparison.

The auxiliary definition above gives rise to two auxiliary lemmas, a corollary of which is the

soundness and completeness of rev2_w3:

O. Danvy / Getting There and Back Again 135

Lemma soundness_of_rev2’_w3 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, beq_V v v’ = true -> v = v’) ->

forall (vs ws ws_given : list V) (k : list V -> bool),

(exists ws_sfx : list V,

rev2’_w3 V beq_V vs ws ws_given k = k ws_sfx /\ rev vs ++ ws_sfx = ws_given) \/

rev2’_w3 V beq_V vs ws ws_given k = false.

In words – either rev2’_w3 ends up tail-calling k on a suffix of ws_given such that the corresponding

prefix is the reverse of vs or it yields false. This soundness lemma is proved by induction on vs.

Lemma completeness_of_rev2’_w3 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, v = v’ -> beq_V v v’ = true) ->

forall vs ws ws_pfx ws_sfx ws_given : list V,

length vs = length ws ->

rev vs = ws_pfx ->

ws_pfx ++ ws_sfx = ws_given ->

forall k : list V -> bool,

rev2’_w3 V beq_V vs ws ws_given k = k ws_sfx.

In words – if vs is the reverse of a prefix of ws_given, then rev2’_v3 ends up tail-calling k on the

corresponding suffix if vs_given and ws_given have the same length. This completeness lemma is

proved by induction on vs.

3.2. A more perspicuous first-order and tail-recursive implementation

The implementation in Section 3.3 page 134, is a candidate for defunctionalization, using lists as a

data type for the continuation and rev2’’_w2 as the corresponding apply function, which is only called

if its arguments have the same length and which tests their structural equality:

Fixpoint rev2’’_w2 (V : Type) (beq_V : V -> V -> bool) (vs_op xs : list V) : bool :=

match vs_op, xs with

nil, nil => true

| nil, _ :: _ => false

| _ :: _ , nil => false

| v :: vs’_op, x :: xs’ => if beq_V v x

then rev2’’_w2 V beq_V vs’_op xs’

else false

end.

Fixpoint rev2’_w2 (V : Type) (beq_V : V -> V -> bool) (vs vs_op ws ws_given : list V) :=

match vs, ws with

nil, nil => rev2’’_w2 V beq_V vs_op ws_given

| nil, w :: ws’ => false

| v :: vs’, nil => false

| v :: vs’, w :: ws’ => rev2’_w2 V beq_V vs’ (v :: vs_op) ws’ ws_given

end.

Definition rev2_w2 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

rev2’_w2 V beq_V vs_given nil ws_given ws_given.

136 O. Danvy / Getting There and Back Again

Soundness and completeness are proved by structural induction, capturing that the continuation, which

has been defunctionalized into vs_op and rev2’’_w2, did implement a comparison between vs_op and

its argument:

Lemma soundness_and_completeness_of_rev2’’_w2 :

forall (V : Type) (beq_V : V -> V -> bool),

(forall v v’ : V, beq_V v v’ = true <-> v = v’) ->

forall vs_op ws : list V,

rev2’’_w2 V beq_V vs_op ws = true <-> vs_op = ws.

In words – rev2’’_w2 is a sound and complete implementation of structural equality.

We are now in position to prove a lemma about rev2’_w2, a corollary of which is the soundness

and completeness of rev2_w2:

Lemma about_rev2’_w2 :

forall (V : Type) (beq_V : V -> V -> bool) (vs vs_op ws ws_given : list V),

(exists vs_given_op : list V,

rev2’_w2 V beq_V vs vs_op ws ws_given = rev2’’_w2 V beq_V vs_given_op ws_given /\

rev vs ++ vs_op = vs_given_op /\ length vs = length ws) \/

(rev2’_w2 V beq_V vs vs_op ws ws_given = false /\ length vs <> length ws).

In words – either rev2’_w2 ends up tail-calling rev2’’_w2 properly and the two given lists have the

same length or it does not and they do not. This lemma is proved by induction on vs.

3.1. A more perspicuous first-order implementation in two passes

The implementation in Section 3.2 page 135, is a candidate for lightweight fission by fixed-point

demotion (see Appendix D) since rev2’_w2 is tail recursive:

Fixpoint rev2’_w1 (V : Type) (vs vs_op ws : list V) : option (list V) :=

match vs, ws with

nil, nil => Some vs_op

| nil, w :: ws’ => None

| v :: vs’, nil => None

| v :: vs’, w :: ws’ => rev2’_w1 V vs’ (v :: vs_op) ws’

end.

Definition rev2_w1 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

match rev2’_w1 V vs_given nil ws_given with

Some vs_op => rev2’’_w2 V beq_V vs_op ws_given

| None => false

end.

In words:

1. Both the first list and the second list are traversed, using rev2’_w1, and a reversed copy of the first

list is returned if the two lists have the same length.

2. If the two lists have the same length, the reversed first list and the second list are traversed together,

tail recursively, using rev2’’_w2. The result is a Boolean: either these two lists have the same

elements, i.e., are structurally equal, or they do not.

O. Danvy / Getting There and Back Again 137

We can now prove a lemma about rev2’_w1, a corollary of which is the soundness and completeness

of rev2_w1:

Lemma about_rev2’_w1 :

forall (V : Type) (vs vs_op ws : list V),

(exists vs_given_op : list V,

rev2’_w1 V vs vs_op ws = Some vs_given_op /\

rev vs ++ vs_op = vs_given_op /\ length vs = length ws) \/

(rev2’_w1 V vs vs_op ws = None /\ length vs <> length ws).

In words – either rev2’_w1 yields the reverse of the first given list and the two given lists have the

same length, or it does not and they do not. This lemma is proved by induction on vs.

3.0. Summary, synthesis, and significance

There are many ways to implement a function testing whether two given lists are reverses of each other.

Each of these ways reflects a particular vision of this computation: tail recursive with an intermediate

list, tail recursive with a continuation, in direct style with an exception, or using a fold function.

These implementations form a spectrum in that they can be inter-derived and thus they all reflect the

TABA programming pattern, even the non-solutions that allocate intermediate lists. Being structurally

recursive, they can be reasoned about equationally using structural induction.

4. Convolving two lists

The goal of this section is to implement a function that symbolically convolves two given lists of

unknown length when these two lists have the same length, which is the original motivation for

TABA [24]. As in Section 3, we are going to inter-derive a spectrum of implementations of a poly-

morphic function cnv that satisfies the following theorem:

Theorem soundness_and_completeness_of_cnv :

forall (V W : Type) (vs : list V) (ws : list W) (ps : list (V * W)),

cnv V W vs ws = Some ps <-> map fst ps = vs /\ map snd ps = rev ws.

For brevity, these implementations are written in OCaml below, with a polymorphic type that reads

’a list -> ’b list -> (’a * ’b) list option.

We successively consider implementations in continuation-passing style (Section 4.1), their de-

functionalized counterparts (Section 4.2) and their lightweight-fissioned counterpart (Section 4.3), and

then the version after both defunctionalization and lightweight fusion in either order (Section 4.4). We

then consider what it takes—i.e., which control operators one needs—to express the implementations

in direct style (Section 4.5). Diagrammatically (each of the transformations is reversible):

Section 4.5
CPS //

Section 4.1
DS

oo
defunct. //

��

Section 4.2oo

fission

��
Section 4.3

//

fusion

OO

Section 4.4

OO

refunct.
oo

138 O. Danvy / Getting There and Back Again

We then turn to the more perspicuous analogue of Section 3.6, i.e., traversing both given lists at call

time to determine there and then whether the two lists have the same length, thus ensuring that there is

only a return time when the two lists have the same length (Section 4.6). And from then on, i.e., from

Section 4.7 to Section 4.11, we consider more perspicuous implementations in continuation-passing

style, their refunctionalized or/and lightweight-fissioned counterparts, and what it takes to express the

more perspicuous implementations in direct style, giving rise to a similar diagram. Section 4.12 draws

lessons from these inter-derivations.

4.1. Implementations in continuation-passing style

This section presents two implementations of the convolution function using continuations:

1. one implementation first traverses the first list and then returns over the second list; during this

return, the resulting list of pairs is accumulated tail-recursively (the call to k is a tail call);

2. the other implementation first traverses the second list and then returns over the first list; during

this return, the resulting list of pairs is constructed recursively (the call to k is not a tail call).

4.1.1. Version that returns over the second list

The first given list is traversed tail-recursively with walk, a continuation is accumulated, and eventually

this continuation is applied to the second list and to an empty list of pairs, yielding an optional list of

pairs. The second list is then traversed tail-recursively and a list of pairs is accumulated. If the two

given lists have the same length, this list of pairs is returned as the result in the initial continuation;

if the second list is shorter than the first, the computation is discontinued, i.e., the continuation is not

applied and the result is None; and if the second list is longer than the first, the initial continuation

returns None:

let cnv1_cb xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs k = (* ’a list -> (’b list -> (’a * ’b) list option) ->

(’a * ’b) list option *)

match xs with

[] -> k ys_given []

| x :: xs’ -> walk xs’ (fun ys ps -> match ys with

[] -> None

| y :: ys’ -> k ys’ ((x, y) :: ps))

in walk xs_given (fun ys ps -> match ys with

[] -> Some ps

| _ :: _ -> None);;

This implementation is the motivation for TABA and is due to Goldberg [24]. It is structurally re-

cursive and therefore can be expressed using fold-right and reasoned about using structural induction,

since it is also pure (i.e., uses no computational effects).

4.1.2. Version that returns over the first list

The second given list is traversed tail-recursively with walk, a continuation is accumulated, and even-

tually this continuation is applied to the first list, yielding a list of pairs. The first list is then traversed

O. Danvy / Getting There and Back Again 139

recursively and a list of pairs is constructed. If the two given lists have the same length, this list of pairs

is returned as the result; if the first list is shorter than the second, the computation is discontinued, i.e.,

an exception is raised and the result is None; and if the first list is longer than the second, an exception

is raised in the initial continuation and the result is None:

let cnv2_cb xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

try let rec walk ys k = (* ’b list -> (’a list -> (’a * ’b) list) ->

(’a * ’b) list option *)

match ys with

[] -> k xs_given

| y :: ys’ -> walk ys’ (fun xs -> match xs with

[] -> raise Mismatching_lists

| x :: xs’ -> (x, y) :: k xs’)

in Some (walk ys_given (fun xs -> match xs with

[] -> []

| _ :: _ -> raise Mismatching_lists))

with Mismatching_lists -> None;;

This implementation is structurally recursive and therefore it can be expressed using fold-right. It is

however impure due to the exception that is used to handle the case where the first list does not have

the same length as the second. To make it pure, one should change the codomain of the continuation,

e.g., using an option type.

4.2. First-order (defunctionalized) implementations

This section is dedicated to the counterparts of the implementations of Section 4.1 after defunction-

alization, where the defunctionalized continuation is represented as an intermediate list (named either

xs_op or ys_op instead of k), together with a second pass (named continue) that consumes this inter-

mediate list.

4.2.1. Version that returns over the second list

The first given list is traversed tail-recursively with walk, a list is accumulated in reverse order, and

eventually this reversed list and the second list are traversed in parallel with continue, which traverses

the two lists tail-recursively and accumulates a list of pairs. If the two given lists have the same length,

continue returns this list of pairs as the result:

let cnv1_fo xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs xs_op = (* ’a list -> ’a list -> (’a * ’b) list option *)

match xs with

[] -> continue xs_op ys_given []

| x :: xs’ -> walk xs’ (x :: xs_op)

and continue xs_op ys ps = (* ’a list -> ’b list -> (’a * ’b) list option ->

(’a * ’b) list option *)

match xs_op with

[] -> (match ys with

[] -> Some ps

| _ :: _ -> None)

140 O. Danvy / Getting There and Back Again

| x :: xs’_op -> (match ys with

[] -> None

| y :: ys’ -> continue xs’_op ys’ ((x, y) :: ps))

in walk xs_given [];;

4.2.2. Version that returns over the first list

The second given list is traversed tail-recursively with walk, a list is accumulated in reverse order, and

eventually the first list and this reversed list are traversed in parallel with continue. Both lists are

traversed recursively and a list of pairs is constructed. If the two given lists have the same length, this

list of pairs is returned as the result; otherwise an exception is raised and None is returned.

let cnv2_fo xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

try let rec walk ys ys_op = (* ’b list -> ’b list -> (’a * ’b) list *)

match ys with

[] -> continue ys_op xs_given

| y :: ys’ -> walk ys’ (y :: ys_op)

and continue ys_op xs = (* ’b list -> ’a list -> (’a * ’b) list *)

match ys_op with

[] -> (match xs with

[] -> []

| _ :: _ -> raise Mismatching_lists)

| y :: ys’_op -> (match xs with

[] -> raise Mismatching_lists

| x :: xs’ -> (x, y) :: continue ys’_op xs’)

in Some (walk ys_given [])

with Mismatching_lists -> None;;

4.3. Implementations in continuation-passing style after lightweight fission

This section is dedicated to the counterparts of the implementations of Section 4.1 after lightweight

fission. Their key point is that the auxiliary function returns the continuation instead of applying it.

4.3.1. Version that returns over the second list

The first given list is traversed tail-recursively with walk, a continuation is accumulated, and eventually

this continuation is returned. This continuation is then applied to the second list and an empty list of

pairs, the second list is traversed tail-recursively, and a list of pairs is accumulated, as in Section 4.1.1:

let cnv1_cb_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs k = (* ’a list -> (’b list -> (’a * ’b) list option) ->

’b list -> (’a * ’b) list option *)

match xs with

[] -> k

| x :: xs’ -> walk xs’ (fun ys ps -> match ys with

[] -> None

| y :: ys’ -> k ys’ ((x, y) :: ps))

in walk xs_given (fun ys ps -> match ys with

[] -> Some ps

| _ :: _ -> None) ys_given [];;

O. Danvy / Getting There and Back Again 141

This implementation is structurally recursive and it also fits the pattern of fold-left (see Appendix B):

let cnv1_cb_lfi_left xs_given ys_given =

list_fold_left (fun ys ps -> match ys with

[] -> Some ps

| _ :: _ -> None)

(fun x k ys ps -> match ys with

[] -> None

| y :: ys’ -> k ys’ ((x, y) :: ps))

xs_given

ys_given

[];;

We note that substituting fold-right for fold-left in this implementation makes the resulting function

implement a dot-product in reverse order, a consequence of constructing the resulting list of pairs tail-

recursively using an accumulator. (So did substituting fold-left for fold-right in Section 4.1.1 for the

same reason.)

4.3.2. Version that returns over the first list

The second given list is traversed tail-recursively with walk, a continuation is accumulated, and even-

tually this continuation is returned. This continuation is then applied to the first list, the first list is

traversed recursively, and a list of pairs is constructed, as in Section 4.1.2:

let cnv2_cb_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

try let rec walk ys k = (* ’b list -> (’a list -> (’a * ’b) list) ->

’a list -> (’a * ’b) list *)

match ys with

[] -> k

| y :: ys’ -> walk ys’ (fun xs -> match xs with

[] -> raise Mismatching_lists

| x :: xs’ -> (x, y) :: k xs’)

in Some (walk ys_given (fun xs -> match xs with

[] -> []

| _ :: _ -> raise Mismatching_lists) xs_given)

with Mismatching_lists -> None;;

This implementation is structurally recursive and it also fits the pattern of fold-left:

let cnv2_cb_lfi_left xs_given ys_given =

try Some (list_fold_left (fun xs -> match xs with

[] -> []

| _ :: _ -> raise Mismatching_lists)

(fun y k xs -> match xs with

[] -> raise Mismatching_lists

| x :: xs’ -> (x, y) :: k xs’)

ys_given

xs_given)

with Mismatching_lists -> None;;

We note that substituting fold-right for fold-left in this implementation makes the resulting function

implement a dot-product, a consequence of constructing the resulting list of pairs recursively. (So did

substituting fold-left for fold-right in Section 4.1.2 for the same reason.)

142 O. Danvy / Getting There and Back Again

4.4. First-order (defunctionalized) implementations after lightweight fission

This section is dedicated to the counterparts of the implementations of Section 4.2 after lightweight

fusion, which are also the counterparts of the implementations of Section 4.3 after defunctionalization.

They construct an intermediate list as the reverse of one of the two given lists, and then traverse this

reversed list and the other given list.

4.4.1. Version that returns over the second list

The first given list is traversed tail-recursively with walk, a list is accumulated in reverse order, and

eventually this list is returned. This reversed list and the second list are traversed tail-recursively and

in parallel with continue, and a list of pairs is accumulated. If the two given lists have the same

length, this list of pairs is returned as the result:

let cnv1_fo_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs xs_op = (* ’a list -> ’a list -> ’a list *)

match xs with

[] -> xs_op

| x :: xs’ -> walk xs’ (x :: xs_op)

and continue xs_op ys ps = (* ’a list -> ’b list -> (’a * ’b) list option *)

match xs_op with

[] -> (match ys with

[] -> Some ps

| _ :: _ -> None)

| x :: xs’_op -> (match ys with

[] -> None

| y :: ys’ -> continue xs’_op ys’ ((x, y) :: ps))

in continue (walk xs_given []) ys_given [];;

The definition of walk coincides with the tail-recursive definition of reverse that uses an accumulator,

and continue tail-recursively zips together the two lists it is applied to, using an accumulator.

4.4.2. Version that returns over the first list

The second given list is traversed tail-recursively with walk, a list is accumulated in reverse order,

and eventually this list is returned. The first list and this reversed list are traversed recursively and in

parallel with continue, and a list of pairs is constructed. If the two given lists have the same length,

this list of pairs is returned as the result:

let cnv2_fo_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

try let rec walk ys ys_op = (* ’b list -> ’b list -> ’b list *)

match ys with

[] -> ys_op

| y :: ys’ -> walk ys’ (y :: ys_op)

and continue ys_op xs = (* ’b list -> ’a list -> (’a * ’b) list *)

match ys_op with

[] -> (match xs with

[] -> []

| _ :: _ -> raise Mismatching_lists)

O. Danvy / Getting There and Back Again 143

| y :: ys’_op -> (match xs with

[] -> raise Mismatching_lists

| x :: xs’ -> (x, y) :: continue ys’_op xs’)

in Some (continue (walk ys_given []) xs_given)

with Mismatching_lists -> None;;

The definition of walk coincides with the tail-recursive definition of reverse that uses an accumulator,

and continue recursively zips together the two lists it is applied to.

4.5. Towards implementations in direct style

This section is dedicated to the direct-style counterpart of the continuation-passing implementations in

Section 4.1. The first one is straightforward (and uses an exception), and the second is not (it involves

delimited-control operators).

4.5.1. First version: reversing the first list

Since cnv1_cb, in Section 4.1.1, is tail recursive throughout, it is simple to express it in direct style,

using an exception to handle the case where the current continuation is not applied:

let cnv1_dse xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

try let rec walk xs = (* ’a list -> b list * (’a * ’b) list *)

match xs with

[] -> (ys_given, [])

| x :: xs’ -> let (ys, ps) = walk xs’

in match ys with

[] -> raise Mismatching_lists

| y :: ys’ -> (ys’, (x, y) ::ps)

in let (ys, ps) = walk xs_given

in match ys with

[] -> Some ps

| _ :: _ -> None

with Mismatching_lists -> None;;

4.5.2. Second version: reversing the second list

In Section 4.1.2, the call to the continuation is not a tail call in the induction step. The definition of

cnv2_cb therefore provides yet another case for the delimited-control operators shift and reset [25],

and yet another illustration of the type mismatch between the codomain of the continuation that has

no option, and the domain of answers that has an option [26, 27]. We choose to let this sleeping dog

lie, as awakening it would require more background material in a way that is unrelated to TABA.

4.6. A more perspicuous solution where both lists are first traversed

In the implementations above, the job of the first pass (the calls) is to get to the end of one of the given

lists, and the job of the second pass (the returns) is to traverse the other given list, checking that it

is long enough, pairing the successive elements of the first list at the point of call together with the

144 O. Danvy / Getting There and Back Again

successive elements of the second list at the corresponding point of return, grouping these pairs into a

list, and then finally testing whether the other list is actually too long. But as in Section 3.6 there is a

simpler algorithm:

1. traverse both the given lists in the first pass, to establish whether they have the same length; and

then if they do, and only if they do,

2. traverse the other list to construct the list of pairs, knowing that the two given lists have the same

length.

Analysis: as in Section 3.6, the number of recursive calls is the same if the two lists have the same

length, and otherwise this number is the length of the shorter list; also, the second pass is simpler since

it only takes place if the two lists have the same length.

The following sections walk through the path of the previous sections, using this simpler algo-

rithm:

Section 4.11
CPS //

Section 4.7
DS

oo
defunct. //

��

Section 4.8oo

fission

��
Section 4.9

//

fusion

OO

Section 4.10

OO

refunct.
oo

4.7. More perspicuous implementations in continuation-passing style

This section is dedicated to two implementations of the convolution function using continuations.

Each of these implementations traverses both lists tail recursively and in parallel. If these lists do not

have the same length, the result is None. Otherwise,

1. the first implementation returns over the second list; during this return, the resulting list of pairs is

accumulated tail-recursively (the call to k is a tail call);

2. the second implementation returns over the first list; during this return, the resulting list of pairs is

constructed recursively (the call to k is not a tail call).

4.7.1. Version that returns over the second list

Both given lists are traversed tail-recursively with walk, as a continuation is accumulated. If the two

lists do not have the same length, the continuation is ignored and the (optional) result is nothing.

Otherwise, the continuation is applied to the second list and to an empty list of pairs. The second list

is then traversed tail-recursively and a list of pairs is accumulated. The (optional) result is the final

version of the accumulator:

O. Danvy / Getting There and Back Again 145

let cnw1_cb xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys k = (* ’a list -> ’b list ->

(’b list -> (’a * ’b) list -> (’a * ’b) list) ->

(’a * ’b) list option *)

match xs, ys with

[], [] -> Some (k ys_given [])

| x :: xs’, _ :: ys’ -> walk xs’ ys’ (fun ys ps ->

match ys with

[] -> [] (* impossible case *)

| y :: ys’ -> k ys’ ((x, y) :: ps))

| _, _ -> None

in walk xs_given ys_given (fun _ ps -> ps);;

4.7.2. Version that returns over the first list

Both given lists are traversed tail-recursively with walk as a continuation is accumulated. If the two

lists do not have the same length, the continuation is ignored and the (optional) result is nothing.

Otherwise, the continuation is applied to the first list. The first list is then traversed recursively and a

list of pairs is constructed. The (optional) result is this list of pairs:

let cnw2_cb xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys k = (* ’a list -> ’b list -> (’a list -> (’a * ’b) list) ->

(’a * ’b) list option *)

match xs, ys with

[], [] -> Some (k xs_given)

| _ :: xs’, y :: ys’ -> walk xs’ ys’ (fun xs ->

match xs with

[] -> [] (* impossible case *)

| x :: xs’ -> (x, y) :: k xs’)

| _, _ -> None

in walk xs_given ys_given (fun _ -> []);;

The nil case in the continuation is impossible, so compared to cnv2_cb in Section 4.1.2, there is no

need for an exception.

4.8. More perspicuous first-order (defunctionalized) implementations

This section is dedicated to the counterparts of the implementations of Section 4.7 after defunction-

alization, where the defunctionalized continuation is represented as an intermediate list (named either

xs_op or ys_op instead of k), together with the second pass (named continue) that consumes this

intermediate list.

4.8.1. Version that returns over the second list

Both given lists are traversed tail-recursively with walk as the reverse of the first list is accumulated.

If the two lists do not have the same length, the result is None. Otherwise, the reversed first list and the

second list are zipped together tail recursively with continue, using an accumulator, and the (optional)

result is the final value of this accumulator:

146 O. Danvy / Getting There and Back Again

let cnw1_fo xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys xs_op = (* ’a list -> ’b list -> ’a list -> (’a * ’b) list option *)

match xs, ys with

[], [] -> Some (continue xs_op ys_given [])

| x :: xs’, _ :: ys’ -> walk xs’ ys’ (x :: xs_op)

| _, _ -> None

and continue xs_op ys ps = (* ’a list -> ’b list -> (’a * ’b) list -> (’a * ’b) list *)

match xs_op with

[] -> ps

| x :: xs’_op -> (match ys with

[] -> [] (* impossible case *)

| y :: ys’ -> continue xs’_op ys’ ((x, y) :: ps))

in walk xs_given ys_given [];;

4.8.2. Version that returns over the first list

Both given lists are traversed tail-recursively with walk as the reverse of the second list is accumulated.

If the two lists do not have the same length, the result is None. Otherwise, the first list and the reversed

second list are zipped together recursively with continue, and the (optional) result is the resulting list

of pairs:

let cnw2_fo xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys ys_op = (* ’a list -> ’b list -> ’b list -> (’a * ’b) list option *)

match xs, ys with

[], [] -> Some (continue ys_op xs_given)

| _ :: xs’, y :: ys’ -> walk xs’ ys’ (y :: ys_op)

| _, _ -> None

and continue ys_op xs = (* ’b list -> ’a list -> (’a * ’b) list *)

match ys_op with

[] -> []

| y :: ys’_op -> match xs with

[] -> [] (* impossible case *)

| x :: xs’ -> (x, y) :: continue ys’_op xs’

in walk xs_given ys_given [];;

The nil case in continue is impossible, so compared to cnv2_fo in Section 4.2.2, there is no need for

an exception.

4.9. More perspicuous implementations in continuation-passing style after

lightweight fission

This section is dedicated to the counterparts of the implementations of Section 4.7 after lightweight

fission. Their key point is that the auxiliary function returns the continuation instead of applying it.

4.9.1. Version that returns over the second list

Both given lists are traversed tail-recursively with walk, as a continuation is accumulated. If the two

lists do not have the same length, the continuation is ignored and the result is None. Otherwise, the

continuation is returned, and is then applied to the second list and an empty list of pairs; the second

O. Danvy / Getting There and Back Again 147

list is traversed tail-recursively, and a list of pairs is accumulated and eventually returned as the result

in the initial continuation:

let cnw1_cb_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys k = (* ’a list -> ’b list ->

(’b list -> (’a * ’b) list -> (’a * ’b) list) option *)

match xs, ys with

[], [] -> Some k

| x :: xs’, _ :: ys’ -> walk xs’ ys’ (fun ys ps ->

match ys with

[] -> [] (* impossible case *)

| y :: ys’ -> k ys’ ((x, y) :: ps))

| _, _ -> None

in match walk xs_given ys_given (fun _ ps -> ps) with

Some k -> Some (k ys_given [])

| None -> None ;;

4.9.2. Version that returns over the first list

Both given lists are traversed tail-recursively with walk as a continuation is accumulated. If the two

lists do not have the same length, the continuation is ignored and the result is None. Otherwise, the

continuation is applied to the first list, which is traversed recursively, and a list of pairs is constructed

that forms the (optional) result:

let cnw2_cb_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys k = (* ’a list -> ’b list -> (’a list -> (’a * ’b) list)) option *)

match xs, ys with

[], [] -> Some k

| _ :: xs’, y :: ys’ -> walk xs’ ys’ (fun xs ->

match xs with

[] -> [] (* impossible case *)

| x :: xs’ -> (x, y) :: k xs’)

| _, _ -> None

in match walk xs_given ys_given (fun _ -> []) with

Some k -> Some (k xs_given)

| None -> None;;

The nil case in the continuation is impossible, so compared to cnv2_cb_lfi in Section 4.3.2, there is

no need for an exception.

4.10. More perspicuous first-order (defunctionalized) implementations after

lightweight fission

This section is dedicated to the counterparts of the implementations of Section 4.9 after defunction-

alization, where the defunctionalized continuation is represented as an intermediate list (named either

xs_op or ys_op instead of k), together with the second pass (named continue) that consumes this

intermediate list. Their key point is that they are non-solutions since they construct an intermediate

list as the reverse of one of the two given lists, and then traverse this reversed list and the other given

list.

148 O. Danvy / Getting There and Back Again

4.10.1. Version that returns over the second list

Both given lists are traversed tail-recursively with walk as the reverse of the first list is accumulated. If

the two lists do not have the same length, the result is None. Otherwise, the reversed first list is returned.

The reversed first list and the second list are then zipped together tail recursively with continue, using

an accumulator, and the (optional) result is the final version of this accumulator:

let cnw1_fo_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys xs_op = (* ’a list -> ’b list -> ’a list -> ’a list option *)

match xs, ys with

[], [] -> Some xs_op

| x :: xs’, _ :: ys’ -> walk xs’ ys’ (x :: xs_op)

| _, _ -> None

and continue xs_op ys ps = (* ’a list -> ’b list -> (’a * ’b) list -> (’a * ’b) list *)

match xs_op with

[] -> ps

| x :: xs’_op -> (match ys with

[] -> [] (* impossible case *)

| y :: ys’ -> continue xs’_op ys’ ((x, y) :: ps))

in match walk xs_given ys_given [] with

Some xs_op -> Some (continue xs_op ys_given [])

| None -> None;;

4.10.2. Version that returns over the first list

Both given lists are traversed tail-recursively with walk as the reverse of the second list is accumulated.

If the two lists do not have the same length, the result is None. Otherwise, the reversed second list is

returned. The first list and the reversed second list are then zipped together recursively with continue,

and the (optional) result is the resulting list of pairs:

let cnw2_fo_lfi xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

let rec walk xs ys ys_op = (* ’a list -> ’b list -> ’b list -> ’b list option *)

match xs, ys with

[], [] -> Some ys_op

| _ :: xs’, y :: ys’ -> walk xs’ ys’ (y :: ys_op)

| _, _ -> None

and continue ys_op xs = (* ’b list -> ’a list -> (’a * ’b) list *)

match ys_op with

[] -> []

| y :: ys’_op -> match xs with

[] -> [] (* impossible case *)

| x :: xs’ -> (x, y) :: continue ys’_op xs’

in match walk xs_given ys_given [] with

Some ys_op -> Some (continue ys_op xs_given)

| None -> None;;

The nil case in continue is impossible, so compared to cnv2_fo_lfi in Section 4.4.2, there is no need

for an exception.

O. Danvy / Getting There and Back Again 149

4.11. Towards more perspicuous implementations in direct style

This section is dedicated to the direct-style counterpart of the continuation-passing implementations in

Section 4.7. The first one is straightforward (and uses an exception), and the second is not (it involves

delimited-control operators).

4.11.1. Version that returns over the second list

As in Section 4.5.1, it is simple to express cnw1_cb in direct style, using an exception:

let cnw1_dse xs_given ys_given = (* ’a list -> ’b list -> (’a * ’b) list option *)

try let rec walk xs ys = (* ’a list -> ’b list -> ’b list * (’a * ’b) list *)

match xs, ys with

[], [] -> (ys_given, [])

| x :: xs’, _ :: ys’ -> let (ys, ps) = walk xs’ ys’

in (match ys with

[] -> (ys, ps) (* impossible case *)

| y :: ys’ -> (ys’, (x, y) :: ps))

| _, _ -> raise Mismatching_lists

in let (_, ps) = walk xs_given ys_given in Some ps

with Mismatching_lists -> None;;

4.11.2. Version that returns over the first list

As in Section 4.5.2, the definition of cnw2_cb provides yet another case for shift and reset, which again

we refrain from elaborating.

4.12. Summary, synthesis, and significance

Throughout, each two versions contrasts the tail-recursive accumulation of the resulting list of pairs

and the recursive construction of this resulting list. The spectrum of implementations ranges from

completely explicit (two passes and an intermediate (reversed) list) to completely implicit (one recur-

sive descent that is possibly interrupted by raising an exception). That lightweight fission makes a

continuation-passing implementation expressible using fold-left came as a surprise to the author, and

seems new. The effect of replacing one fold functional by the other crystallizes the relation between

convolving two lists and constructing their dot-product: a recursive construction yields the resulting

list of pairs in the order of the two given lists, and a tail-recursive accumulation yields the resulting

list of pairs in the reverse order.

As for reasoning about these implementations (the pure ones, that is), it involves the same appara-

tus as in Section 3: structural induction and equational reasoning.

5. Deciding whether a lambda term has the shape of an eta redex

Given a λ term, we want to know whether it has the shape λx1.λx2.· · · λxn.e x1 x2 · · · xn, for some

(unknown) expression e and depth n. If it does, we would like to know this expression and this depth,

in n recursive calls. We refer to a term of this shape as “an η redex,” a slight abuse of terminology

150 O. Danvy / Getting There and Back Again

since λx.xx is not an η redex, for example, but this abuse is inessential here. We first consider λ terms

with names to determine whether they have the shape of λx1.λx2.· · ·λxn.e x1 x2 · · · xn for some e

and n (Section 5.1, using OCaml), then λ terms with de Bruijn levels [28] to determine whether

they have the shape of λλ· · ·λe 0 1 · · · (n− 1) for some e and n (Section 5.2, using the Coq Proof

Assistant), and then λ terms with de Bruijn indices [28] to determine whether they have the shape of

λλ· · ·λe (n− 1) (n− 2) · · · 0 for some e and n (Section 5.3, using the Coq Proof Assistant).

5.1. Lambda terms with names

Here is a stylized data type for the abstract-syntax trees of λ terms with names, using a unary con-

structor Expn to stand for any term that is not a variable, a λ abstraction, or an application:

type expn = Varn of string | Lamn of string * expn | Appn of expn * expn

| Expn of string;;

An η redex of depth d reads λx1.λx2.· · · λxd.e x1 x2 · · · xd, but in actuality, this redex contains many

implicit parentheses and actually reads λx1.(λx2.· · · (λxd.((· · · ((e x1) x2) · · ·) xd)) · · ·). Reflecting

these implicit parentheses, the following function constructs an η redex, given a term and a depth:

let make_eta_redexn e d = (* expn -> int -> expn *)

assert (d > 0);

let rec visit e d c = (* expn -> int -> int -> expn *)

if d = 0

then e

else let x = "x" ^ string_of_int c

in Lamn (x, visit (Appn (e, Varn x)) (pred d) (succ c))

in visit e d 1;;

In words – visit recursively constructs the resulting term with Lamn while accumulating the body

around the given expression with Appn. Characteristically of λ terms with names, a (hopefully) fresh

name is generated for each instance of Lamn using a counter that is initialized with 1.

For example, evaluating make_eta_redexn Exp 3 yields

Lamn ("x1",

Lamn ("x2",

Lamn ("x3",

Appn (Appn (Appn (Expn "x0",

Varn "x1"),

Varn "x2"),

Varn "x3"))))

Here is its abstract-syntax tree, rotated 90 degrees counterclockwise and flattened:

Varn "x3" Varn "x2" Varn "x1"

Lamn //

��

Lamn //

��

Lamn //

��

Appn //

OO

Appn //

OO

Appn //

OO

Expn

"x1" "x2" "x3"

O. Danvy / Getting There and Back Again 151

Detecting whether a given λ term with names has the shape of an η redex fits TABA in that we can

recursively descend into its abstract-syntax tree for as long as we encounter Lamn constructors, until

we encounter another constructor. At that point, if the tree has the shape of an η redex, its depth is the

number of recursive calls that have taken us there. We can then return the tree and keep traversing it

at return time for as long as we encounter Appn constructors whose second arguments are a variable

whose name matches the name in the corresponding Lamn constructor. (This name is visible in the

lexical environment of the current recursive call.) If any other constructor than Lamn (during the calls)

and Appn (during the returns) is encountered, the term is not an η redex. The term is an η redex if the

calls and the returns encounter as many occurrences of Lamn and of Appn and if the second argument

of each occurrence of Appn (i.e., the actual parameter) is a variable whose name matches the name

declared in the matching Lamn constructor (i.e., the formal parameter).

The following implementation is λ dropped and uses TABA in direct style with an option through-

out:

let etapn_dso e = (* expn -> (expn * int) option *)

let rec walk e = (* expn -> (expn * int) option *)

match e with

Lamn (x, e’) -> (match walk e’ with

Some (Appn (b, Varn x’), d) -> if x’ = x

then Some (b, succ d)

else None

| _ -> None)

| _ -> Some (e, 0)

in match walk e with

Some (b, d) -> if d = 0 then None else Some (b, d)

| None -> None;;

where etapn_dso stands for “eta predicate for λ terms with names in direct style using an option type.”

At the outset, we check that the depth of the putative η redex is not 0, i.e., is strictly positive.

Let us visualize the induced computation with a trace, rendering the λ terms using the syntax of

Scheme:

traced_etapn_dso (make_eta_redexn (Expn "x0") 3);;

etapn_dso (lambda (x1) (lambda (x2) (lambda (x3) (((x0 x1) x2) x3)))) ->

walk (lambda (x1) (lambda (x2) (lambda (x3) (((x0 x1) x2) x3)))) ->

walk (lambda (x2) (lambda (x3) (((x0 x1) x2) x3))) ->

walk (lambda (x3) (((x0 x1) x2) x3)) ->

walk (((x0 x1) x2) x3) ->

walk (((x0 x1) x2) x3) <- Some ((((x0 x1) x2) x3), 0)

x3 = x3 <-> true

walk (lambda (x3) (((x0 x1) x2) x3)) <- Some (((x0 x1) x2), 1)

x2 = x2 <-> true

walk (lambda (x2) (lambda (x3) (((x0 x1) x2) x3))) <- Some ((x0 x1), 2)

x1 = x1 <-> true

walk (lambda (x1) (lambda (x2) (lambda (x3) (((x0 x1) x2) x3)))) <- Some (x0, 3)

etapn_dso (lambda (x1) (lambda (x2) (lambda (x3) (((x0 x1) x2) x3)))) <- Some (x0, 3)

- : (expn * int) option = Some (Expn "x0", 3)

#

152 O. Danvy / Getting There and Back Again

The successive Lamn constructors are traversed through the calls to walk and the successive Appn

constructors are traversed through the subsequent returns, since the successive names match.

Of course most terms are not an η redex. Then the result is None, as illustrated below with Curry’s

B combinator:

traced_etapn_dso

(Lamn ("x",

Lamn ("y",

Lamn ("z",

Appn (Appn (Expn "I", Varn "x"), Appn (Varn "y", Varn "z"))))));;

etapn_dso (lambda (x) (lambda (y) (lambda (z) ((I x) (y z))))) ->

walk (lambda (x) (lambda (y) (lambda (z) ((I x) (y z))))) ->

walk (lambda (y) (lambda (z) ((I x) (y z)))) ->

walk (lambda (z) ((I x) (y z))) ->

walk ((I x) (y z)) ->

walk ((I x) (y z)) <- Some (((I x) (y z)), 0)

walk (lambda (z) ((I x) (y z))) <- None

walk (lambda (y) (lambda (z) ((I x) (y z)))) <- None

walk (lambda (x) (lambda (y) (lambda (z) ((I x) (y z))))) <- None

etapn_dso (lambda (x) (lambda (y) (lambda (z) ((I x) (y z))))) <- None

- : (expn * int) option = None

#

To short-circuit the intermediate returns of None if the given term is not an η redex, we can also

use an exception:

let etapn_dse e = (* expn -> (expn * int) option *)

try let rec walk e = (* expn -> expn * int *)

match e with

Lamn (x, e’) -> (match walk e’ with

(Appn (b, Varn x’), d) -> if x’ = x

then (b, succ d)

else raise Not_a_redex

| _ -> raise Not_a_redex)

| _ -> (e, 0)

in let (b, d) = walk e

in if d = 0 then None else Some (b, d)

with Not_a_redex -> None;;

The codomain of walk is now alleviated to be expn * int instead of (expn * int) option since this

function only returns if the given term has not proved yet not to be an η redex. The short circuit can

be illustrated with Curry’s C combinator:

traced_etapn_dse

(Lamn ("x",

Lamn ("y",

Lamn ("z",

Appn (Appn (Appn (Expn "I", Varn "x"), Varn "z"), Varn "y")))));;

etapn_dse (lambda (x) (lambda (y) (lambda (z) (((I x) z) y)))) ->

walk (lambda (x) (lambda (y) (lambda (z) (((I x) z) y)))) ->

walk (lambda (y) (lambda (z) (((I x) z) y))) ->

walk (lambda (z) (((I x) z) y)) ->

O. Danvy / Getting There and Back Again 153

walk (((I x) z) y) ->

walk (((I x) z) y) <- ((((I x) z) y), 0)

y = z <-> false

etapn_dse (lambda (x) (lambda (y) (lambda (z) (((I x) z) y)))) <- None

- : (expn * int) option = None

#

5.2. Lambda terms with de Bruijn levels

Here is a stylized data type for the abstract-syntax trees of λ terms with de Bruijn levels, using a

constant constructor Expl to stand for any term that is not a variable, a λ abstraction, or an application:

Inductive expl := Varl : nat -> expl | Laml : expl -> expl | Appl : expl -> expl -> expl

| Expl : expl.

An η redex of depth d reads λλ· · ·λe 0 1 · · · (d− 1), but in actuality, it contains many implicit paren-

theses and actually reads λ(λ· · · (λ((· · · ((e 0) 1) · · ·) (d− 1))) · · ·). Reflecting these implicit paren-

theses, the following functions construct an η redex, given a term and a depth:

Fixpoint make_eta_redexl_aux (e : expl) (d i : nat) : expl :=

match d with

O => e

| S d’ => Laml (make_eta_redexl_aux (Appl e (Varl i)) d’ (S i))

end.

Definition make_eta_redexl (e : expl) (d : nat) : expl :=

make_eta_redexl_aux e d 0.

In words – make_eta_redexl_aux recursively constructs the resulting term with Laml while accumu-

lating the body around the given expression with Appl. Characteristically of λ terms with de Bruijn

levels, a counter accounting for the current level is incremented for each instance of Laml. This counter

is initialized with 0.

For example, evaluating make_eta_redexl Expl 3 yields

Laml (Laml (Laml (Appl (Appl (Appl Expl (Varl 0)) (Varl 1)) (Varl 2))))

Here is its abstract-syntax tree, rotated 90 degrees counterclockwise and flattened:

Varl 2 Varl 1 Varl 0

Laml // Laml // Laml // Appl //

OO

Appl //

OO

Appl //

OO

Expl

Detecting whether a given λ term with de Bruijn levels has the shape of an η redex fits TABA for

the same reason as in Section 5.1. So likewise, we traverse the given term recursively for as long as

we encounter Laml constructors, starting with a level 0 and incrementing this level at each call. Then

we return as soon as we encounter another constructor, and we keep returning as long as we encounter

Appl constructors whose actual parameter is a variable whose level matches the level in effect for the

matching Laml constructor. (This level is visible in the lexical environment of the current recursive

call.)

154 O. Danvy / Getting There and Back Again

The following implementation is λ lifted and uses TABA in direct style with an option throughout,

as in Section 5.1:

Fixpoint etapl_ds’ (e : expl) (l : nat) : option (expl * nat) :=

match e with

Laml e’ => match etapl_ds’ e’ (S l) with

Some (b’, d’) => match b’ with

Appl b (Varl l’) => if l’ =? l

then Some (b, S d’)

else None

| _ => None

end

| None => None

end

| _ => Some (e, 0)

end.

Definition etapl_ds (e : expl) : option (expl * nat) :=

match etapl_ds’ e 0 with

Some (b, d) => if d =? 0 then None else Some (b, d)

| None => None

end.

where etapl_ds stands for “eta predicate for λ terms with de Bruijn levels in direct style.” As befit de

Bruijn levels, the level is initialized at the outset and incremented for each Laml constructor.

The soundness and completeness of the implementation are captured by the following theorem:

Theorem soundness_and_completeness_of_etapl_ds :

forall (e : expl) (d : nat) (b : expl),

etapl_ds e = Some (b, S d) <-> make_eta_redexl b (S d) = e.

where we wrote S d (i.e., d + 1) since the depth of an η redex is strictly positive. In words – etapl_ds

is sound in that it totally maps a given expression e to another expression and a depth, making an η

redex with this other expression and that depth yields the given expression; and it is complete in that

given an η redex made with a given expression and a given depth, etapl_ds totally yields this given

expression and this given depth. This theorem is a corollary of the following lemmas, the first of which

is proved by structural induction over e and the second by structural induction over d:

Lemma soundness_of_etapl_ds’ :

forall (e : expl) (l : nat) (b : expl) (d : nat),

etapl_ds’ e l = Some (b, d) -> make_eta_redexl_aux b d l = e.

Lemma completeness_of_etapl_ds’ :

forall (b : expl) (d l : nat) (e : expl),

make_eta_redexl_aux b (S d) l = e -> etapl_ds’ e l = Some (b, S d).

5.3. Lambda terms with de Bruijn indices

Here is a stylized data type for the abstract-syntax trees of λ terms, using de Bruijn indices (i.e., lexical

offsets) and a constant constructor Expi to stand for any term that is not a variable, a λ abstraction, or

an application:

O. Danvy / Getting There and Back Again 155

Inductive expi := Vari : nat -> expi | Lami : expi -> expi | Appi : expi -> expi -> expi

| Expi : expi.

An η redex of depth d reads λλ· · ·λe (d− 1) (d− 2) · · · 0, but in actuality, it contains many implicit

parentheses and actually reads λ(λ· · · (λ((· · · ((e (d− 1)) (d− 2)) · · ·) 0)) · · ·). Reflecting these im-

plicit parentheses, the following function constructs an η redex, given a term and a depth:

Fixpoint make_eta_redexi (e : expi) (d : nat) : expi :=

match d with

O => e

| S d’ => Lami (make_eta_redexi (Appi e (Vari d’)) d’)

end.

In words – make_eta_redexi recursively constructs the resulting term with Lami while accumulating

the body around the given expression with Appi. Characteristically of λ terms with de Bruijn in-

dices, the decreasing counter that was initialized with the desired depth can serve as the index for the

successive indices of each variable in the resulting η redex.

For example, evaluating make_eta_redexi Expi 3 yields

Lami (Lami (Lami (Appi (Appi (Appi Expi (Vari 2)) (Vari 1)) (Vari 0))))

Here is its abstract-syntax tree, rotated 90 degrees counterclockwise and flattened:

Vari 0 Vari 1 Vari 2

Lami // Lami // Lami // Appi //

OO

Appi //

OO

Appi //

OO

Expi

Detecting whether a given λ term with de Bruijn indices has the shape of an η redex fits TABA

for the same reason as in Sections 5.1 and 5.2. So likewise, we traverse the given term recursively for

as long as we encounter Laml constructors, and then return the term that is not constructed with Laml

and a counter initialized with 0. Then we keep returning as long as we encounter Appl constructors

whose actual parameter is a variable whose index matches the increasing counter. Eventually, if all

tests have succeeded, the result is the expression around which the η redex was constructed together

with the depth of this η redex, which must be strictly positive.

The following implementation is λ lifted so that we can refer to the auxiliary function in lemmas.

It uses TABA and a continuation to stop immediately if the given term is not an η redex:

Fixpoint etapi_cb’ (e : expi) (k : expi -> nat -> option (expi * nat)) :=

match e with

Lami e’ => etapi_cb’ e’ (fun b’ d =>

match b’ with

Appi b (Vari i) => if i =? d then k b (S d) else None

| _ => None

end)

| _ => k e 0

end.

Definition etapi_cb (e : expi) : option (expi * nat) :=

etapi_cb’ e (fun b d => if d =? 0 then None else Some (b, d)).

156 O. Danvy / Getting There and Back Again

where etapi_cb stands for “continuation-based eta predicate for λ terms with de Bruijn indices.” In

words – given an η redex of depth n, etapi_cb’ calls itself recursively n times on the successive Lami

constructors, accumulating a continuation to traverse nested applications as long as their argument is

a variable whose de Bruijn index increases with the nesting of applications. The initial continuation is

eventually applied to the inner expression in position of a function and to the depth of its nesting.

The soundness and completeness of the implementation are captured by the following theorem:

Theorem soundness_and_completeness_of_etapi_cb :

forall (e : expi) (d : nat) (b : expi),

etapi_cb e = Some (b, S d) <-> make_eta_redexi b (S d) = e.

where again we wrote S d since the depth of an η redex is strictly positive. This theorem is is a

corollary of the following lemmas, the first of which is proved by structural induction over e and the

second by structural induction over d:

Lemma soundness_of_etapi_cb’ :

forall (e : expi)

(k : expi -> nat -> option (expi * nat)),

(exists (b : expi) (d : nat),

etapi_cb’ e k = k b d /\ make_eta_redexi b d = e)

\/

(etapi_cb’ e k = None).

Lemma completeness_of_etapi_cb’ :

forall (b : expi) (d : nat) (e : expi),

make_eta_redexi b (S d) = Lami e ->

forall k : expi -> nat -> option (expi * nat),

etapi_cb’ (Lami e) k = k b (S d).

An interesting aspect of this implementation is that its continuations have no free variables. There-

fore defunctionalizing them yields a data type that is isomorphic to Peano numbers, and an apply

function that iterates over a given Peano number. All in all, the result is a remarkably simple first-

order tail-recursive predicate that foreshadows the tail-recursive variant of TABA introduced in the

next section:

Fixpoint etapi’’ (k : nat) (b : expi) (d : nat) : option (expi * nat) :=

match k with

O => if d =? 0 then None else Some (b, d)

| S k’ => match b with

Appi b’ (Vari i) => if i =? d then etapi’’ k’ b’ (S d) else None

| _ => None

end

end.

Fixpoint etapi’ (e : expi) (k : nat) : option (expi * nat) :=

match e with

Lami e’ => etapi’ e’ (S k)

| _ => etapi’’ k e 0

end.

Definition etapi (e : expi) : option (expi * nat) :=

etapi’ e 0.

O. Danvy / Getting There and Back Again 157

In words – given an expression and a counter initialized with 0, etapi’ traverses this expression tail-

recursively for as long as it encounters Lami constructors, incrementing the counter as it goes; then it

tail-calls etapi’’ with the counter, the sub-expression that does not start with the Lami constructor,

and an index initialized with 0; given this counter, this sub-expression, and this index, etapi’’ tail-

recursively traverses the sub-expression for as long as it encounters Appi constructors whose actual

parameter is a variable whose de Bruijn index matches the current index, until the counter reaches 0;

at that point, etapi’’ checks that the resulting depth is strictly positive.

The soundness and completeness of this implementation are stated and proved mutatis mutandis:

Theorem soundness_and_completeness_of_etapi :

forall (e : expi) (d : nat) (b : expi),

etapi e = Some (b, S d) <-> make_eta_redexi b (S d) = e.

The cognoscenti will have identified that this first-order predicate implements a counter automaton.

In the same vein, CPS-transforming the predicate for λ terms with names from Section 5.1 (see Ap-

pendix E.1), splitting its continuation into two (see Appendix E.4), and dropping the one that corre-

sponds to the None case (see Appendices C and E.4) yield the implementation of a pushdown automa-

ton with a stack of names. Small world, many disguises.

6. There and forth again (TAFA)

In some cases, once one gets there, there is no need to go back again: one can go forth instead

to complete the computation, which makes it tail recursive throughout. This section illustrates two

examples of this situation: the first is the closing exercise in the “Dear Reader” box before Section 1,

and the second is due to Hemann and Friedman [10].

6.1. Indexing a list from the right

Indexing a list from the right means that given an index n and a list constructed as the concatenation

of any list, a singleton list containing v, and any list of length n, the result should be v. If the given

list is too short for the given index, the result is undefined.

6.1.1. Programming

At first glance, indexing a list from the right provides another illustration of TABA: traverse the list

at call time and eventually return an intermediate result initialized with the index, using the Index

constructor below; and then at return time, decrement this index:

• if the decremented index reaches 0 before the last return, the list is long enough and the intermediate

result becomes the head of the current list, using the Found constructor below;

• if the decremented index has not reached 0 at the last return, the list is too short for the index.

158 O. Danvy / Getting There and Back Again

To wit:

type ’a intermediate_result = Index of int | Found of ’a;;

let list_index_rtl_ds vs_given n_given =

assert (n_given >= 0);

let rec visit vs =

match vs with

[] -> Index n_given

| v :: vs’ -> (match visit vs’ with

| Index n -> if n = 0 then Found v else Index (pred n)

| Found v -> Found v)

in match visit vs_given with

| Index _ -> None

| Found v -> Some v;;

To illustrate, here are two traces of the computation, one where the list is too short for the index, and

then one where it is long enough:

traced_list_index_rtl_ds show_int [1; 0] 5;;

visit [1; 0] ->

visit [0] ->

visit [] ->

visit [] <- Index 5

visit [0] <- Index 4

visit [1; 0] <- Index 3

- : int option = None

traced_list_index_rtl_ds show_int [2; 1; 0] 1;;

visit [2; 1; 0] ->

visit [1; 0] ->

visit [0] ->

visit [] ->

visit [] <- Index 1

visit [0] <- Index 0

visit [1; 0] <- Found 1

visit [2; 1; 0] <- Found 1

- : int option = Some 1

#

In words – the given list is traversed all the way and at return time, the index is decremented. If the

index reaches 0 in the course of the returns, the value to index exists and is returned.

On second thought, though, one could use the idea of Section 3.6 and decrement the given index

as the given list is traversed:

• if the end of the list is reached before the index reaches 0, the list is too short for the index and the

computation can stop;

• conversely, if 0 is reached first, then the list is long enough, and the length of the prefix of the given

list down to the current suffix coincides with the given index; all one needs to do then is to go forth

and slide through both the given list and the current suffix of the given list, preserving this length

property; when the current suffix becomes its end, i.e., the empty list, the length property still holds

and so the result is the head of the current list.

O. Danvy / Getting There and Back Again 159

To wit:

let list_index_rtl_tafa vs_given n_given =

assert (n_given >= 0);

let rec there vs n =

match vs with

[] -> None

| v :: vs’ -> if n = 0

then forth vs’ vs_given

else there vs’ (pred n)

and forth vs trail =

match vs with

[] -> Some (List.hd trail)

| _ :: vs’ -> forth vs’ (List.tl trail)

in there vs_given n_given;;

As one can see, given a list of length n, this implementation operates in n tail-recursive calls. (The

initial tail call is not recursive.) To illustrate, here is a trace of the computation:

traced_list_index_rtl_tafa show_int [1; 0] 5;;

there [1; 0] 5 ->

there [0] 4 ->

there [] 3 ->

- : int option = None

traced_list_index_rtl_tafa show_int [3; 2; 1; 0] 1;;

there [3; 2; 1; 0] 1 ->

there [2; 1; 0] 0 ->

forth [1; 0] [3; 2; 1; 0] ->

forth [0] [2; 1; 0] ->

forth [] [1; 0] ->

- : int option = Some 1

#

6.1.2. Formalizing and proving

Let us formalize this instance of TAFA. In a nutshell,

• if the list is empty, it contains no element to index: the list is too short, no matter the index;

• if the given list is non-empty, its tail should contain at most as many elements as the given index;

otherwise, the list is still too short;

• this tail can be traversed as the index is decremented until it reaches 0; once we get there, the

difference between the tail of the given list and the current suffix has the same length as the given

index.

We are therefore better off to first test whether the list is empty and then proceed by induction on the

tail of the list if it is non-empty, a byproduct of thinking before proving, if not before programming.

160 O. Danvy / Getting There and Back Again

Concretely:

Fixpoint list_index_rtl_there (V : Type) (vs_sfx : list V) (n : nat) : option (list V) :=

match n with

O => Some vs_sfx

| S n’ => match vs_sfx with

nil => None

| v’ :: vs_sfx’ => list_index_rtl_there V vs_sfx’ n’

end

end.

Lemma soundness_and_completeness_of_list_index_rtl_there :

forall (V : Type) (vs’ : list V) (n : nat),

(forall vs_sfx : list V,

list_index_rtl_there V vs’ n = Some vs_sfx

<->

exists vs_pfx : list V,

vs’ = vs_pfx ++ vs_sfx /\ length vs_pfx = n)

/\

(list_index_rtl_there V vs’ n = None <-> length vs’ < n).

In words – if the given list is not empty, list_index_rtl_there traverses its tail, vs_sfx, and the

given index, n, and returns the nth suffix of this tail, if one exists. (The 0th suffix of a list is itself.) The

lemma is proved by structural induction over the given index.

So, after calling list_index_rtl_there, we have access to the first element of the given list, the

tail of the given list, and the nth suffix of the tail of the given list, where n is the given index. We can

then go forth and traverse the tail of the given list and the nth suffix until this suffix becomes the empty

list. At that point, the tail has length n and the element just before is the element we were looking for.

Concretely:

Fixpoint list_index_rtl_forth (V : Type) (v : V) (vs’ vs_sfx : list V) :=

match vs_sfx with

nil => Some (v, vs’)

| v’’ :: vs_sfx’ => match vs’ with

nil => None (* impossible case *)

| v’ :: vs’’ => list_index_rtl_forth V v’ vs’’ vs_sfx’

end

end.

The codomain is an option type because the type system does not guarantee that traversing the tail of

the given list never reaches the empty list. However, this function is total:

Lemma soundness_and_completeness_of_list_index_rtl_forth :

forall (V : Type) (v : V) (vs’ vs_pfx vs_sfx : list V) (n : nat),

vs’ = vs_pfx ++ vs_sfx ->

length vs_pfx = n ->

forall op : option (V * list V),

list_index_rtl_forth V v vs’ vs_sfx = op

<->

exists (w : V) (ws_sfx : list V),

op = Some (w, ws_sfx) /\

(exists ws_pfx : list V, v :: vs’ = ws_pfx ++ w :: ws_sfx) /\ length ws_sfx = n.

O. Danvy / Getting There and Back Again 161

In words – given a non-empty list v :: vs’ and an index n that is smaller than the length of vs’, let

vs_pfx denote the prefix of vs’ of length n, and vs_sfx denote the corresponding suffix. Since n is

smaller than the length of vs’, an element w exists in vs’ at index n going from right to left and so

does the suffix ws_sfx that follows it in vs’, a suffix that has length n. This element w and this suffix

ws_sfx are computed by list_index_rtl_forthwhen it is applied to v, vs’, and vs_sfx. The lemma

is proved by structural induction over vs_sfx.

All told, the opening description of the present section is formalized as follows:

Definition list_index_rtl_tafa (V : Type) (vs : list V) (n : nat) : option V :=

match vs with

nil => None

| v :: vs’ => match list_index_rtl_there V vs’ n with

Some vs_sfx => match list_index_rtl_forth V v vs’ vs_sfx with

Some (w, ws_sfx) => Some w

| None => None

end

| None => None

end

end.

In words – given the empty list and an index, list_index_rtl_tafa returns None; given a non-empty

list and an index, it determines whether the nth suffix of the tail of the given list exists; if it does not,

list_index_rtl_tafa returns None; if it does, list_index_rtl_tafa computes the suffix of the given

list that has length n and the element that precedes this suffix (both exist); this element is then the result

of indexing the given list at the given index. The “trailing” pointer always points to a non-empty list

(a type property [9]).

Soundness and completeness are a corollary of the previous lemmas:

Theorem soundness_and_completeness_of_list_index_rtl_tafa :

forall (V : Type) (vs : list V) (n : nat),

(forall w : V,

list_index_rtl_tafa V vs n = Some w

<->

exists ws_pfx ws_sfx : list V,

vs = ws_pfx ++ w :: ws_sfx /\ length ws_sfx = n)

/\

(list_index_rtl_tafa V vs n = None <-> length vs <= n).

6.2. Computing the common suffix of two lists

At the 2016 Scheme Workshop [10], Hemann and Friedman used TABA to compute the common

suffix of two lists of unknown length in a number of calls and returns that is at most the sum of the

lengths of these two lists. This computation also fits the TAFA (There and Forth Again) pattern in that

the two lists can be traversed in sync (there), the longest can be slided through to reach a suffix that

has the same length as the shortest (forth), and the resulting suffix and the shortest list can then be

traversed in sync for comparison (again), using a total number of tail-recursive calls that is precisely

the sum of the lengths of the two given lists. To ease the comparison with Hemann and Friedman’s

solution, the programs in this section are expressed in Chez Scheme [29].

162 O. Danvy / Getting There and Back Again

6.2.1. Finding the common suffix of two proper lists that have the same length

Given two proper lists (i.e., lists ending with nil) that have the same length, one can traverse them in

parallel with an outer loop (common-suffix_same-length) and with an inner loop (inner-loop). In

the outer loop, vs and ws denote the current suffix candidate, and in the inner loop, vs_sfx and ws_sfx

denote their respective suffixes. (Symmetrically, we say that vs denotes a “trail” of vs_sfx and that

ws denotes a trail of ws_sfx.) If this suffix is empty, then their trails both denote the resulting common

suffix. Otherwise, if the heads of the respective suffixes are equal, the inner loop continues, and if they

are not, a new iteration of the outer loop is initiated with two new trails, i.e., suffix candidates:

(define common-suffix_same-length

(lambda (vs ws)

(letrec ([inner-loop (lambda (vs_sfx ws_sfx)

(if (pair? vs_sfx)

(if (equal? (car vs_sfx) (car ws_sfx))

(inner-loop (cdr vs_sfx) (cdr ws_sfx))

(common-suffix_same-length (cdr vs_sfx) (cdr ws_sfx)))

vs))])

(inner-loop vs ws))))

For example, here is a trace of this traversal:

> (traced-common-suffix_same-length ’(1 2 1 2 3) ’(1 2 3 2 3))

|(common-suffix_same-length (1 2 1 2 3) (1 2 3 2 3))

|(inner-loop (1 2 1 2 3) (1 2 3 2 3))

|(inner-loop (2 1 2 3) (2 3 2 3))

|(inner-loop (1 2 3) (3 2 3))

|(common-suffix_same-length (2 3) (2 3))

|(inner-loop (2 3) (2 3))

|(inner-loop (3) (3))

|(inner-loop () ())

|(2 3)

(2 3)

>

In words – the outer loop is initiated with trails (1 2 1 2 3) and (1 2 3 1 2 3). The inner loop

traverses their suffix until it encounters two differing heads (namely 1 and 3). The outer loop is then

re-initiated with trails (2 3) and (2 3). The inner loop traverses their suffix to their end. The result is

either of the current trails.

6.2.2. Traversing the suffix of a proper list to find a suffix of this list

The following procedure is given a proper list (of length m) and one of its suffixes (of length n), i.e.,

a suffix and a trail of this suffix. The procedure traverses them in parallel until the end of the suffix. It

then returns the trail, which is a suffix of the given list that has length m− n:

(define slide

(lambda (xs xs_sfx)

(if (pair? xs_sfx)

(slide (cdr xs) (cdr xs_sfx))

xs)))

O. Danvy / Getting There and Back Again 163

For example, here is a trace of this traversal:

> (traced-slide ’(5 4 3 2 1) ’(2 1))

|(slide (5 4 3 2 1) (2 1))

|(slide (4 3 2 1) (1))

|(slide (3 2 1) ())

|(3 2 1)

(3 2 1)

>

In words – slide is applied to a list of length 5 and to a suffix of this list that has length 2; it traverses

them both in parallel until the end of the second list; the first list then has length 5 − 2 = 3 and is

returned.

6.2.3. Finding a suffix of the longer list with the same length as the shorter list

Given two proper lists, we can enumerate their successive suffixes by traversing them in parallel:

• If both traversals end with nil, the two given lists have the same length. We can find their common

suffix using common-suffix_same-length.

• If one traversal ends with nil but not the other, the two lists do not have the same length. We can

use slide on the longest list and its current suffix to obtain a suffix that has the same length as the

shortest list, and then common-suffix_same-length to find their common suffix.

Concretely:

(define longest-common-suffix

(lambda (vs ws)

(letrec ([traverse (lambda (vs_sfx ws_sfx)

(if (pair? vs_sfx)

(if (pair? ws_sfx)

(traverse (cdr vs_sfx) (cdr ws_sfx))

(common-suffix_same-length (slide vs vs_sfx) ws))

(if (pair? ws_sfx)

(common-suffix_same-length vs (slide ws ws_sfx))

(common-suffix_same-length vs ws))))])

(traverse vs ws))))

For example, here is a trace of this traversal:

> (traced-longest-common-suffix ’(2 3 4 5 6 8) ’(3 0 5 0 8))

|(longest-common-suffix (2 3 4 5 6 8) (3 0 5 0 8))

|(traverse (2 3 4 5 6 8) (3 0 5 0 8))

|(traverse (3 4 5 6 8) (0 5 0 8))

|(traverse (4 5 6 8) (5 0 8))

|(traverse (5 6 8) (0 8))

|(traverse (6 8) (8))

|(traverse (8) ())

| (slide (2 3 4 5 6 8) (8))

| (slide (3 4 5 6 8) ())

| (3 4 5 6 8)

164 O. Danvy / Getting There and Back Again

|(common-suffix_same-length (3 4 5 6 8) (3 0 5 0 8))

|(inner-loop (3 4 5 6 8) (3 0 5 0 8))

|(inner-loop (4 5 6 8) (0 5 0 8))

|(common-suffix_same-length (5 6 8) (5 0 8))

|(inner-loop (5 6 8) (5 0 8))

|(inner-loop (6 8) (0 8))

|(common-suffix_same-length (8) (8))

|(inner-loop (8) (8))

|(inner-loop () ())

|(8)

(8)

>

In words – the two lists (here: (2 3 4 5 6 8) and (3 0 5 0 8)) are first traversed in parallel to

determine that the first one is longer; what remains of the first list is a non-empty suffix of it (here:

(8)); the first list and its suffix are then slided across to compute the suffix of the first list that has the

same length as the second list (here: (3 4 5 6 8)); this suffix and the second list are then traversed

in parallel to compute their longest common suffix. All told, and keeping in mind that initial calls are

not recursive, the number of tail-recursive calls is 11, which is the sum of the lengths of the two given

lists. (The author has automated this measure and verified it in practice with a variety of tests, a large

number of which involved randomly generated lists.)

6.2.4. All in all

An iterative solution exists for finding the common suffix of two proper lists of arbitrary length where

the number of tail-recursive calls (initial calls do not count, only recursive ones) is exactly the sum of

the lengths of the two given lists:

There: The idea is to traverse both lists in parallel until one of them is nil, which gets us there. If both

are nil, then the two given lists have the same length; go to Again with both given lists. Otherwise,

go to Forth with the longer list and its non-empty suffix, i.e., with the non-empty suffix and its trail.

Forth: The idea is to traverse both the given suffix list and its trail in parallel until the end of this

suffix. The trail is then a suffix of the given longer list that has the same length as the given shorter

list; go to Again with this trail and with this shorter list.

Again: At that point, both lists have the same length and we can traverse them in parallel with two

trail pointers, resuming the Again step with new trails if the current heads of the lists are not the

same. When we reach nil, each of the trails is the common suffix.

This instance of “There and Forth Again” is an optimization of “There and Back Again” that is not

always applicable. When it does, though, it yields a tail-recursive solution. Here, this optimization is

applicable because the order of comparisons in the list (whether from the end to the beginning or from

the beginning to the end) does not matter.

O. Danvy / Getting There and Back Again 165

7. Convolving lists that may not have the same length

Sometimes, it is not a mistake to convolve lists that do not have the same length, e.g., to multiply

polynomials [1, Section 3], to compute Catalan numbers [1, Section 5], or to compute the Cartesian

product of two sets in breadth-first order rather than the usual depth-first order [30]: one may want

to convolve the shorter list with a prefix of the longer list or with a suffix of it. Since the first list

determines the control flow of the convolving function, does one needs to revert to the iterative solution

that constructs an intermediate list? No.

7.1. Convolving a list and the prefix of a longer list (and vice versa)

Let vs and ws denote two lists that have the same length, and let xs denote another list.

• Should convolving vs and ws ++ xs reduce to convolving vs and ws, then the initial continuation

ends up being applied to xs and a list of pairs, and it should ignore the former and return the latter.

• Should convolving vs ++ xs and ws reduce to convolving vs and ws, then the traversal of both lists

should stop when reaching the end of the second list.

And indeed, convolving [1; 2; 3; 4] and [10; 20] and convolving [1; 2] and [10; 20; 30, 40]

yield the same result as convolving [1; 2] and [10; 20] in this case: the suffix of the longer list is

ignored, the convolving function is structurally recursive, and true to TABA the convolving function

traverses the first list at call time and the second at return time.

7.2. Convolving a list and the suffix of a longer list (and vice versa)

Let vs and ws denote two lists that have the same length, and let xs denote another list.

• Should convolving vs and xs ++ ws reduce to convolving vs and ws, then when reaching the end of

vs, one should continue to slide through the second list in the manner of Section 6, i.e., in synchrony

with sliding through xs ++ ws to reach ws, and then apply the continuation to ws and the empty list.

• Should convolving xs ++ vs and ws reduce to convolving vs and ws, then the continuation should

test whether its first argument is empty and keep going with the second.

And indeed, convolving [2; 3; 4; 5] and [40; 50] and convolving [4; 5] and [20; 30; 40; 50]

yield the same result as convolving [4; 5] and [40; 50] in this case: the prefix of the longer list is

ignored, the convolving function is structurally recursive, and true to TABA the convolving function

traverses the first list at call time and the second at return time.

8. Conclusion

“...if you’re in any way excited

by the weird and wonderful algorithms

we use in functional languages

to do simple things like reversing a list.” [31]

166 O. Danvy / Getting There and Back Again

What have we learned here?

• that the TABA recursion pattern can be further illustrated, that its telling example can be refined,

and that this refinement suggests alternative solutions;

• that TABA can be formalized in a way that crystallizes both its control flow and its data flow; and

• that TABA lends itself to an iterative variant, TAFA.

Proving TABA programs in direct style is carried out equationally and by structural induction. Proving

TABA programs that use continuations often requires relational reasoning as well, to characterize these

continuations, but equational reasoning turned out to be sufficient here.

To close, let us turn to the issue of efficiency. Is it more efficient to use TABA or to construct an

intermediate data structure? The inter-derivation described in Section 4 shows that modulo any rep-

resentational change of the defunctionalized continuation (e.g., going from Peano numbers to binary

integers), the time complexity is the same either way. The answer therefore depends on the under-

lying implementation of the language processor such as unboxing polymorphic values in activation

records [32]. Moving from quantitative issues to qualitative issues, TABA is noted to offer an unex-

pected expressive power in constrained situations [12, 8, 13]. Perhaps most significantly, however,

TABA sharpens one’s understanding of recursive programming, which is A Good Thing since as is

often said, the sky is the limit once recursion is understood.

Acknowledgments

Heartfelt thanks to Mayer Goldberg for the original continuation-based implementation of symbolic

convolutions and for our subsequent joint study of its recursion pattern. The author is also grateful

to the anonymous reviewers for perceptive evaluations and suggestions, to Bartek Klin and Damian

Niminski for their editorship, and to Julia Lawall for priceless and multi-faceted comments on two

versions of this article as well as for her playful formalization of Section 3 in Why3, in the course of

the summer of 2020.

References

[1] Danvy O, Goldberg M. There and back again. Fundamenta Informaticae, 2005. 66(4):397–413.

[2] Danvy O, Millikin K. Refunctionalization at Work. Science of Computer Programming, 2009. 74(8):534–

549. doi:10.1016/j.scico.2007.10.007.

[3] Fernandes JP, Saraiva J. Tools and libraries to model and manipulate circular programs. In: Proceedings of

the 2007 ACM SIGPLAN Symposium on Partial Evaluation and Semantics-Based Program Manipulation

(PEPM 2007). ACM Press, Nice, France, 2007 pp. 102–111. doi:10.1145/1244381.1244399.

[4] Miranda-Perea F. Some Remarks on Type Systems for Course-of-value Recursion. Electronic Notes in

Theoretical Computer Science, 2009. 247:103–121. doi:10.1016/j.entcs.2009.07.051.

[5] Sergey I. Programs and Proofs: Mechanizing Mathematics with Dependent Types. JetBrains/SPbSU

Summer School, 2014. https://ilyasergey.net/pnp-2014/.

https://ilyasergey.net/pnp-2014/

O. Danvy / Getting There and Back Again 167

[6] Shivers O, Fisher D. Multi-return function call. Journal of Functional Programming, 2006. 4-5(16):547–

582. doi:10.1017/S0956796806006009.

[7] Morihatao A, Kakehi K, Hu Z, Takeichi M. Swapping Arguments and Results of Recursive Functions. In:

Mathematics of Program Construction, 8th International Conference, MPC 2006, number 4014 in Lecture

Notes in Computer Science. Springer, Kuressaare, Estonia, 2006 pp. 379–396. doi:10.1007/11783596 22.

[8] Nguyen K. Langage de combinateurs pour XML: Conception, Typage, et Implantation. PhD thesis, LRI,

Université Paris Sud, Orsay, France, 2008. In English.

[9] Foner K. ‘There and Back Again’ and What Happened After. In: Com-

pose Conference, http://www.composeconference.org/2016/program/. 2016

https://www.youtube.com/watch?v=u_OsUlwkmBQ, URL http://www.composeconference.org/2016/program/.

[10] Hemann J, Friedman DP. Deriving Pure, Naturally-Recursive Operations for Processing Tail-Aligned

Lists. In: Scheme and Functional Programming Workshop, Co-located with ICFP 2016. Nara, Japan,

2016 http://www.schemeworkshop.org/2016/.

[11] Amin N, Rompf T. Collapsing Towers of Interpreters. Proceedings of the ACM on Programming Lan-

guages, 2018. 2(POPL):52:1–52:33. doi:10.1145/3158140.

[12] Brunel A, Mazza D, Pagani M. Backpropagation in the simply typed lambda-calculus with linear negation.

Proceedings of the ACM on Programming Languages, 2019. 4(POPL):64:1–64:27. doi:10.1145/3158140.

[13] Wang F, Decker J, Wu X, Essertel G, Rompf T. Backpropagation with Callbacks: Foundations for Efficient

and Expressive Differentiable Programming. In: Advances in Neural Information Processing Systems 31,

pp. 10180–10191. Curran Associates, Inc., 2018. ID:53989384.

[14] Wang F, Zheng D, Decker JM, Wu X, Essertel GM, Rompf T. Demystifying differentiable programming:

shift/reset the penultimate backpropagator. Proceedings of the ACM on Programming Languages, 2019.

3(ICFP):96:1–96:31. doi:10.1145/3341700.

[15] Filliâtre JC. Two puzzles from Danvy and Goldberg’s “There and back again”. 2013.

http://toccata.lri.fr/gallery/there_and_back_again.en.html.

[16] Bertot Y, Castéran P. Interactive Theorem Proving and Program Development. Springer, 2004. ISBN-

10:3540208542, 13:978-3540208549.

[17] Bird R, Wadler P. Introduction to Functional Programming. Prentice-Hall International, London, UK, 1st

edition, 1988. ISBN-10:0134841972, 13:978-0134841977.

[18] Burstall RM, Landin PJ. Programs and their proofs: An algebraic approach. In: Meltzer B, Michie D

(eds.), Machine Intelligence, volume 4. Edinburgh University Press, 1969 pp. 17–43. ID:60873698.

[19] Manna Z. Mathematical Theory of Computation. McGraw-Hill, 1974. ISBN-10:0070854661, 13:978-

0070854666.

[20] Nolan C. Tenet. Warner Bros. Pictures, 2020.

[21] Dijkstra EW. Recursive Programming. In: Rosen S (ed.), Programming Systems and Languages, chap-

ter 3C, pp. 221–227. McGraw-Hill, New York, 1960. doi:10.1007/BF01386223.

[22] Ohori A, Sasano I. Lightweight fusion by fixed point promotion. In: Proceedings of the Thirty-Fourth

Annual ACM Symposium on Principles of Programming Languages, SIGPLAN Notices, Vol. 42, No. 1.

ACM Press, Nice, France, 2007 pp. 143–154. doi:10.1145/1190215.1190241.

http://www.composeconference.org/2016/program/
https://www.youtube.com/watch?v=u_OsUlwkmBQ
http://www.composeconference.org/2016/program/
http://www.schemeworkshop.org/2016/
http://toccata.lri.fr/gallery/there_and_back_again.en.html

168 O. Danvy / Getting There and Back Again

[23] Danvy O, Schultz UP. Lambda-Dropping: Transforming Recursive Equations into Programs with Block

Structure. Theoretical Computer Science, 2000. 248(1-2):243–287. doi:10.1016/S0304-3975(00)00054-2

[24] Danvy O, Goldberg M. There and back again. In: Proceedings of the 2002 ACM SIGPLAN Interna-

tional Conference on Functional Programming (ICFP’02), SIGPLAN Notices, Vol. 37, No. 9. ACM Press,

Pittsburgh, Pennsylvania, 2002 pp. 230–234. doi:10.1145/583852.581500.

[25] Danvy O, Filinski A. Abstracting Control. In: Proceedings of the 1990 ACM Conference on Lisp and

Functional Programming. ACM Press, Nice, France, 1990 pp. 151–160. doi:10.1145/91556.91622.

[26] Asai K. On typing delimited continuations: three new solutions to the printf problem. Higher-Order and

Symbolic Computation, 2009. 22(3):275–291. doi:10.1007/s10990-009-9049-5.

[27] Materzok M, Biernacki D. Subtyping Delimited Continuations. In: Proceedings of the Thirty-First Annual

ACM Symposium on Principles of Programming Languages. ACM Press, Portland, Oregon, 1994 pp.

446–457. doi:10.1145/174675.178047.

[28] de Bruijn NG. Lambda calculus notation with nameless dummies, a tool for automatic formula manipula-

tion, with application to the Church-Rosser theorem. Indagationes Mathematicae, 1972. 34(5):381–392.

doi:10.1016/1385-7258(72)90034-0.

[29] Dybvig RK. The development of Chez Scheme. In: Proceedings of the 2006 ACM SIGPLAN International

Conference on Functional Programming (ICFP’06). Invited talk. ACM Press, Portland, Oregon, 2006 pp.

1–12. doi:10.1145/1159803.1159805.

[30] Barron DW, Strachey C. Programming. In: Fox L (ed.), Advances in Programming and Non-Numerical

Computation, pp. 49–82. Pergammon Press, 1966. doi:10.1016/C2013-0-01911-1

[31] Kidney DO. Typing TABA, 2020. URL https://doisinkidney.com/posts/2020-02-15-taba.html.

[32] Peyton Jones SL. Personal communication at ICFP, Pittsburgh, Pennsylvania, 2002.

[33] Danvy O. Back to Direct Style. Science of Computer Programming, 1994. 22(3):183–195.

doi:10.1016/0167-6423(94)00003-4.

[34] Danvy O. Sur un Exemple de Patrick Greussay. Research Report BRICS RS-04-41, Department of

Computer Science, Aarhus University, Aarhus, Denmark, 2004. doi:10.7146/brics.v11i41.21866.

[35] Danvy O, Lawall JL. Back to Direct Style II: First-Class Continuations. In: Proceedings of the 1992

ACM Conference on Lisp and Functional Programming, LISP Pointers, Vol. V, No. 1. ACM Press, San

Francisco, California, 1992 pp. 299–310. doi:10.1145/141471.141564.

[36] Felleisen M, Friedman DP. Control Operators, the SECD Machine, and the λ-Calculus. In: Wirsing M

(ed.), Formal Description of Programming Concepts III, pp. 193–217. Elsevier Science Publishers B.V.

(North-Holland), Amsterdam, 1986. ID:57760323.

[37] Filinski A. Representing Monads. In: Proceedings of the Thirty-First Annual ACM Symposium on

Principles of Programming Languages. ACM Press, Portland, Oregon, 1994 pp. 446–457. doi:10.1145/

174675.178047.

[38] Johnsson T. Lambda Lifting: Transforming Programs to Recursive Equations. In: Functional Pro-

gramming Languages and Computer Architecture, number 201 in Lecture Notes in Computer Science.

Springer-Verlag, Nancy, France, 1985 pp. 190–203. doi:10.1007/3-540-15975-4 37.

[39] Landin PJ. The Mechanical Evaluation of Expressions. The Computer Journal, 1964. 6(4):308–320.

doi:10.1093/comjnl/6.4.308

https://doisinkidney.com/posts/2020-02-15-taba.html

O. Danvy / Getting There and Back Again 169

[40] Peyton Jones SL. The Implementation of Functional Programming Languages. Prentice Hall In-

ternational Series in Computer Science. Prentice-Hall International, 1987. ISBN-13:978-0134533339,

10:013453333X.

[41] Reynolds JC. Definitional Interpreters for Higher-Order Programming Languages. In: Proceedings of

25th ACM National Conference. Boston, Massachusetts, 1972 pp. 717–740. Reprinted in Higher-Order

and Symbolic Computation 11(4):363-397, 1998, with a foreword [42]. doi:10.1145/800194.805852.

[42] Reynolds JC. Definitional Interpreters Revisited. Higher-Order and Symbolic Computation, 1998.

11(4):355–361. doi:10.1023/A:1010075320153.

[43] Schmidt DA. State-Transition Machines for Lambda-Calculus Expressions. Higher-Order and Symbolic

Computation, 2007. 20(3):319–332. Journal version of [45], with a foreword [44]. doi:10.1007/s10990-

007-9012-2.

[44] Schmidt DA. State-Transition Machines, Revisited. Higher-Order and Symbolic Computation, 2007.

20(3):319–332. doi:10.1007/s10990-007-9017-x.

[45] Schmidt DA. State transition machines for lambda calculus expressions. In: Semantics-Directed Compiler

Generation, number 94 in Lecture Notes in Computer Science. Springer-Verlag, Aarhus, Denmark, 1980

pp. 415–440. doi:10.1007/3-540-10250-7 32.

[46] Strachey C. Handwritten Notes, 1961. Archive of working papers and correspondence. Bodleian Library,

Oxford, Catalogue no. MS. Eng. misc. b.267.

A. Defunctionalization and refunctionalization

Higher-order programs are programs that use functions as values, e.g., because they involve generic

functions such as map or fold or because they are in continuation-passing style. First-order programs

are programs where values are first-order, i.e., are not functions. In the early 1970s [41], Reynolds

proposed to ‘defunctionalize’ a particular higher-order program (an interpreter in continuation-passing

style) into a first-order program (a big-step abstract machine) by representing the continuation with

a data type together with an apply function. The key idea is that a functional value is an instance of

a function abstraction. If all the function abstractions that give rise to a functional value can be enu-

merated, then the function space is actually a sum type, where each summand is one of these function

abstractions. Each of these summands can be represented as a closure [39], i.e., a pair containing the

code of the function abstraction and its lexical environment. Introducing a functional value (i.e., eval-

uating a function abstraction) therefore consists in constructing such a pair, and eliminating it (i.e.,

applying a functional value) therefore consists in extending its lexical environment with the actual

parameter(s) and running its code in this extended environment. In practice, the code component is

replaced by a tag that uniquely identifies it, and the apply function dispatches on this tag. Also, this

tag is represented as a data-type constructor.

A.1. An example of defunctionalization

Consider the continuation-passing implementation from Section 3.3:

170 O. Danvy / Getting There and Back Again

Fixpoint rev2’_v3 (V : Type) (beq_V : V -> V -> bool)

(vs : list V) (h_vs_op : list V -> bool) (ws_given : list V) : bool :=

match vs with

nil => h_vs_op ws_given

| v :: vs’ => rev2’_v3 V beq_V vs’ (fun ws => match ws with

nil => false

| w :: ws’ => if beq_V v w

then h_vs_op ws’

else false

end) ws_given

end.

Definition rev2_v3 (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) : bool :=

rev2’_v3 V beq_V vs_given (fun ws => match ws with

nil => true

| w :: ws’ => false

end) ws_given.

The continuation has type list V -> bool. This type is inhabited by instances of two function ab-

stractions:

• one in rev2_v3: fun ws => match ws with | nil => true | w :: ws’ => ... end, and

• one in rev2’_v3: fun ws => match ws with | nil => false | w :: ws’ => ... end.

The resulting functional values are applied in the nil case and in the cons case of rev2’_v3.

Since continuations are instances of two function abstractions, their type can be represented using

a data type with two constructors:

Inductive cont (V : Type) : Type := C0 : ... -> cont | C1 : ... -> cont.

The first function abstraction (in rev2_v3) has no free variables and the second one (in rev2’_v3)

has two, v and h_vs_op. Therefore the first constructor has no argument and the second has two:

Inductive cont (V : Type) : Type := C0 : cont V | C1 : V -> cont V -> cont V.

The corresponding dispatch function and defunctionalized program read as follows:

Fixpoint dispatch_cont (V : Type) (beq_V : V -> V -> bool) (k : cont V) : list V -> bool :=

match k with

C0 _ =>

fun ws => match ws with nil => true | w :: ws’ => false end

| C1 _ v k =>

fun ws => match ws with nil => false | w :: ws’ => if beq_V v w

then dispatch_cont V beq_V k ws’

else false end

end.

Fixpoint rev2’_v3_def (V : Type) (beq_V : V -> V -> bool) (vs : list V)

(h_vs_op : cont V) (ws_given : list V) : bool :=

match vs with

nil => dispatch_cont V beq_V h_vs_op ws_given

| v :: vs’ => rev2’_v3_def V beq_V vs’ (C1 V v h_vs_op) ws_given

end.

O. Danvy / Getting There and Back Again 171

Definition rev2_v3_def (V : Type) (beq_V : V -> V -> bool) (vs_given ws_given : list V) :=

rev2’_v3_def V beq_V vs_given (C0 V) ws_given.

The alert reader will have noticed that since dispatch_cont returns a function, the defunctionalized

program is still higher-order. However, its two invocations are fully applied, so the (higher-order)

dispatch function is better defined as a (first-order) apply function:

Fixpoint apply_cont (V : Type) (beq_V : V -> V -> bool) (k : cont V) (ws : list V) : bool :=

match k with

C0 _ =>

match ws with nil => true | w :: ws’ => false end

| C1 _ v k =>

match ws with nil => false | w :: ws’ => if beq_V v w

then apply_cont V beq_V k ws’

else false end

end.

Fixpoint rev2’_v3_def’ (V : Type) (beq_V : V -> V -> bool)

(vs : list V) (h_vs_op : cont V) (ws_given : list V) : bool :=

match vs with

nil => apply_cont V beq_V h_vs_op ws_given

| v :: vs’ => rev2’_v3_def’ V beq_V vs’ (C1 V v h_vs_op) ws_given

end.

Definition rev2_v3_def’ (V : Type) (beq_V : V -> V -> bool)

(vs_given ws_given : list V) : bool :=

rev2’_v3_def’ V beq_V vs_given (C0 V) ws_given.

And since the type cont is isomorphic to that of lists, that is how the defunctionalized continuation

is represented, which leads one to the implementation of Section 3.2 where apply_cont is named

rev2’’_v2.

A.2. Refunctionalization

Refunctionalization is a left inverse of defunctionalization [2]. When a data structure is constructed

once and dispatched upon once, chances are it is the first-order counterpart of a higher-order function

and lies in the image of defunctionalization. For example, the implementation in Section 3.1 page 125

is in defunctionalized form, since the sole reason of being for vs_op is to be processed in rev2’’_v1,

which de facto serves as its apply function. The refunctionalized counterpart reads as follows:

Fixpoint rev2’_v1_refunct (V : Type) (beq_V : V -> V -> bool)

(vs : list V) (h_vs_op : list V -> bool) : list V -> bool :=

match vs with

nil => h_vs_op

| v :: vs’ => rev2’_v1_refunct V beq_V vs’ (fun ws => match ws with

nil => false

| w :: ws’ => if beq_V v w

then h_vs_op ws’

else false

end)

end.

172 O. Danvy / Getting There and Back Again

Definition rev2_v1_refunct (V : Type) (beq_V : V -> V -> bool)

(vs_given ws_given : list V) : bool :=

rev2’_v1_refunct V beq_V vs_given (fun ws => match ws with

nil => true

| w :: ws’ => false

end) ws_given.

A.3. Significance of defunctionalization and refunctionalization

Reynolds’s defunctionalization of a definitional interpreter that had been CPS-transformed with call

by value in mind led to the CEK machine [36], and Schmidt’s defunctionalization of a definitional

interpreter that had been CPS-transformed with call by name in mind led to the Krivine machine [43]

before either of these machines had a name. Many other abstract machines and first-order algorithms

also fit as well as data structures, be they zippers or evaluation contexts. In Computer Science, do we

invent things or do we discover them?

B. Generic programming with lists

The functionals list_fold_right and list_fold_left were originally conceived by Strachey [46]

to program generically over lists:

Definition list_fold_right (V W : Type)

(nil_case : W) (cons_case : V -> W -> W) (vs : list V) : W :=

let fix visit vs :=

match vs with

nil => nil_case

| v :: vs’ => cons_case v (visit vs’)

end

in visit vs.

Definition list_fold_left (V W : Type)

(nil_case : W) (cons_case : V -> W -> W) (vs : list V) : W :=

let fix visit vs a :=

match vs with

nil => a

| v :: vs’ => visit vs’ (cons_case v a)

end

in visit vs nil_case.

The first captures the ordinary recursive descent over a list (e.g., instantiating it with nil and cons

yields the list-copy function) and the second the ordinary tail-recursive descent over a list using an

accumulator (e.g., instantiating it with nil and cons yields the list-reverse function). Each can simulate

the other by threading an accumulator.

These two functionals come handy, e.g., as a litmus test for a beginning functional programmer to

demonstrate that their implementation is structurally recursive: if they cannot express it using a fold

function, it isn’t.

O. Danvy / Getting There and Back Again 173

In the present case, all the structurally recursive implementations are fold-right ready, starting with

the very first self-convolution functions in Section 2. Here are their fold-right counterparts:

let self_cnv_right vs = (* ’a list -> (’a * ’a) list *)

let (_, ps) = list_fold_right (vs, [])

(fun v (ws, ps) ->

(List.tl ws, (v, List.hd ws) :: ps))

vs

in ps;;

let self_cnv_c_right vs = (* ’a list -> (’a * ’a) list *)

list_fold_right (fun k -> k vs [])

(fun v c k -> c (fun ws ps -> k (List.tl ws) ((v, List.hd ws) :: ps)))

vs

(fun _ ps -> ps);;

Likewise, the implementation in Appendix A.2 is fold-left ready. Here is its fold-left counterpart:

Definition rev2_v1_refunct_left (V : Type) (beq_V : V -> V -> bool)

(vs_given ws_given : list V) : bool :=

list_fold_left V

(list V -> bool)

(fun ws => match ws with

nil => true

| w :: ws’ => false

end)

(fun v vs_op ws => match ws with

nil => false

| w :: ws’ => if beq_V v w then vs_op ws’ else false

end)

vs_given

ws_given.

This counterpart illustrates the rendering of TABA using fold-left, a point recently made about con-

volving lists in Kidney’s scientific blog [31].

C. Lambda-lifting and lambda-dropping

Block structure and lexical scope are two cornerstones of functional programming, witness the defini-

tion of list_fold_right and list_fold_left in Appendix B, where visit is defined locally in the

scope of nil_case and cons_case. A popular alternative is recursive equations: global mutually recur-

sive functions with no local declarations. For example, here is an implementation of list_fold_right

as a recursive equation:

Fixpoint list_fold_right’ (V W : Type)

(nil_case : W) (cons_case : V -> W -> W) (vs : list V) : W :=

match vs with

nil => nil_case

| v :: vs’ => cons_case v (list_fold_right’ V W nil_case cons_case vs’)

end.

174 O. Danvy / Getting There and Back Again

When the world was young [40], recursive equations were found to be a convenient format for

compiling functional programs for the G-machine. A program transformation, lambda-lifting [38],

was developed that parameterized each local function with its free variables, thus making them scope

insensitive, which made it possible for them to float up to the top level and become (mutually) recursive

equations. Compilers then evolved, and it was found beneficial to lambda-drop functional programs

into programs with more block structure and more free variables [23], on the ground that they could

be both compiled and executed more efficiently. And indeed compare the lambda-dropped version of

list_fold_right and its lambda-lifted version, list_fold_right’: in the lambda-dropped version,

the auxiliary function has one parameter, and in the lambda-lifted version, it has many more, most of

them unchanging.

Nowadays the issue is moot for programming, since efficient compilers are known to lambda-drop

source programs internally [29].

For proving, however, lambda-lifted programs are more convenient to reason about since we can

only refer to entities by their name and we can only mention names that are defined globally.

D. Tail calls, non-tail calls, lightweight fusion, and lightweight fission

Figure 3 displays four implementations to compute the first and last elements of a non-empty list. If

the given list is empty, the result is None. Otherwise, we already know the first element, and all we

need to do is to compute the last element, which is carried out tail-recursively by an auxiliary function

that is defined by structural induction over the tail of the given list.

The two first implementations are lambda-dropped in that their auxiliary function is local (and

v is declared in an outer scope), and the two last implementations are lambda-lifted in that their

auxiliary function is global. The first and the third implementations are lightweight-fissioned in that

the auxiliary function is invoked with a non-tail call, and the second and the fourth implementations are

lightweight-fused in that the auxiliary function is invoked with a tail call. In the last implementation,

v is passed as an extra parameter to the auxiliary function. The codomains of the auxiliary functions

differ depending on whether they are fused or fissioned.

Lightweight fusion by fixed-point promotion is due to Ohori and Sasano [22]. Lightweight fission

by fixed-point demotion is its left inverse.

The TAFA example in Section 6.1.2 is a good candidate for lightweight fusion:

• since list_index_rtl_there and list_index_rtl_forth are tail recursive, we can relocate the

context of their initial call (i.e., the match expression in list_index_rtl) into their body, making

the definition of list_index_rtl tail-recursive:

Definition list_index_rtl_tafa’ (V : Type) (vs : list V) (n : nat) : option V :=

match vs with

nil => None

| v :: vs’ => list_index_rtl_there’ V v vs’ vs’ n

end.

O. Danvy / Getting There and Back Again 175

Definition first_and_last_dropped_fissioned (V : Type) (vs : list V) : option (V * V) :=

match vs with

nil => None

| v :: vs’ => let fix aux (v’ : V) (vs’ : list V) : V :=

match vs’ with

nil => v’

| v’’ :: vs’’ => aux v’’ vs’’

end

in Some (v, aux v vs’)

end.

Definition first_and_last_dropped_fused (V : Type) (vs : list V) : option (V * V) :=

match vs with

nil => None

| v :: vs’ => let fix aux (v’ : V) (vs’ : list V) : option (V * V) :=

match vs’ with

nil => Some (v, v’)

| v’’ :: vs’’ => aux v’’ vs’’

end

in aux v vs’

end.

Fixpoint first_and_last_lifted_fissioned_aux (V : Type) (v’ : V) (vs’ : list V) : V :=

match vs’ with

nil => v’

| v’’ :: vs’’ => first_and_last_lifted_fissioned_aux V v’’ vs’’

end.

Definition first_and_last_lifted_fissioned (V : Type) (vs : list V) : option (V * V) :=

match vs with

nil => None

| v :: vs’ => Some (v, first_and_last_lifted_fissioned_aux V v vs’)

end.

Fixpoint first_and_last_lifted_fused_aux (V : Type) (v v’ : V) (vs’ : list V) :=

match vs’ with

nil => Some (v, v’)

| v’’ :: vs’’ => first_and_last_lifted_fused_aux V v v’’ vs’’

end.

Definition first_and_last_lifted_fused (V : Type) (vs : list V) : option (V * V) :=

match vs with

nil => None

| v :: vs’ => first_and_last_lifted_fused_aux V v v vs’

end.

Figure 1. Four implementations to compute the first and last elements of a non-empty list

176 O. Danvy / Getting There and Back Again

• in list_index_rtl’_there, the match expression from list_index_rtl is relocated around the

two possible end results of this tail-recursive function:

Fixpoint list_index_rtl_there’ (V : Type) (v : V) (vs’ vs_sfx : list V) (n : nat) :=

match n with

O => match Some vs_sfx with

Some vs_sfx => list_index_rtl_forth’ V v vs’ vs_sfx

| None => None

end

| S n’ => match vs_sfx with

nil => match (@None(list V)) with

Some vs_sfx => list_index_rtl_forth’ V v vs’ vs_sfx

| None => None

end

| v’ :: vs_sfx’ => list_index_rtl_there’ V v vs’ vs_sfx’ n’

end

end.

• in list_index_rtl_forth’, the match expression from list_index_rtl is relocated around the

two possible end results of this tail-recursive function:

Fixpoint list_index_rtl_forth’ (V : Type) (v : V) (vs’ vs_sfx : list V) : option V :=

match vs_sfx with

nil => match Some (v, vs’) with

Some (w, ws_sfx) => Some w

| None => None

end

| v’’ :: vs_sfx’ => match vs’ with

nil => match (@None(V * list V)) with

Some (w, ws_sfx) => Some w

| None => None

end

| v’ :: vs’’ => list_index_rtl_forth’ V v’ vs’’ vs_sfx’

end

end.

Note how the codomain of each functions is now the same (namely that of the final result), and how

list_index_rtl_there’ and list_index_rtl_forth’ take extra parameters since these parameters

are now no longer available in the lexical environment, two byproducts of the program now being

tail-recursive. As for the type annotations (e.g., @None(List V)), they were added to appease the type

inferencer.

The relocated match expressions are then simplified, yielding the following tail-recursive program:

Fixpoint list_index_rtl_forth’’ (V : Type) (v : V) (vs’ vs_sfx : list V) : option V :=

match vs_sfx with

nil => Some v

| v’’ :: vs_sfx’ => match vs’ with

nil => None

| v’ :: vs’’ => list_index_rtl_forth’’ V v’ vs’’ vs_sfx’

end

end.

O. Danvy / Getting There and Back Again 177

Fixpoint list_index_rtl_there’’ (V : Type) (v : V) (vs’ vs_sfx : list V) (n : nat) :=

match n with

O => list_index_rtl_forth’’ V v vs’ vs_sfx

| S n’ => match vs_sfx with

nil => None

| v’ :: vs_sfx’ => list_index_rtl_there’’ V v vs’ vs_sfx’ n’

end

end.

Definition list_index_rtl_tafa’’ (V : Type) (vs : list V) (n : nat) : option V :=

match vs with

nil => None

| v :: vs’ => list_index_rtl_there’’ V v vs’ vs’ n

end.

Likewise, in Section 6.2, the slide procedure is a candidate for lightweight fusion.

E. A vademecum for continuations

E.1. Direct style vs. Continuation-Passing Style (CPS)

An expression is said to be in “direct style” if its evaluation is recursive and its intermediate re-

sults are not named. For example, given appropriately typed f, g, and x, the expression f (g x) is

in direct style. An expression is in “monadic style” if its evaluation is tail recursive and its inter-

mediate results are named. For example, assuming call by value, both let v1 = g x in f v1 and

let v1 = g x in let v2 = f v1 in v2 are in monadic style. And it is in “continuation-passing

style” if its evaluation is tail recursive and if the functions it involves take an extra argument, the contin-

uation. For example, still assuming call by value, both fun k -> g_cps x (fun v1 -> f_cps v1 k)

and fun k -> g_cps x (fun v1 -> f_cps v1 (fun v2 -> k v2)) are in CPS, where f_cps and

g_cps are the continuation-passing counterpart of f and g.

For any evaluation order, any expression can be CPS-transformed using the explanation in the pre-

vious paragraph: (1) name intermediate results; (2) sequentialize their continuation by re-associating

the resulting let-expressions to flatten them and η reduce the inner one, for the sake of proper tail

recursion; and (3) introduce continuations. For example, here is the continuation-passing counterpart

of list_index_rtl_ds in Section 6.1.1:

let list_index_rtl_cps vs_given n_given = (* ’a list -> int -> ’a option *)

assert (n_given >= 0);

let rec visit vs k = (* ’a list -> (’a intermediate_result -> ’a option) -> ’a option *)

match vs with

[] -> k (Index n_given)

| v :: vs’ -> visit vs’ (fun ir -> match ir with

| Index n ->

if n = 0 then k (Found v) else k (Index (pred n))

| Found v ->

k (Found v))

in visit vs_given (fun ir -> match ir with

| Index _ -> None

| Found v -> Some v);;

178 O. Danvy / Getting There and Back Again

The corresponding trace is a tail-recursive counterpart of that in Section 6.1.1, namely a complete

series of tail calls to visit where continuations are accumulated, followed by a complete series of tail

calls to these accumulated continuations when the list is too short, and a complete series of tail-calls

to visit where continuations are accumulated, followed by a complete series of tail calls to these

accumulated continuations when the list is long enough:

traced_list_index_rtl_cps show_int [1; 0] 5;;

list_index_rtl_cps [1; 0] 5 ->

visit [1; 0] continuation_0 ->

visit [0] continuation_1 ->

visit [] continuation_2 ->

continuation_2 (Index 5) ->

continuation_1 (Index 4) ->

continuation_0 (Index 3) ->

list_index_rtl_cps [1; 0] 5 <- None

- : int option = None

traced_list_index_rtl_cps show_int [2; 1; 0] 1;;

list_index_rtl_cps [2; 1; 0] 1 ->

visit [2; 1; 0] continuation_0 ->

visit [1; 0] continuation_1 ->

visit [0] continuation_2 ->

visit [] continuation_3 ->

continuation_3 (Index 1) ->

continuation_2 (Index 0) ->

continuation_1 (Found 1) ->

continuation_0 (Found 1) ->

list_index_rtl_cps [2; 1; 0] 1 <- Some 1

- : int option = Some 1

#

E.2. Continuations and their scope

Consider the identifiers that name continuations in a continuation-passing expression. In the image

of the CPS transformation, one identifier is enough: continuations are declared and then used linearly

in a LIFO manner [33]. (Then defunctionalizing a continuation gives rise to a stack. And when the

program in CPS is an evaluator, this stack is known as “the control stack” since Dijkstra [21].)

Sometimes, though, it is not the current continuation that is applied to continue the computa-

tion, but another one that was declared elsewhere, e.g., earlier [35]. Applying this other continuation

discontinues the current computation and makes it continue elsewhere or earlier. Or sometimes, the

continuation is not applied at all, indicating that it is delimited (i.e., an initial continuation is provided

somewhere in the program). Not applying any continuation discontinues the current computation and

makes it stop and return an intermediate result to the point where the initial continuation was provided.

The control effect that is being emulated there is that of an exception in direct style (see next section

for a concrete example). Many other control effects can be emulated using continuations; they give

rise to control operators in direct style that achieve the corresponding control effect, e.g., delimited

control [25] as well as computational monads [37].

O. Danvy / Getting There and Back Again 179

E.3. Continuation-passing vs. continuation-based programs

In a nutshell, the co-domain of a continuation-passing function is polymorphic and the co-domain of

a continuation-based function is not.

Consider, for example, the traditional factorial function in continuation-passing style. Its continu-

ation is linear and used in a LIFO manner:

let rec fac_cps n k = (* int -> (int -> ’a) -> ’a *)

if n = 0

then k 1

else fac_cps (pred n) (fun a -> k (n * a));;

This tail-recursive implementation is interfaced with the direct-style world by supplying it with an

initial continuation that is the identity function, which delimits the continuation and instantiates the

type variable to int:

let fac n = (* int -> int *)

fac_cps n (fun a -> a);;

Consider, for example, a tail-recursive implementation of a function that detects whether a binary

tree of natural numbers with weightless nodes is a Calder mobile [34]. Its continuation is affine and

used in a LIFO manner:

type bt = Leaf of int | Node of bt * bt;;

let rec balancedp_cb t k = (* bt -> (int -> bool) -> bool *)

match t with

Leaf w -> k w

| Node (t1, t2) -> balancedp_cb t1 (fun w1 ->

balancedp_cb t2 (fun w2 ->

if w1 = w2 then k (w1 + w2) else false));;

let balancedp t = (* bt -> bool *)

balancedp_cb t (fun w -> true);;

This implementation is continuation-based: it is tail recursive and uses a continuation, but it only uses

this continuation as long as the subtrees that are traversed so far are balanced. Otherwise, it stops,

which commits the co-domain to be bool.

A continuation-passing program can only be tail recursive – its continuations are undelimited. A

continuation-based program, on the other hand, need not be tail recursive – its continuation is delimited

and therefore can be composed.

Consider, for example, a function that maps a list of unknown length n to the list of its prefixes.

Its continuation is delimited and non-linear:

let test_prefixes candidate =

(candidate [] = [[]]) &&

(candidate [1] = [[]; [1]]) &&

(candidate [2; 1] = [[]; [2]; [2; 1]]) &&

(candidate [3; 2; 1] = [[]; [3]; [3; 2]; [3; 2; 1]]);;

180 O. Danvy / Getting There and Back Again

let rec prefixes_cb vs k = (* ’a list -> (’a list -> ’b) -> ’b list *)

k [] :: match vs with

[] -> []

| v :: vs’ -> prefixes_cb vs’ (fun a -> k (v :: a));;

let prefixes vs = (* ’a list -> ’a list list *)

prefixes_cb vs (fun a -> a);;

Ostensibly, it proceeds in n recursive calls, even though the size of its result is quadratic in n:

let prefixes_gen vs = (* ’a list -> ’a list list *)

list_fold_right (fun k -> k [] :: [])

(fun v ih k -> k [] :: ih (fun a -> k (v :: a)))

vs

(fun a -> a);;

The key is to compose each of its successive continuations to construct the successive prefixes, some-

thing that can also be achieved in CPS by layering continuations [25]:

let rec prefixes_cps vs k mk =

(* ’a list -> (’a list -> (’b -> ’c) -> ’c) -> (’b list -> ’c) -> ’c *)

k [] (fun p ->

match vs with

[] -> mk (p :: [])

| v :: vs’ -> prefixes_cps vs’

(fun p mk -> k (v :: p) mk)

(fun ps -> mk (p :: ps)));;

let prefixes’ vs = (* ’a list -> ’a list list *)

prefixes_cps vs (fun p mk -> mk p) (fun ps -> ps);;

E.4. Splitting continuations

Based on the type isomorphism between A + B → C and (A → C) × (B → C), we can split the

continuation into two in the definition of list_index_rtl_cps from Appendix E.1:

let list_index_rtl_cps2 vs_given n_given = (* ’a list -> int -> ’a option *)

assert (n_given >= 0);

let rec visit vs k_Index k_Found = (* ’a list -> (int -> ’a option) ->

(’a -> ’a option) -> ’a option *)

match vs with

[] -> k_Index n_given

| v :: vs’ -> visit vs’

(fun n -> if n = 0 then k_Found v else k_Index (pred n))

(fun v -> k_Found v)

in visit vs_given

(fun _ -> None)

(fun v -> Some v);;

where we can also η reduce fun v -> k_Found_it v into k_Found_it. Instead of passively threading

k_Found_it from its point of definition to its point of use, we can drop this parameter from its point

of definition to its point of use and simplify its application [23]:

O. Danvy / Getting There and Back Again 181

let list_index_rtl_cb vs_given n_given = (* ’a list -> int -> ’a option *)

assert (n_given >= 0);

let rec visit vs k = (* ’a list -> (int -> ’a option) -> ’a option *)

match vs with

[] -> k n_given

| v :: vs’ -> visit vs’ (fun n -> if n = 0 then Some v else k (pred n))

in visit vs_given (fun _ -> None);;

In this parameter-dropped definition, visit only uses its continuation until n denotes 0, witness the

following trace that features

• a complete series of tail calls to visit where continuations are accumulated, followed by a complete

series of tail calls to these accumulated continuations when the list is too short, and

• a complete series of tail-calls to visit where continuations are accumulated, followed by an inter-

rupted series of tail calls to these accumulated continuations when the list is long enough:

traced_list_index_rtl_cb show_int [2; 1; 0] 5;;

list_index_rtl_cb [2; 1; 0] 5 ->

visit [2; 1; 0] continuation_0 ->

visit [1; 0] continuation_1 ->

visit [0] continuation_2 ->

visit [] continuation_3 ->

continuation_3 5 ->

continuation_2 4 ->

continuation_1 3 ->

continuation_0 2 ->

list_index_rtl_cb [2; 1; 0] 5 <- None

- : int option = None

traced_list_index_rtl_cb show_int [5; 4; 3; 2; 1; 0] 3;;

list_index_rtl_cb [5; 4; 3; 2; 1; 0] 3 ->

visit [5; 4; 3; 2; 1; 0] continuation_0 ->

visit [4; 3; 2; 1; 0] continuation_1 ->

visit [3; 2; 1; 0] continuation_2 ->

visit [2; 1; 0] continuation_3 ->

visit [1; 0] continuation_4 ->

visit [0] continuation_5 ->

visit [] continuation_6 ->

continuation_6 3 ->

continuation_5 2 ->

continuation_4 1 ->

continuation_3 0 ->

list_index_rtl_cb [5; 4; 3; 2; 1; 0] 3 <- Some 3

- : int option = Some 3

#

Discontinuing the computation is characteristic of encoding an exception in direct style. Exceptions

in OCaml, however, are global and monomorphic, so to preserve the polymorphism of the corre-

sponding direct-style implementation, one needs to resort to a parameterless exception and a local

reference:

182 O. Danvy / Getting There and Back Again

exception Found_it;;

let list_index_rtl_dse vs_given n_given =

assert (n_given >= 0);

let optional_result = ref None

in try let rec visit vs =

match vs with

[] -> n_given

| v :: vs’ -> let n = visit vs’

in if n = 0

then (optional_result := Some v;

raise Found_it)

else pred n

in let _ = visit vs_given

in None

with Found_it -> !optional_result;;

The traces are as expected, namely

• a complete series of recursive calls to visit followed by a complete series of returns when the list

is too short, and

• a complete series of recursive calls to visit followed by an interrupted series of returns when the

list is long enough:

traced_list_index_rtl_dse show_int [3; 2; 1; 0] 10;;

visit [3; 2; 1; 0] ->

visit [2; 1; 0] ->

visit [1; 0] ->

visit [0] ->

visit [] ->

visit [] <- 10

visit [0] <- 9

visit [1; 0] <- 8

visit [2; 1; 0] <- 7

visit [3; 2; 1; 0] <- 6

- : int option = None

traced_list_index_rtl_dse show_int [5; 4; 3; 2; 1; 0] 3;;

visit [5; 4; 3; 2; 1; 0] ->

visit [4; 3; 2; 1; 0] ->

visit [3; 2; 1; 0] ->

visit [2; 1; 0] ->

visit [1; 0] ->

visit [0] ->

visit [] ->

visit [] <- 3

visit [0] <- 2

visit [1; 0] <- 1

visit [2; 1; 0] <- 0

- : int option = Some 3

#

O. Danvy / Getting There and Back Again 183

Dear Reader:

Thanks for getting acquainted further with “There and Back Again.” As a farewell gift,

here are some more programming exercises.

Reversing a list, again:

Given a list of length n, where n is unknown, construct its reverse in n recursive

calls without using an accumulator. Not using an accumulator means that when ex-

pressing your solution using either fold functional for lists (i.e., list_fold_right

or list_fold_left, they give the same result here), the first argument of the fold

functional should not be a function.

Deciding whether a list is a self-convolution:

Given a list of pairs of length n, where n is unknown, determine whether this list

represents a self-convolution in n recursive calls.

Decomposing a symbolic convolution into its two components:

Given a symbolic convolution [(x1, yn), (x2, yn−1), ..., (xn−1, y2), (xn, y1)], where

n is unknown, construct its two components [x1, x2, ..., xn] and [y1, y2, ..., yn] in n

recursive calls.

Swapping parity-indexed elements in lists of odd length:

Implement a function that, given a list of odd length, swaps its even-indexed elements,

so that, e.g., [0; 1; 2; 3; 4; 5; 6] is mapped to Some [6; 1; 4; 3; 2; 5; 0],

and another that, given a list of odd length, swaps its odd-indexed elements, so that,

e.g., [0; 1; 2; 3; 4; 5; 6] is mapped to Some [0; 5; 2; 3; 4; 1; 6]. Given a

list of length n, where n is unknown, the two functions should proceed in n recursive

calls. Any list of even length should be mapped to None.

Swapping parity-indexed elements in lists of even length:

Guess what.

Twice as fast:

Assume a function rev_stutter2 that maps a list [x1, x2, ..., xn−1, xn] to [xn, xn,
xn−1, xn−1, ..., x2, x2, x1, x1]. Given two lists, the first one of length n, where n is

unknown, detect whether the second list is the result of applying rev_stutter2 to the

first list, in n recursive calls.

At least two solutions exist: one that recurses on the first list, and another that recurses

on the second list.

Do feel free to share your solutions with the author by email, just for the joy of func-

tional programming and proving. There are no open problems here: the point of these

exercises is that if you can solve any of them, you do get TABA.

	1 Background and introduction
	2 Convolving a list with itself
	2.1 First-order programming
	2.2 Formalizing and proving the first-order program
	2.3 Higher-order programming
	2.4 Formalizing and proving the higher-order program
	2.5 Summary, synthesis, and significance

	3 Testing whether two lists are reverses of each other
	3.1 A first-order implementation in two passes
	3.2 A first-order and tail-recursive implementation
	3.3 A higher-order and tail-recursive implementation
	3.4 A first-order and recursive implementation, lambda-lifted
	3.5 A first-order and recursive implementation, lambda-dropped
	3.6 A more perspicuous solution where both lists are first traversed
	3.5 A more perspicuous first-order and recursive implementation, lambda-dropped
	3.4 A more perspicuous first-order and recursive implementation, lambda-lifted
	3.3 A more perspicuous higher-order and tail-recursive implementation
	3.2 A more perspicuous first-order and tail-recursive implementation
	3.1 A more perspicuous first-order implementation in two passes
	3.0 Summary, synthesis, and significance

	4 Convolving two lists
	4.1 Implementations in continuation-passing style
	4.1.1 Version that returns over the second list
	4.1.2 Version that returns over the first list

	4.2 First-order (defunctionalized) implementations
	4.2.1 Version that returns over the second list
	4.2.2 Version that returns over the first list

	4.3 Implementations in continuation-passing style after lightweight fission
	4.3.1 Version that returns over the second list
	4.3.2 Version that returns over the first list

	4.4 First-order (defunctionalized) implementations after lightweight fission
	4.4.1 Version that returns over the second list
	4.4.2 Version that returns over the first list

	4.5 Towards implementations in direct style
	4.5.1 First version: reversing the first list
	4.5.2 Second version: reversing the second list

	4.6 A more perspicuous solution where both lists are first traversed
	4.7 More perspicuous implementations in continuation-passing style
	4.7.1 Version that returns over the second list
	4.7.2 Version that returns over the first list

	4.8 More perspicuous first-order (defunctionalized) implementations
	4.8.1 Version that returns over the second list
	4.8.2 Version that returns over the first list

	4.9 More perspicuous implementations in continuation-passing style after lightweight fission
	4.9.1 Version that returns over the second list
	4.9.2 Version that returns over the first list

	4.10 More perspicuous first-order (defunctionalized) implementations after lightweight fission
	4.10.1 Version that returns over the second list
	4.10.2 Version that returns over the first list

	4.11 Towards more perspicuous implementations in direct style
	4.11.1 Version that returns over the second list
	4.11.2 Version that returns over the first list

	4.12 Summary, synthesis, and significance

	5 Deciding whether a lambda term has the shape of an eta redex
	5.1 Lambda terms with names
	5.2 Lambda terms with de Bruijn levels
	5.3 Lambda terms with de Bruijn indices

	6 There and forth again (TAFA)
	6.1 Indexing a list from the right
	6.1.1 Programming
	6.1.2 Formalizing and proving

	6.2 Computing the common suffix of two lists
	6.2.1 Finding the common suffix of two proper lists that have the same length
	6.2.2 Traversing the suffix of a proper list to find a suffix of this list
	6.2.3 Finding a suffix of the longer list with the same length as the shorter list
	6.2.4 All in all

	7 Convolving lists that may not have the same length
	7.1 Convolving a list and the prefix of a longer list (and vice versa)
	7.2 Convolving a list and the suffix of a longer list (and vice versa)

	8 Conclusion
	A Defunctionalization and refunctionalization
	A.1 An example of defunctionalization
	A.2 Refunctionalization
	A.3 Significance of defunctionalization and refunctionalization

	B Generic programming with lists
	C Lambda-lifting and lambda-dropping
	D Tail calls, non-tail calls, lightweight fusion, and lightweight fission
	E A vademecum for continuations
	E.1 Direct style vs. Continuation-Passing Style (CPS)
	E.2 Continuations and their scope
	E.3 Continuation-passing vs. continuation-based programs
	E.4 Splitting continuations

