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1. Introduction

Basic notions.

Integral quadratic forms (that is, homogeneous polynomials of degree two with integer coefficients),
have been a central topic of study, sometimes indirectly, in many areas of abstract algebra and graph
theory (see for instance [[7,[19} 3} 15, 8] and the introductory notes of [2,[1,19]). One approach, initiated
by Simson in [22} 23] and developed intensively by Simson and collaborators, see for instance [15, 116,
170 250 131} 12261 27, 281, 29]], consists in substituting ¢ by the (upper triangular) standard morsification
by : Z" x Z" — Z of q, and focuses on the Coxeter formalism of b,. In this way, one defines the
strong Gram congruence among unit forms, and attaches the Coxeter invariants of b, to g, which
are also strong Gram invariants of ¢ (cf. [28, Lemma 1.3] or [13] Lemma 4.6]), a point of view
mainly motivated from the Auslander-Reiten theory of associative algebras, see [22} 23] and references
therein.
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The aim of this paper is to explicitly determine some classical Coxeter invariants, namely the Cox-
eter polynomial and the (reduced) Coxeter number, associated to a connected non-negative unit form
of Dynkin type A, (r > 1). Work in this direction may be found, for instance, in [23} Theorem 3.3],
[24, Theorem 3.2], [16, Theorem 5.1] and [10, Theorem 2.3] for small number of variables, in 28
Theorem 2.4] and [29] Theorem 2.2] for the Dynkin types A and D of corank zero, respectively, and
in [11}, Theorem 1.10] and [30, Corollary 11] for quadratic forms associated to principal posets (corank
one). We follow the graph theoretical technique introduced in [12]], and applied recently to the study of
the strong Gram congruence in [[13[]]. We refer the reader to the introduction of [[13[] for some historical
remarks and further references for these methods.

Throughout the paper we identify an integral quadratic form ¢ : Z" —Z, q(¥) =31 <; < j<p ,jTi %5
with the upper triangular matrix éq = (gij) givenby g; j = ¢;jif 1 <i<j<mnandg; = 0if
1 < j < i < n. This matrix is referred to as (non-symmetric or upper triangular) Gram matrix of ¢,
and is the unique upper triangular integer matrix satisfying

q(z) = xtréq:v, for any column vector x in Z".

The quadratic form ¢ is unitary (or a unit form) if all diagonal entries of éq are equal to 1. The
symmetric Gram matrix G, of ¢ is given by G, = éq + Cvr"q”. Two unit forms ¢ and ¢’ are called
weakly (resp. strongly) Gram congruent, if there is a Z-invertible n x n matrix B such that G, =
B¥G,B (resp. éq/ = BtréqB), written ¢/ ~B qor ¢’ ~ q (resp. ¢ ~® qor ¢ ~ ¢). In what follows
we use standard notions and results on quadratic forms, such as positivity, non-negativity, corank,
connectedness and Dynkin type (cf. [4} 31} [2, 27]]). For instance, the weak Gram classification of non-
negative unit forms, achieved in [4] and [25] with different methods, assigns a unique Dynkin type
Ay, Dy, or E, (forn > 1, m >4 or p € {6,7,8}) and a non-negative corank to any weak congruence
class of non-negative unit forms. Since, clearly, the strong Gram congruence refines the weak one, it is
natural to approach the strong classification problem by the cases of the weak classification. Here we
continue the study of the strong Gram congruence among non-negative unit forms of Dynkin type A,
started in [13]]. For convenience, we present relevant definitions and constructions of [13]] as needed.

Note that if ¢ is a connected non-negative unit form in n > 1 variables, then the corank c of ¢ is
smaller than n, since n — c is the rank of ¢q. For 0 < ¢ < n, we denote by UQuad$ (n) the set of
connected non-negative unit forms in n vertices, with corank ¢ and Dynkin type A,,_,

UQuadj(n) = {q: Z" — Z| qis connected, ¢ = 0, Dyn(¢q) = A,,_. and cork(q) = c}.

Partitions and permutations.

A partition 7 of an integer m > 1 (written 7 - m) is a non-increasing sequence of positive integers
7 = (71,...,Ty(x)) for some £(m) > 1, such that m = Zi(g ma. The integer /() is called length
or number of parts of 7. For instance, let p be a permutation of the set {1, ..., m}. The orbits of p

determine a set-partition
{1,....om}=Pru...u Py,
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for some ¢ > 1 (that is, two indices v,v" € {1,...,m} belong to the same subset P, if and only if
there is t > 0 such that v’ = p’(v), and for any element v there is a subset P, containing v). The
sequence of cardinalities of Py, ..., P, ordered non-increasingly, is a partition 7(p) of m, usually
called the cycle type (or cycle structure) of the permutation p (cf. [20, §2.2]). Conversely, for any
partition m = (7rq, ..., m) of m, denote by p, the permutation of {1,...,m} given as composition of
cycles of length .,

pr=0,...,m)(m+1,...,m+me) - (m+...+7m_1+1,....m—1m).

Clearly, m(p,) = m. It is well known that for two permutations p and p’ of the set {1,...,m}, we
have 7(p) = 7(p’) if and only if p and p’ are conjugated permutations (that is, p’ = £p&~! for some
permutation & of {1,...,m}, see for instance [20, Proposition 2.33]). In particular, if P(p) denotes
the matrix with P(p)e, = e, for any v € {1,...,m} where e, is the v-th canonical vector of
Z™ (P(p) is called the permutation matrix of p), then the characteristic polynomial char p(,,) () of
P(p) only depends on the cycle type 7(p) of p. Since the characteristic polynomial of the permutation

matrix of a cycle of length r is (\" — 1), if w(p) = (71, ..., 7) then the characteristic polynomial of
P(p) is
£()
charp(,)(A) = 1_[()\”“ —1).
a=1

Define the characteristic polynomial of a partition 7 as the characteristic polynomial of the permu-
tation matrix P(pr), that is, char;()) := charp(, j(\). By the comments above, char,()) is the
characteristic polynomial of the permutation matrix of any permutation with cycle type 7.

For arbitrary ¢ > 0 and m > 1, we consider the set of partitions of the integer m having their
number of parts restricted by c as follows,

Pi(m)={rkm|0<c—({(n)—1)=0 mod 2}.

Overview of the paper.

The Coxeter matrix @, of a unit form ¢ is given by ®, = —(v}'gré;1 (compare with more usual
definitions as given in [2] or [25]]). The characteristic polynomial of ®, is called Coxeter polynomial
of ¢, and is denoted by ¢4(A). It is well known that if ¢’ ~ ¢ for a unit form ¢/, then ¢/ (X) = @4(N)
(see for instance [13, Lemma 4.6]). Our goal is to prove the following result (see Theorem [6.3]below).

Main theorem.

For any integers 0 < ¢ < n, there is a surjective function
UQuad$ (n) ===~ P¢(n —c + 1),
which is invariant under strong Gram congruence, and such that for any ¢ in UQuad§ (n),

Pq(A) = (A = 1) chareg(g) (V).
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The partition ct(q) will be referred to as cycle type of ¢, and the induced function on the quotient
UQuad§(n)/ ~ will be also denoted by ct. Although the constructions leading to the proof of
the Main Theorem are straightforward, most of the preparatory arguments are fairly technical. For
convenience, we sketch the steps of the proof (see precise definitions below).

i) For a quiver ) with m vertices and n arrows, and vertex-arrow incidence matrix /(()), consider
the quadratic form q¢ : Z" — 7 given by

wale) = 5I1@)]

It is shown in [12] that the set UQuad (n) is precisely the set {gg} over all connected loop-
less quivers () with n arrows and m = n — ¢ + 1 vertices. This “quiver realization” facilitates
the study of weak and strong Gram congruences within the set UQuad$ (n), as shown in [13].

ii) Using (i), the definition of the cycle type ct(q) of a quadratic form ¢ in UQuad§ (n) follows
from the notion of Coxeter-Laplace matrix Ag of a loop-less quiver () introduced in Theo-
rem [3.3] where it is shown that A is the permutation matrix of a permutation fé of the set of
vertices of ). The construction of € and the proof of Theorem [3.3lis the purpose of Sections
and[3

iii) The strong Gram congruence invariance of the cycle type ct follows from Theorem [3.3] and
some observations on the mapping ) — ¢ presented in Lemmal6.1]

vi) Some technical considerations to determine the image of ct are given in Sections dland[8l In
particular, in Definition[5.2] we fix a set of quadratic forms ¢ in UQuad{ (n) representing those
Coxeter polynomials permitted by Proposition

v) The Coxeter polynomial of a member of UQuad§ (n) is computed in Corollary [4.3] with help
of Theorem 3.3] (see also Algorithm [4)).

The Main Theorem is proved in Section [6] collecting the results of previous sections. As applica-
tion, in Corollary [6.4 we determine the (reduced) Coxeter number of any unit form ¢ in UQuad§ (n).
In Section [7] we provide algorithms to compute the cycle type (Algorithms [I] and 2)) and Coxeter
polynomials of such unit forms (Algorithms [3 and 4), and comment on their spectral properties (Re-
mark [7.1)).

All matrices in the paper have integer coefficients. The canonical basis of Z™ is denoted by
e1,...,e, and the identity n x n matrix is denoted by I, and simply by I for appropriate size.
The transpose of a matrix A is denoted by A*Y, and if A is an invertible square matrix, then A"
denotes (A~1)¥ . If Ay, ..., A, are the columns of A, we write A = [A1|As]...|A,].

2. Minimally monotonous walks

In this section we recall the definition of a quiver () and its (vertex-arrow) incidence matrix I(Q). It
was shown in [13|, Proposition 4.4] that if () has no loop, and G is the upper triangular Gram matrix
of () (defined below), then I (Q)Gé1 is also the incidence matrix of a loop-less quiver, called inverse
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quiver of @ and denoted by Q! (Proposition 2.2l below). The integer matrix 1(Q~!) = I (Q)éél
plays a fundamental role in our discussion, and deserves a careful analysis. To this end, minimally
monotonous (increasing or decreasing) walks were introduced in [13]]. Here we use such walks to give
an alternative description of I(Q~!) (Lemma[2.3)), which leads to part of the proof of Theorem 3.3l

By quiver we mean a quadruple @ = (Qo,Q1,s,t) such that Qy and Q) are finite sets (called
vertices and arrows of () respectively), and s,t : Q1 — (o are functions (called source and target
function of Q). Since we want to associate to (), unequivocally, an incidence matrix (@), throughout
the paper we assume that both the set of vertices and the set of arrows of any quiver are totally
ordered, and write ¢ < j for arrows 4,7 in J1, and v < w for vertices v, w in y. We identify
isomorphic quivers under the assumption that the isomorphism preserves the given orderings on the
sets of vertices and arrows. Thus, if Q1] = n and |Qo| = m, we may assume without loss of
generality that Q1 = {1,...,n}and Qp = {1,...,m}.

The m x n (vertex-arrow) incidence matrix /(Q) of @ is given by,
I(Q) = [1iy| ... |I;,], where I; = eg(;) — e(;) for an arrow i,

where e, is the v-th canonical vector in Z™ and i1, . . ., i, are the arrows in (). Note that I; = 0 if and
only if 7 is a loop in Q. Observe also that if @’ is a quiver obtained from () by a reordering of the set of
arrows of (), say via a permutation p of Q1, then 1(Q’) = I(Q)P(p). Similarly, if Q" is obtained from
@ by a reordering of the set of vertices of @, say by a permutation £ of Qq, then I(Q") = P(£)I(Q).

For a quiver @ = (Qo,Q1,s,t) and an arrow i € Qo we take v(i) = {s(i),t(¢)}, the set of
vertices incident to arrow ¢. For a vertex v and an arrow ¢ in @, consider the following subsets of
arrows of @),

Qi(v) = {jeQi|vev(i}
Qi (v,i) = {jeQi|vev(j)andj<i},
QF(v,i) = {jeQi|vev(j) andj<i},
and take similarly Q7 (v,7) and Q7 (v, ).
For a walk o = (v_1, %0, V0, %1, V1, - -, Vs_1,i¢,v¢) in QQ we use the notation

— s€0,€1 €0 1 —
a=igi -1, forsigns e = +1,

where we take ¢, = +1ifs(i;) = v;—1 and t(i;) = vy, and ¢, = —lincases(i¢) = vy and t(i;) = vy
fort = 0,...,¢ (as usual, exponents +1 are omitted). The integer ¢ + 1 is called length of «, and if
¢ = —1 then « is called a trivial walk. We take s(«v) = v_1 and t(«) = vy, and call these vertices
origin and target of the walks o, respectively. The reversed walk of «, denoted by o !, is given by
™t =i, %, """ iy . The following special walks were considered in [[13] Definition 4.1]:

a) We say that the walk ov = i¢’4{" - - - 4;* is minimally decreasing if

irp1 = max Q7 (vg,4), fort=0,...,0—1.
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b) If « is minimally decreasing, we say that « is left complete if whenever S« is minimally
decreasing for some walk (3, then [ is a trivial walk. Similarly, « is right complete if whenever
«f is minimally decreasing for some walk 3, then 3 is a trivial walk. A left and right complete
minimally decreasing walk will be called a structural (decreasing) walk.

We will mainly consider the following particular minimally decreasing walks. For an arrow ¢ there
are exactly two right complete minimally decreasing walks starting with arrow ¢, one starting at vertex
s(i) and denoted by aé(i“), and one starting at vertex t(7) and denoted by aé(i_l). To be precise,
if

ag(ith) = (v_1,i0,v0, 11,01, -, V1,17, p),
then v_y = s(i), g = 4, irp1 = max Q7 (v, 4¢) fort = 0,...,¢ — 1, and Q7 (ve,i¢) = . Similarly,
if

ag(i™") = (v_1,d0,v0, 01,01, - -, Ve—1,1g,00),
then v_1 = t(i), ig = 4, {441 = max Q5 (v, 4) fort = 0,...,¢ — 1, and Q5 (v¢,7¢) = . Note that
the walks a,(i*") are determined by the initial vertex and the first arrow.

Consider now a vertex v and take ig = max Q1 (v). If v = s(ip) (resp. if v = t(ip)) then o@(z‘arl)
is also left complete (resp. aé(ia 1) is also left complete), and it is therefore, a structural decreasing

walk starting at v, denoted by o@(v). If v is an arbitrary structural decreasing walk starting at v, then
the first arrow of v is necessarily ig (otherwise «y could be extended on the left keeping the minimally
decreasing property), and therefore, v = aé(v).

Dually, the minimally increasing walks o, (i*") are defined as follows. If

ab (i) = (v-1,i0,v0, 11,01, - -, Vo117, p),

then v_y = s(i), ip = 4, it11 = min Q7 (vg,4¢) fort = 0,...,¢ — 1, and Q7 (v¢, i¢) = . Similarly,
if
aa(iil) = (’l),l,Z'O,’l)O,’Lll,”Ul, e >U€—1>Z’Z>U€)a

then v_1 = t(i), ip = 4, 4441 = MIn Q7 (vy,4) fort = 0,...,0 — 1, and Q7 (vg,ip) = &. If
io = min Q1 (v), take o (v) := ab(ig!) if v = s(ig), and afy(v) = a(iy') if v = t(ig). The
following are straightforward observations.

Remark 2.1. Let ) be a loop-less quiver, with vertex v € (Jy and arrows i, j € (1.
i) If w = t(ag(v)), then 045(71}) = o@(v)*l.

ii) If i appears in ofqr2 (v) in the positive orientation (resp. in the negative orientation), then t(a, 3))
v (resp. t(ag (i) = v).

iii) Ifv = t(o@(iil)), then aé(v) = aé(iil)_lw, for some walk ~.
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The inverse quiver of a loop-less quiver Q) = (Qq, Q1,s,t), as defined in [[13, Definition 4.2], is
the quiver Q! = (Qf, Q%,s*,t*) with the same set of vertices as (), the same number of arrows as
@ (that is, Qf = Qo and |Q7| = |Q1]), and such that for each arrow ¢ in () there corresponds an arrow
i* in Q7! with

s*(i*) = t(ag(i™)), and t*(i*) = t(ag(i*)).
The arrows in Q! inherit the total ordering of the arrows in () via the correspondence i — i*. When
allowed by the context, we will drop the asterisk * on arrows of Q. The unique upper triangular

matrix G such that I(Q)¥1(Q) = CVJQ + éth is called the triangular Gram matrix of a quiver
(cf. [13} Definition 3.1]).

Proposition 2.2. ([13], Proposition 4.4)
If Q is a loop-less quiver, then Q! is a loop-less quiver satisfying (Q~1)~! = Q,

Q") =I(Q)G,", and Go-1 =Gy
Moreover, @ is connected if and only if Q! is connected.
Recall from [12, §4.1] that if o = i¢i{" - - -4,/ is a walk in a quiver Q with n arrows, then the

incidence vector of « is the vector inc(a) € Z" given by

L

inc(a) = ) erey,,

t=0

where e; denotes the canonical vector of Z" corresponding to arrow ¢. We will need the following
alternative description of the inverse of a quiver.

Lemma 2.3. Let Q) be a loop-less quiver with vertices vy, . .., vy,, and let Q! be its inverse quiver.
Then

1@ = [imefag ()] linc[ag (vn)]|

Proof:
b1
Let b be the column of [ (Q‘l)tr corresponding to vertex v € (Jg. Hence b = | : |, where
by,
+1, ifs*(i*) = v,
b; = =1, ift*(i*) = v,
0, ifvév(i*).
On the other hand, take azg(v) =i0dft iyt = (v_1,%0, V0,1, V1, - - ., Vg1, s, v¢) (hence v_y =

v). We prove that
A) Ifep = +1then s*(if) = v, and if ¢, = —1 then t*(i}) = v.

B) Ifv e v(j*) for some arrow j* in Q~L, then j = i; for some t € {0,. .. (}.
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To show claim (A) assume first that ¢, = +1, that is, s(i;) = v;—; and t(i;) = v;. Then, by
definition of s* and Remark 2.1](77),

s*(if) = tlag(i; 1) =vo1 = .
Assume now that ¢, = —1, that is, s(i;) = vy and t(i;) = v;_;. Then, as before, we have t*(i}) =
t(aé(ijl)) = 0.
To show claim (B) assume first that s*(5*) = v, that is,

v="t(ag(j ™)

By Remark 2T|(7ii), there is a walk y such that o, (v) = ag(j7)'y. In particular, j = i; for some
t € {0,...,¢}. Assuming now that t*(;*) = v, then v = t(aé(j“)), and we proceed analogously
using Remark 2.11(4i7).

Finally, the identity b = inc [ag(v)] follows directly from (A) and (B). =

3. Permutation of vertices determined by a quiver

In this section we show the main technical result of the paper, Theorem [3.3] The theorem introduces
the Coxeter-Laplace matrix A of a loop-less quiver @, and shows that it is a permutation matrix that
can be obtained combinatorially from the structural walks of Section [2l This construction yields one
of the main definitions of the paper: the cycle type of a quiver.

For a connected loop-less quiver @ = (Qo, Q1), consider the function 5{2 1 Qo — Qo given by,

§o () = t(ag(v)),

and take similarly 55 (v) = t(aé(v)). Next we show that &, is a permutation of (o, referred to as
permutation of vertices associated to the quiver ().

Lemma 3.1. For any loop-less quiver () and any vertex v € (o we have
5 (q) = v.
In particular, g is invertible and (5&)_1 = 55.

Proof:
Taking w = £, (v), by Remark 2.1(7) we have aé(w) = aé(v)_l, and

4 (w) = t(ah(w)) = tlag(v)™h) = s(ag(v)) = v.
In particular, fé is injective, hence invertible with inverse 55. m]

We need another preliminary observation.
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Remark 3.2. For any loop-less quiver () with incidence matrix (@), and any walk « in ), we have
I(Q)ﬂ(a) = €s(a) — €t(a):

Proof:

Clearly, the claim holds for trivial walks, and by definition of (@) if & = i for some arrow 7 (since
I(Q) = [I1]...|I,] where I; = e4;) — e¢(;) € Z™ and inc(i) = e;). The claim holds similarly for
a =i~ ! (since inc(i~t) = —e;).

Now, for a concatenated walk o5 we have inc(af) = inc(«) + inc(f3), and therefore, by induc-
tion on the length of a walk,

I(Q)inc(aB) = I(Q)inc(a) + I(Q)inc(B) = egn) — €¢(a) + €s(8) — €(3)
Cs(a) ~ €t(8) = Cs(af) T Ct(aB)
since () = €4(g). This completes the proof. m]

Let @ be aloop-less quiver with incidence matrix I(Q), inverse quiver Q! and associated permu-
tation of vertices & - Denote by @ the underlying graph of Q). Let Inc(Q) be the incidence bigraph
of @ defined in [13} Definition 3.3] (see also [12])) as follows. The set of vertices Inc(Q)o of Inc(Q)
is the set of arrows of @ (that is, Inc(Q)o = @1). The number of signed edges in Inc(Q) between
vertices 4 and j is the cardinality of v (i) n v(j). The sign of such arrows is —1 if ¢j or ji is a walk in
@, and itis +1if 57 or i~'j is a walk of Q. For a bigraph A denote by M}(A) the upper trian-
gular adjacency matrix of A (resp. by Adj(A) = K/dJ(A) + K(Tj(A)tr the symmetric adjacency
matrix of A), and by D the diagonal matrix of degrees of A.

Theorem 3.3. Let () be a connected loop-less quiver with m vertices and n arrows. Then the follow-
ing identities hold:

Go=I1Q7I(Q) = 2L, - Adj(Inc(Q)),
Lo:=1QIQ)" = Dg—Adj(@Q),

bo =L, ~IQTIQ) = -G&G,,

Mg =T, —I1(QNIQ" = P&,

where for a permutation p, the matrix P(p) has as i-th column the canonical vector e,;). Moreover,

i) The Gram matrix G¢ of ) has Dynkin type A,,_; and corank n — m + 1, and every such
Gram matrix can be obtained in this way.

ii) The Laplace matrix L of ) has corank one, with null space generated by the vector 1 having
all entries equal to 1.

Since the matrix @) is the Coxeter-Gram matrix of the quadratic form g¢, we refer to the matrix
Agq as the Coxeter-Laplace matrix of Q).
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Proof:
The expression for G and claim (i) were shown in [12] (see also [13, Lemma 3.4 and Corollary 3.6]).
For a vertex v € Q, consider the v-th column b¥ = I(Q)*e, of the matrix I(Q)**. By definition,
the entries of b¥ are indexed by the arrows of (), and are given by
+1, ifs(i) = v,
by =< —1, ift(i)=v

0, otherwise,

since @ has no loop. Then (bV)**b? = Zite(b;’)2 is precisely the number of arrows ¢ such that
s(i) = v or t(i) = v, that is, the degree of v as a vertex in the underlying graph Q of (). Moreover,
for vertices v # v’ and an arrow i € Qy, we have bY'bY = —1 if i joins vertices v and v’ (in any
direction), and bYbY = 0 otherwise. Then —(bV)b”" = e, —b¥bY" is the number of edges in Q
joining vertices v and v’. Therefore, the identity

I(Q)I(Q)™ = Dg — Adj(Q),

holds. To show (i), recall that the i-th row of I(Q)*" is eg(;) — ey(;), which implies that I(Q)**1 = 0.
Assume now that @ is connected, and that = € Z™ is a non-zero vector such that (Q)*z = 0. Then
x, = X, for any vertices v, v’ joint by an arrow in @, thus, the connectivity of ) implies that the
vector z is an integer multiple of 1. This shows claim (i), since the null space of Lo = I(Q)I(Q)**
is the right null space of I(Q)*r

As shown in [13, Theorem 4.7], using Proposition 2.2l we have
O =1, — I(Q"I(Q ") = L, — I(Q"I(Q)Gy' =T, — (Go + GB)Gy' = —GFG,',
since 1(Q)¥1(Q) = Gg = G + ég It remains to show that Ag = P(¢,).
For any vertex v € Qy, Lemma[2.3]and Remark [3.2] yield
Age, = [I-I1(Q NI(Q)*]e, = e, — I(Q Minc[af, ., (v)]

- % [es»(a*_ @) ~ (e, on] = 8 L@
since s(ag, 1 (v)) = vand t(a), 1 (v) = (v). This shows that Ag = P(§5 ).
Using the identity 7(Q~!) = I (Q) 5! from Proposition 2.2} observe also that
Aohgt = - f(@*)f(@)“][l — QL@

= I-1(QHI(Q) — IQIQ )" + Q™ HI(Q"I(@Q)I(Q ™)™
= 1-1@Q7NGEIQ "~ 1(Q NGel(@ )™ + 1(Q )Gl (@™
— I-1(Q7)[Gf + g~ Go| Q) =1,

that is, (£5) " = 55,1. By Lemma 3.1l we get

Ag = P(¢54) = P((€5) ™) = P(&g),

which completes the proof. m]
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4. Cycle type, restrictions and transpositions

This technical section presents some simple quiver constructions to obtain prescribed permutations
of vertices. The main result, Proposition describes the possible permutations obtained among
connected loop-less quivers of a given number of vertices and arrows.

Let a be a walk in a loop-less quiver ). Denote by QQ[«a] the quiver obtained from () by adding
an arrow from s(a) to t(«), placed last in the total ordering in the arrows @1 of ). For two vertices
v # w in @, denote by [v, w] the permutation of @ that swaps vertices v and w (called transposition
of v and w).

Lemma 4.1. Let Q be a loop-less quiver, and take Q' = Q%) the quiver obtained from Q by removing
the maximal arrow ¢ of ()1. Then

€5 = £ols(i) 6.

Proof:

Let v be a vertex of @ with v ¢ v(i). Then Q1(v) = Q}(v) and i > max Q1 (v), by maximality of
i. Hence a(v) = ag,(v), thatis, {5 (v) = {q,(v). Observe that a(s(i)) = ic, (t(i)) and that
ag(t(i)) = i_laé,(s(i)). Hence £ (s(i)) = {q,(t(4)) and £, ((2)) = £, (s(¢)), which shows the
claim. |

Let p be a permutation of a finite set Qg. The cycle type ct(p) of p is the (non-increasing)
sequence of cardinalities of the orbits of p. The cycle type ct(p) of p is a partition of the integer |Qo].

Definition 4.2. For a connected loop-less quiver (), define the cycle type ct(Q) of @ as the cycle
type of the permutation of vertices ¢, determined by Q,

ct(Q) = ct(€g)

By Coxeter polynomial of a loop-less quiver () we mean the characteristic polynomial ¢¢ of the
Coxeter matrix ®¢ of ). Recall that if char,s(\) denotes the characteristic polynomial of a square
matrix M, and that if A and B are m x n and n X m matrices respectively, then

charga(A\) = A" ™charap()),

see for instance [33] §2.4]. As a consequence of Theorem[3.3] we get the following particular descrip-
tion of corresponding Coxeter polynomials.

Corollary 4.3. Let () be a connected loop-less quiver. Then the Coxeter polynomial ¢¢ of @ is given
by
wo(A) = (A — 1)6_1Charct(Q)(A),

L(m)
where chargy (o) (A) = [[ (A™ — 1) if ct(Q) = (71, ..., Ty(m))-

a=1
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Proof:
Using Theorem [3.3] we have
qQ(A) = chargy(\) = char_jpgyerg-1)(A —1)
= (A= 1)"Mchar_jg-1)7Qyw (A — 1) = (A = 1)" "charp, (A)
= (A— 1)cflcharp(£5)()\),

since ¢ — 1 = n — m. The characteristic polynomial of permutation matrices is well known (cf. [33]

§5.6)),

L(m)
char, .— () = AT —1),
rep® = [T0m =)
where ct({;) = m = (m1,...,7y(x)). This shows that po(A) = (A — 1)6_1charct(Q)()\), which
completes the proof. =]

As alternative factorization of the Coxeter polynomial of (), consider the polynomial vi(\) =
M=l NF=2 4 X4 1fork > 1. Then \F — 1 = (XA — 1)1 ()), and

J4
po(\) = (A= D)TFEDT Tug, (), (1)
t=1

where ct(Q) = (m1,...,m) and (¢ — 1) > 0.
Lemma 4.4. Let () be a tree quiver. Then 0 is a cyclic permutation.

Proof:
Consider the linear quiver L with m vertices,

1 2 3 m—2 m—1
L= v ) V3 V4 Ume —> U1 —> Um.-

Then &, (v) = vey1 if t < m, and &/ (vy,) = vy, that is, & is a cyclic permutation. By equation (I)),
L) = vm(N).

Assume now that () is an arbitrary tree quiver. Using [[13, Corollary 3.11 and Proposition 3.13],
we have g1, ~ qq, and in particular pg(A) = @r(A). If ; is not a cyclic permutation, then £ =
¢(ct(Q)) > 1, and again by equation (I)), the polynomial (¢ has 1 as a root. This is impossible since
1 is not a root of ¢r,(A) = v, (N). o

Denote by UQuiv,,(n) the set of connected loop-less quivers having m vertices and n arrows.
We will also use the notation UQuivy, (n) where ¢ = n — m + 1, or simply UQuiv®(n).

Proposition 4.5. For a quiver () in UQuiv,,(n), the cycle type ct(Q) of @ is a partition in P{(m),
wherec =n—m + 1.

Proof:
That ct(Q) — m is clear. We proceed by induction on ¢ > 0. If ¢ = 0, then Q) is a tree, and by
Lemma[.4] £ is a cyclic permutation. In particular £(ct(Q))) = 1 and ct(Q) € PY(m).
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Assume the claim holds for non-negative integers smaller than c¢. Fix n > ¢, take a quiver () €
UQuive,(n) and consider the quiver Q™ obtained from Q by removing the last arrow n.

Case 1. Assume first that Q™) is connected. Then Q) e UQuivfn_l(n — 1), and by induction

hypothesis we have 55(") € P£C_1)(m), that is,

0<(c—1)—[l(ct(Q™)) —1]=0 mod 2.

By Lemma 1] we have £(ct(Q)) = £(ct(Q™)) + 4, where § = 1 if s(n) and t(n) belong to the
same cycle of £, and 0 = —1 otherwise. Hence

0 < (e—1)—[Uct(@™)) —1]
= c—[lct(QM™)) +5—1]+5—1
= c—[l(ct(Q))—1]+d—-1=0 mod 2.

This shows that ct(Q) € P{(m), since 6 — 1 < 0.

Case 2. Assume now that Q™) is not connected, that is, Q™) = Q% L Qt where s(n) € @° and
t(n) € Q. Note that Q% € UQuiv®:(n®) and Qt € UQuivf:Lt (n*) for non-negative integers c®, ct,
ns, nt, mS and m® with &8 + ¢* = ¢, n° + n®* = n — 1 and m® + m* = m. Thus, by induction on c,
we may assume that

ct(€ge) € P (m"), and ct(¢g,) € P (m'),

in case %, ct > 0. If ¢ = 0 or ¢* = 0, we may use induction on n to get the same conclusion, that is,
0<c—[lct(Q®)—1]=0 mod2, and 0<ct—[{(ct(Q"))—1]=0 mod 2.
Note that, by Lemma[LT] we have £(Q) = ¢(Q®) + £(Q*) — 1. Therefore
0.< (¢ — [E(et(@®)) — 1]) + (¢ — [E(et(QY) — 1]) = e — [£(ct(@Q)) — 1] =0 mod 2.

We conclude that ct(Q) € P{(n). =

5. Representative families of quivers

In this section we fix connected non-negative unit forms of Dynkin type A, having as Coxeter poly-
nomial those permitted by Proposition We need the following preliminary observation.

Remark 5.1. Let Q be a loop-less quiver (not necessarily connected) with n arrows. For any distinct
vertices v and w in Q, let Q" be the quiver obtained from @) by adding a pair of parallel arrows from v
to w, labeled as

Then fé, =&o-
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Proof:
Follows from Lemma4.]l i
Let 7 = (my,...,7) be a partition of the integer m > 2, consisting of ¢ = ¢(r) parts. Observe

that 7 € P§(m) if and only if ¢ = £ — 1+ 2d for some integer d > 0. Below we determine a connected

quiver G [7] and its inverse s [7], with cycle type 7 and corank ¢ for such 7 and d > 0, (that is,
connected quivers with m vertices, n = m+ ¢ +2(d — 1) arrows and cycle type 7). Roughly speaking,
we start with a tree on m vertices (which has cycle type (m) by Lemmal4.4)), use Lemmald.]to break
its cyclic components, and then apply Remark [3.1] to obtain the correct corank, without modifying the
associated cycle type.

For a quiver @ with vertices v, w € @y, denote by Q[v, w] the quiver obtained from () by adding
an arrow from v to w, placed last in the ordering of (1. Denote by E,,, = ({v_l) yeo oy U}, &) the quiver
with m vertices vq, ..., v,, and no arrows, and consider the linear quiver A ,, and the maximal star
quiver @m each with m — 1 arrows, given by

K = Eplo1,09][v2,03] - [0m—2, Vm—1][0m—1,0m],

and

§m = Em[vla 1)2][’01, 1)3] T [vla vmfl][vla Um]-
Definition 5.2. For any partition 7 = (7, ..., ) of an integer m > 2, and any d > 0, consider the
connected quivers Kd[w] and S” [7], with m vertices and n = m + £ + 2(d — 1) arrows, defined as
follows. If ¢ > 1, take the indices i1 = m—my,i9 = m— (w1 +m2),...,ip—2 = m—(m1+...+7_2),
andig_y =m — (m + ... + m_1) = 7y, (all of which belong to the set {1,...,m — 1}).

. —0 - . . . . . . —0
i) Take A [1] = A [t(m—1),s(i1)][s(i1),s(i2)] - - - [s(i¢—2),8(ip—1)]if £ > 1,and A [(m)] =
A, if £ = 1. Define recursively for d > 0,

(Kd‘l[w] [8(ir—1), 5(ir—2)][8 (i), s(ir—1)], if0>2,
Kl =4 (B [71) [s(in), tm = D][tm — 1), (1)) ite—2,
(Kd‘l[m [t(m — 1),s(m — D][s(m — 1), 6(m — 1)], if¢=1.

i) Take S°[7] = Sm[s(1), t()][s(1), t(i2)] - - [s(1), t(ip_1)] if € > 1, and S [(m)] = Sm

if £ = 1. Define recursively for d > 0,

S [, el )]s, b)), > 1,

S%n] = _
7] s° 1[7?]) [s(1),t(m — D)][s(1), t(m — 1)], if¢ =1.

For example, if m = 2, 7 = (1,1) and d = 1, thenn = 4, i; = 1, and

A[(1,1)] = «"3_ S1,1)] =+ 3
4 4

B —_—
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Ifm="7m=(3,2,2)andd = 1, then n = 10, i1 = 4, i, = 2, and we have

2'3,2,2)] §'3,2,2)]

Sl .2 .3 .4 5 6 . . .
= N

) I

... . . —d
Remark 5.3. For any partition 7 of an integer m > 2, and any d > 0, the connected quivers A [7]

and gd[w] are loop-less and inverse of each other.

Proof:
Take @ = re [7] = (Qo,Q1,s,t), and keep the notation of Definition[5.2] Observe first that if £ > 1,
then

ttm—1)=m>i3 >ig>...> i1 > 0.
Since the first m — 1 arrows of () constitute the linear quiver TA)m, then () is a connected loop-less
quiver. Clearly, the same holds if ¢/ = 1. Moreover, in any case we have t(i) = s(: + 1) for any
1 =1,...,n — 1. This shows that for any i € ()1,

aglit)y =it i—1)~ 27

and therefore, s*(i*) = t(17!) = s(1) (see definition right before Proposition 2.2). On the other
hand,
i ifi=1,...,m—1,
ag(@th) =< iy, ifi=m,.... m+0—2,
iag((i =)™, ifi=m+L-1,...,n,
where the list m,...,m + ¢ — 2 is empty if £ = 1. Then

(i), ifi=1,....,m—1,
5 (%) = { t(ir), ifi=m,....m+0—2,
t(j), ifi=m+L—1,...,n,

where j = iy_1if £ > 1and j = m — 1if £ = 1. Taking Q' = §d[w] = (Qf, Q},8',t'), we observe

directly form Definition [5.2](74) that s* = s’ and t* = t’, that is,

—d -1 —d
(A [ﬂ]) — S
By Proposition 2.2] the quiver @’ is also connected and loop-less. m|

. . . —d
Note that the column vector 1 having all entries equal to 1 is always a root of g¢ for Q = A [r],

and that gg-1 is always a weakly positive unit form (for Q! = g [7]).
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6. Proof of main results

For a permutation p of the vertices Q) of a quiver Q = (Qo, Q1, s, t), denote by p-Q = (Qo, @}, s, t)
the quiver obtained by determining

S'(i') = pls(i), and t({') = p(t(i)),

for an arrow ¢’ in p - ) corresponding to the arrow ¢ in Q. In other words, p - @ is the unique quiver
satisfying I(p - Q) = P(p)I(Q). Observe that G, = G, and that (p- Q)™ = p- Q~!. Indeed,

I((p- Q)" = I(p- Q)G 4, = P(PI(Q)Gg' = P()I(@Q™") = I(p-Q7").

The quadratic form g associated to a quiver Q is given by gg(z) = %[|I(Q)z|[* for z € Z"
(cf. [13] Definition 3.1]).

Lemma 6.1. Let Q and Q' be connected loop-less quivers with n arrows and m vertices.
i) If gg = qq, then there is a permutation of vertices p such that
P'Q/:Q7 or P'Q/:Q0p7

where QQ°P denotes the quiver obtained from () by changing the orientation of all arrows (the
opposite quiver of ().

ii) If g ~ qq, then there is a permutation of vertices p such that
I(p- Q) =1(Q)B,
for some Z-invertible matrix B.
iii) If g ~ qg, then there is a permutation of vertices p such that
I(p-Q)=I1QB, and Gg =G,q = BTGyB,
for some Z-invertible matrix B. In particular, I(p - (Q")~1) = [(Q~1)B~*.

Proof:

For (i), if g = qq, by [12, Corollary 7.3] there is either an isomorphism of quivers (fo, f1) : Q" —
@, or an isomorphism (fo, f1) : @ — Q°P. This means that, taking p = fo, we have p- Q' = Q or
p-Q =Q%”.

To show (i), assume that there is a Z-invertible matrix C' such that gor = goC'. Then the columns
c1,...,cy of C are roots of the unit form g (since g is unitary), and by [12, Lemma 6.1] there
are walks 71, ...,7, in @ such that ¢; = inc(y;) for i = 1,...,n. Denote by Q" the quiver with

0 = Qo having an arrow ¢ € QY from s(v;) to t(~y;) for each i = 1,..., n. Then, by Remark[3.2] we
have 1(Q") = 1(Q)C, and therefore

QQ//(I') _ %wtr[(Q”)trI(Q”)x _ %wtrctrI(Q)tr[(Q)Cw — QQ(C.%') _ qu(w)7
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for any x € Z™. By (i), there is a permutation p of Qo with p - Q' = Q" or p - Q' = (Q")°P. Taking
B = C'in the first case, and B = —(C' in the second case, we get

I(p- Q) =1(Q") = I(Q)C =I1(@Q)B, or I(p-Q)=1I((Q")")=-1(Q)C=1(Q)B,

since I(QP) = —1(Q).
To show (7i7), take C such that éQ/ = CtréQC. By (7i) we may assume that there is a permuta-

tion p of Qp and a matrix B such that I(p - Q') = I(Q)B and éQ/ = BtréQB (for B = +C). To
show the last claim note that, using Proposition

I(p- (@) = 1(p-Q)Gg' = [I(Q)BI[B"GoB] ™! = I(Q)CGy' B~ = 1(Q")B™™,
which completes the proof. i
The following is our main definition. Denote by P (m) the set of partitions of the integer m > 2.

Definition 6.2. Take 0 < ¢ < nand m = n — ¢ + 1. Assume that ¢ € UQuad§(n), and that
@ € UQuiv,,(n) is a loop-less quiver such that ¢ = gg. We define a function ct : UQuadj (n) —
P(m) as the cycle type ct(q) := ct(Q) of Q.

By Lemma [6.1(7), the assignment ¢ — ct(q) is well defined. Indeed, if ¢ = g for some other
quiver @', then ct(Q') — ct(p- Q') = ct((p- Q)) = ct(Q).

Theorem 6.3. For any integers 0 < ¢ < n, the function ct given in Definition [6.2]is invariant under
strong Gram congruence. Moreover, the image ct[UQuad{ (n)] of ct is exactly P{(n — ¢ + 1), and
for any ¢ in UQuad$ (n), the Coxeter polynomial of ¢ is given by

Pq(A) = (A = 1) chareg(g) ().

Proof:

Assume that ¢’ ~ ¢, and choose quivers @ and Q' such that ¢ = g and ¢’ = q¢. By Lemmal6.1)(i47),
we may assume that there is a Z-invertible matrix B such that I(Q') = I(Q)B and I((Q")™!) =
I(Q")B~*" (by replacing p - Q' by Q' if necessary). Then

AQ’ =1— [((Q/)il)[(Ql)tr =I— I(Qil)BitrBtr[(Q)tr =I— I(Qil)[(Q)tr — AQ7

and by Theorem[3.3] we have £, = &, In particular,

ct(q) = ct(Q') = ct(§g) = ct(§g) = ct(Q) = ct(q).

Now, by definition and Proposition [.3] the partition ct(q) belongs to the set P{(n —c + 1) =
P<(m), for any quadratic form ¢ in UQuad( (n). That any partition in P{(m) is the cycle type ct(q)
of a quadratic form ¢ in UQuad§ (n) follows from Definition 5.2l Indeed, take = € Pf(m) with

—d
¢ = (), and consider the quiver Q = A [r]| where ¢ = £ — 1 + 2d. Then ¢g € UQuadj (n) and
ct(gg) = m. The description of Coxeter polynomials was shown in Corollary m|
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Recall that the Coxeter matrix @, of a non-negative unit form ¢ is a weakly periodic matrix, that
is, there is a minimal £ > 1 such that T — @’Cj is a nilpotent matrix (cf. [21] or [2]]). Such minimal
power, denoted by C,.(q) = k, is called reduced Coxeter number of ¢. In case <1>’; = I for some
minimal & > 1, then c(q) = k is called Coxeter number of ¢, otherwise we set c(q) = 0.

Corollary 6.4. Let g be a unit form in UQuad{ (n), and consider its cycle type ct(q) = (71, ..., 7).
Then

i) The Coxeter number c(q) of ¢ is finite if and only if £ = 1, in which case c(q) = .
ii) The reduced Coxeter number C,..(q) of ¢ is given by
Cre(q) = lem(my, ..., m),
where lcm denotes least common multiple.

Proof:
Take ¢ = q¢ for some quiver ). By Theorem [3.3] we have ®, = ®(. Let us first show that @g =

I - 1(Q)"vk(Ag)I(Q1) for any k > 1, where vg()) is the polynomial v (\) = A= + A\F=2 4
..+ A + 1. Indeed, by induction on k and from Theorem [3.3] we have

O = PePh = [1-1(Q"HQ I - I(Q) " ve1(A)I(Q )]

= I-I(Q)"[I+ ve—1(Ag) — I(Q NI(Q) ™ k1 (M) I(Q )

= I-I1(Q"[T+[I-I(Q HI(Q)™ 1A (Q™)

= I-1(Q)" [T+ Aque-1(AQ)I(Q7Y)

= IT-1(Q)" (M) I(Q7Y). )

For a vertex v € Qo and an integer a > 0, take v, = ({5)(v). Let 3 be a walk in Q™! from

a vertex v to a different vertex w. Note that, using equation Ag = P({,) of Theorem 3.3 and
Remark [3.2] we have

1(Q)[T — & ]inc() HQ)I(Q)" vk (A)I(Q")ine(8)
Loui(Ag)(ey — ew)

= Lol(eyy+ ... +ey ) —(€wy +---+€u,,)] 3)

Recall that, since () is connected, the null space of the Laplace matrix L is generated by the (column)
vector 1 € Z™ with all entries equal to 1 (Theorem [3.3((77)).

To show (i), assume first that £ = 1. Then v, (Ag) = m1[11*] (that is, the matrix with all entries
equal to 71), and therefore, <I>7Tl = I by equation @2). Now, if 1 < k < 71, taking a walk from v to
w = vy, from @) we get

I(Q)[I — @))inc(8) = Lq(ew, — ey,) # 0,

since vy # vy (for £ = 1 and k < 7). This shows that the Coxeter number of ¢ is c(q) = .



J.A. Jiménez Gonzdlez | Coxeter Invariants for Non-negative Unit Forms of Dynkin Type A, 239

Assume now that £ > 1. Note that if v and w belong to different & 0 orbits in (), then
(€ +...+ey_,)—(ey, +... +e€y, ,)¢Z1,
and therefore, by (3) we have @’é # I for any k£ > 1, which completes the proof of (7).
Observe now that,
[I-P5)I - Do) = [H(Q)" (MA@ D@ I(Q)]
H@Q) " [re(Ag) X~ AQ)II(Q7Y)
= 1@Q"[I-AQIQTY), @)

and
I 25 = [H(Q)" (M) I(Q MI(Q) " r(AQ)1(Q )]
= 1(Q)"[vk(AQ)(I — AQ)vk(A)1I(Q7H)
= 1@ [rk(AQ) (X~ AYI(QTH). (5)
To show (i), recall that the order of {5 is lem(ct(g)). Since Ag = P({), by @) we have
[I— ®{][I - ®q] = 0if k = lem(ct(q)), that is,

~—

[ ®5)° = [T - 2H][I — 2oluk(®q) = 0.

Assume now that £ < lem(ct(q)), and choose a vertex v € ()¢ such that v # vy. Take w = vy and
a walk from v to w in Q. Similarly, as in (3), by (§) we have

L@ - @pinc(8) = Lowr(AQ)(T — Ad)(ew, —ev,)
= LQVIC(AQ)[(evo - evl) - (evk - evk+1)]
= LQ[evo T+ €yyy, — 2evk] # 0,
since €y, + €,,, — 2€,, ¢ Z1, for vy # vj. This shows that [I — @’é]z # 0 for k < lem(ct(q)),

which completes the proof. m]

To illustrate the main results, we end this section with some examples of Coxeter polynomials and
(reduced) Coxeter numbers that occur among quadratic forms ¢ € UQuad§ (n) for small n and c.
For instance, if n = 5 and ¢ = 2, then m = n — ¢+ 1 = 4 and the set

Pi(4) = {m = m| (r) € {1,3}},

contains only two partitions, namely (4) and (2,1,1). By Theorem and Corollary for q €
UQuadj? (5) we have either

pg(N) = (X =D(A=1), or gu(A) = (A =1)(A-1),

with corresponding Coxeter numbers 4 and oo, and reduced Coxeter numbers 4 and 2. Similarly, if
n=8andc=4,thenm =n—c+ 1 =15, and

PL(5) = {7 - m | £(n) € {1,3,5}}.

The four partitions in P;(5), and corresponding Coxeter polynomials and (reduced) Coxeter numbers
among the unit forms in UQuady (8), are listed in the following table.
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Partition Coxeter polynomial ~ Coxeter number  Reduced Coxeter number
(5) N —1)(A—1)3 5 5
(3,1,1) (A3 —1)(A—1)5 0 3
(2,2,1) (A2 —1)2(A—1)* 0 2
(1,1,1,1,1) (A—1)8 0 1

7. Comments and algorithms

An important problem in the theory of quadratic forms, or the corresponding graphical formulation in
terms of edge-bipartite graphs developed by Simson and collaborators [25} 27} 31]], is to find character-
izations for the strong Gram congruence. So far, the pair consisting of the Dynkin type and the spec-
trum of the Coxeter polynomial of a connected non-negative unit form ¢ (the so-called Coxeter-Dynkin
type of q), seems to be a good candidate for such characterization (see for instance [25, Problem 1.9]).

Problem A.

Let ¢ and ¢ be connected weakly Gram congruent non-negative unit forms. If the Coxeter polynomials
of ¢ and ¢ coincide, are the unit forms ¢ and q strongly Gram congruent?

An affirmative answer to Problem A for positive unit forms with small number of variables (not
exceeding 9), including the exceptional cases Eg, [E7 and Esg, is part of the work of Simson [27] and
collaborators [6] [15} [16} [17], aiming much general problems on edge-bipartite graphs, morsifications
and mesh-geometries. The positive cases of Dynkin type D, and A,, were solved recently in [28]]
and [29] respectively, also in a wider context, and similar results for principal unit forms associated to
posets were shown in [[11]. The main construction of the paper, the cycle type, allows a reformulation
of Problem A for the case of Dynkin type A,.:

Problem B.

Does the cycle type assignment induce a bijection
ct : [UQuad{(n)/ ~] — Pi(n —c+1),

foranyn > 1land 0 < c < n?

The bijectivity of ct for the cases ¢ € {0, 1} is consequence of the main results Theorems 3.16
and 4.12 of [13]], concerning the positive and principal cases of Dynkin type A,, respectively. In an
upcoming work [[14] we will approach Problem B in full generality with matricial techniques.

Let CSpec(q) denote the Coxeter spectrum of a connected non-negative unit form g, that is, the
multi-set of roots of the Coxeter polynomial ¢, (). By non-negativity, every A € CSpec(q) is a root
of unity (cf. [21, Theorems 2.6 and 3.4]).
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Remark 7.1. Let g be a unit form in UQuad{ (n), for n > 1 and 0 < ¢ < n, and consider the cycle
type ct(q) = (m1,...,m) of q.
a) If n is a primitive d-root of unity for some d > 1, then the multiplicity of  in CSpec(q) is
#{a € {1,...,¢} such that d divides 7, },
where #.S denotes the cardinality of a set .S.
b) The multiplicity of 1 in CSpec(q) is ¢+ (¢ — 1).

Proof:
Recall from Corollary [4.3] that the Coxeter polynomial of ¢ is given by

¢
pgN) = A=) (™ —1
a=1

Let 7 be a primitive d-root of unity for some d > 1. It is well known that 7 is a root of (A! — 1)
if and only if d divides ¢, and in that case the multiplicity of 7 is one (see for instance [18, §3.3]).
This shows claim (a). To show (b) consider the alternative factorization () of ¢, () given right after
Corollary 4.3]

L
p(\) = (A =)D T, ()
t=1

Thus, claim (b) holds since 14(1) # 0 for any ¢ > 0. =

With Problem B in mind, the unit forms associated to the representative quivers of Section [3] are
proposed representatives of the strong Gram classes in UQuad$ (n), playing the role of the canonical
extensions of A, defined by Simson in [25]] for the weak Gram congruence. The following straight-
forward observation, relating Simson’s construction with those in Section [3, will be useful for our
computations.

Remark 7.2. For r > 1 and ¢ > 0, consider the quiver with r + 1 vertices and r + c arrows, given by

[(r—l— DJVET, if cis even,
e [(r,D]VE, ifcisodd,

where, if c is even, Vf is the inversion of the arrows r + 2¢ for¢ = 1,..., %, and 7T is the iterated
flation (see definition and notation in [[13} §2.5]) given by
1 2 1 .
T:T ...Tc/7 WhereTZ~ 7;‘«1»27‘ 1" .7;‘-:127;‘4“21’{:01.2:17...70/2.
If c is odd, V¢ is the inversion of the arrows r + 2 forv =1, ..., %. To be precise,
Qﬁ:. 1 [ ] 2 [ ] 3 .—--->.g.$.
T
r+c

Let A\?(«c) be the canonical c-extension of A, defined in [25]]. Then Aﬁc) = Inc (Q5).
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Next we show how to find a quiver () with n arrows such that ¢ = g, given that ¢ is a connected
non-negative unit form of Dynkin type A, in n > r variables, following [[13} Proposition 3.15].

Algorithm 1.

Input: A connected non-negative quadratic unit form ¢ in n > 1 variables, and of Dynkin type A, for some
r=1.

Output: A connected loop-less quiver () with n arrows and m = r + 1 vertices, such that ¢ = qg.

Step 1. Compute the upper triangular Gram matrix (v?q of g, and the corresponding symmetric Gram matrix
Gy = éq + (v?gr. Recall that e;G4e; = q(e; + e;) — g(e;) — ¢(e;), for any canonical vectors e;, e; in Z"™.

Step 2. Find a Z invertible matrix B such that G A0 = B“GqB , where G 26 denotes the symmetric Gram
matrix of the canonical c-extension 1&5-6) of A,.. For instance, use Algorithm 3.18 in [31]].

Step 3. Calculate the inverse matrix B!, and take I := I(Q¢)B~! where Q¢ is the quiver given in Re-
mark[7.2] Verify that

I = B" Q)" (QS)B™! = B™" G B~ = G,

Step 4. Take Qo = {1,...,m =r+1}and Q1 = {1,...,n}. Forevery i € 1, the column vector b = Ie;
satisfies b* b = ef* G e; = 2, since ¢ is unitary. Then there are different indices s, ¢ € Qo with

b= Ses +Te;, forsomesignsS,T € {£1}.

Moreover, 1% ] = 1*7](Q¢)B~! = 0, which implies that 1**b = 0. Then, after switching the labels s and ¢
if necessary, we may assume that S = +1 and T = —1. Take s(¢) = s and t(i) = ¢, which defines a quiver
Q = (Qo,Q1,s,t) with I = I(Q). That Q has no loop is clear, since s # ¢ for an arrow 4 as above. That @ is
connected follows from [13| Lemma 3.4(d)]. By Step 3 and the definition g¢(z) := %||1(Q)z||? for z € Z",

we have
1 1

a(e) = 52 Gyr = S Q)™ T(Q)r = go(),

as wanted.

The cycle type ct(q) of a quadratic form ¢ in UQuad§ (n), forany n > 1 and any 0 < ¢ < n,
can be found directly from a quiver ) with ¢ = g¢. Indeed, compute first the permutation §q (either
by constructing the structural decreasing walks o@(v) for any vertex v, or directly by computing the
matrix Ag = I, — I(Q)é;ll(Q)tr = P(&§g), cf. Theorem 3.3 and Proposition 2.2). Then find
a cycle decomposition of £, using for instance the full_cyclic_form() sympy Python library
function, and store the corresponding lengths, ordered non-increasingly, in a list ct(q). We stress that
the cycle type ct(q) can be recovered from the Coxeter polynomial of ¢ (or its spectrum), as indicated
in Algorithm [2]below. We need the following straightforward observation.

Remark 7.3. Let 7 = (m1,...,7¢) I m be a partition of the integer m > 1. Then

71 = max{t > 1 such that (\" — 1) divides char;()\)}.

Proof:
Take mgo := max{t > 1 such that (\* — 1) divides char,()\)}. Since char,()\) = Hﬁzl()\“ - 1),
clearly mo > max{my,...,m} = m. On the other hand, since (\"° — 1) divides char,()), any

primitive mg-root of unity is a root of char,(\). By Remark [Z.1](a), this means that m divides 7, for
some a € {1...,/}. In particular mg < 71, and the claim follows. =
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Algorithm 2.
Input: The Coxeter polynomial ¢4 () of a quadratic form ¢ in UQuadj (n), forn > 1and 0 < ¢ < n.
Output: The cycle type ct(q) of g.
Step 1. Take an empty list ct(q) = .
Step 2. By Theorem[6.3] there is a polynomial po(A) such that o4 (A) = (A~! — 1)po()), and a partition
70 of mg = m such that po(\) is the characteristic polynomial of 7.

Step 3. Given the non-constant polynomial p;(A) for ¢ > 0, find the maximal ¢ > 1 such that p;()) is a
multiple of (A\* — 1), and define p; 1(\) such that p;(\) = p;11(A)(A! — 1). By Remark [Z.3] if p;()) is the
characteristic polynomial of the partition 7* = (7%, .. ,ﬂ}i), then p; 11 () is the characteristic polynomial of
the partition 7**! := (75, ..., 7} ). Append the integer t = 7} to the list ct(g).

Step 4. Starting with the polynomial pg(\) of Step 2, repeat Step 3 until we find a constant polynomial
pe(A\) = 1. We end up with a list ct(q) with £ elements, which is the wanted cycle type of ¢ by Remark[7.3]

We close our discussion with a procedure to explicitly find all partitions of fixed length (Algo-
rithm [3). Using the Main Theorem of the paper, we may find in this way all Coxeter polynomials
among connected non-negative unit forms of Dynkin type A,,,_1 (Algorithm @)). For the sake of read-
ability, partitions of the integer m > 1 will be called simply m-partitions.

Algorithm 3. We describe an implementable function partitions_by_length(m,¢) that recursively con-
structs all m-partitions of fixed length L.

Input: Integersm > 1and ¢ >
Output: A (possibly empty) set P containing all m-partitions of length /.
Step 1. If 1 < £ < m, consider the result P’ of partitions_by_length(m — 1, — 1), and take

Py = {(m],...,m_1,1) such that (7} ..., m_,) € P’}

Clearly, P is the set of all m-partitions (71, . . ., m¢) of length ¢ having 7, = 1.
Step 2. If 1 < ¢ < m, consider the result P” of partitions_by_length(m — ¢, ), and take

Py ={(x] +1,...,m/ + 1) such that (7} ..., 7)) € P"}.

Clearly, P is the set of all m-partitions (71, . . ., 7¢) of length ¢ having 7, > 1.
Step 3. Return
(m), ift=1,
P,uP,y, ifl </l <m,
(1,...,1), ift=m
g, if £ > m.

Recall that forany ¢ = 0 and m > 1,
Pi(m)={rFm|0<c—({(r)—1)=0 mod 2}.

Algorithm 4.
Input: Integersn > 1and 0 < c < n.
Output: The set CP{ (n) of all Coxeter polynomials among the quadratic unit forms in UQuad$ (n).
Step 1. Take m = n — ¢+ 1 and considertheset L = {£{ > 1[0 <c— (£ —1) =0 mod 2}.
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Step 2. For any ¢ € L take P, the result of the function partitions_by_length(m,{) constructed in
Algorithm[3] and take the (disjoint) union
P = U P,.

lel

Step 3. For any partition 7 = (71, ..., 7,) in P, take the polynomial

4
char,(A) = [ J(A™ = 1),

and consider the set CP§ (n) = {(A — 1)°"*char,(\) | m € P}. By Theorem[6.3] we have

CPL(n) = {vq(N) | ¢ € UQuadj(n)},

where ¢, () denotes the Coxeter polynomial of a quadratic form g.

Remark 7.4. Observe that, as consequence of Algorithm [2] the sets P and CP§ (n) constructed in
Algorithm 4l have the same cardinality. That is, the number of Coxeter polynomials appearing among
connected non-negative unit forms in n-variables, of Dynkin type A,,_; and corank ¢, is the number
of partitions of the integer m = n — ¢ + 1 whose lengths ¢ satisfy 0 < c¢— ({ — 1) =0 mod 2.
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