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Abstract. Two integral quadratic unit forms are called strongly Gram congruent if their upper

triangular Gram matrices are Z-congruent. The paper gives a combinatorial strong Gram invariant

for those unit forms that are non-negative of Dynkin type Ar (for r ě 1), within the framework

introduced in [Fundamenta Informaticae 184(1):49–82, 2021], and uses it to determine all corre-

sponding Coxeter polynomials and (reduced) Coxeter numbers.
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1. Introduction

Basic notions.

Integral quadratic forms (that is, homogeneous polynomials of degree two with integer coefficients),

have been a central topic of study, sometimes indirectly, in many areas of abstract algebra and graph

theory (see for instance [7, 19, 3, 5, 8] and the introductory notes of [2, 1, 9]). One approach, initiated

by Simson in [22, 23] and developed intensively by Simson and collaborators, see for instance [15, 16,

17, 25, 31, 26, 27, 28, 29], consists in substituting q by the (upper triangular) standard morsification

bq : Zn ˆ Z
n Ñ Z of q, and focuses on the Coxeter formalism of bq. In this way, one defines the

strong Gram congruence among unit forms, and attaches the Coxeter invariants of bq to q, which

are also strong Gram invariants of q (cf. [28, Lemma 1.3] or [13, Lemma 4.6]), a point of view

mainly motivated from the Auslander-Reiten theory of associative algebras, see [22, 23] and references

therein.
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The aim of this paper is to explicitly determine some classical Coxeter invariants, namely the Cox-

eter polynomial and the (reduced) Coxeter number, associated to a connected non-negative unit form

of Dynkin type Ar (r ě 1). Work in this direction may be found, for instance, in [23, Theorem 3.3],

[24, Theorem 3.2], [16, Theorem 5.1] and [10, Theorem 2.3] for small number of variables, in [28,

Theorem 2.4] and [29, Theorem 2.2] for the Dynkin types A and D of corank zero, respectively, and

in [11, Theorem 1.10] and [30, Corollary 11] for quadratic forms associated to principal posets (corank

one). We follow the graph theoretical technique introduced in [12], and applied recently to the study of

the strong Gram congruence in [13]. We refer the reader to the introduction of [13] for some historical

remarks and further references for these methods.

Throughout the paper we identify an integral quadratic form q : ZnÑZ, qpxq“
ř

1ďiďjďn qi,jxixj ,

with the upper triangular matrix qGq “ pgi,jq given by gi,j “ qi,j if 1 ď i ď j ď n and gi,j “ 0 if

1 ď j ă i ď n. This matrix is referred to as (non-symmetric or upper triangular) Gram matrix of q,

and is the unique upper triangular integer matrix satisfying

qpxq “ xtr qGqx, for any column vector x in Z
n.

The quadratic form q is unitary (or a unit form) if all diagonal entries of qGq are equal to 1. The

symmetric Gram matrix Gq of q is given by Gq “ qGq ` qGtr

q . Two unit forms q and q1 are called

weakly (resp. strongly) Gram congruent, if there is a Z-invertible n ˆ n matrix B such that Gq1 “

BtrGqB (resp. qGq1 “ Btr qGqB), written q1 „B q or q1 „ q (resp. q1 «B q or q1 « q). In what follows

we use standard notions and results on quadratic forms, such as positivity, non-negativity, corank,

connectedness and Dynkin type (cf. [4, 31, 2, 27]). For instance, the weak Gram classification of non-

negative unit forms, achieved in [4] and [25] with different methods, assigns a unique Dynkin type

An, Dm or Ep (for n ě 1, m ě 4 or p P t6, 7, 8u) and a non-negative corank to any weak congruence

class of non-negative unit forms. Since, clearly, the strong Gram congruence refines the weak one, it is

natural to approach the strong classification problem by the cases of the weak classification. Here we

continue the study of the strong Gram congruence among non-negative unit forms of Dynkin type Ar

started in [13]. For convenience, we present relevant definitions and constructions of [13] as needed.

Note that if q is a connected non-negative unit form in n ě 1 variables, then the corank c of q is

smaller than n, since n ´ c is the rank of q. For 0 ď c ă n, we denote by UQuadc
A

pnq the set of

connected non-negative unit forms in n vertices, with corank c and Dynkin type An´c,

UQuadc
Apnq “ tq : Zn Ñ Z | q is connected, q ě 0, Dynpqq “ An´c and corkpqq “ cu.

Partitions and permutations.

A partition π of an integer m ě 1 (written π $ m) is a non-increasing sequence of positive integers

π “ pπ1, . . . , πℓpπqq for some ℓpπq ě 1, such that m “
řℓpπq

a“1
πa. The integer ℓpπq is called length

or number of parts of π. For instance, let ρ be a permutation of the set t1, . . . ,mu. The orbits of ρ

determine a set-partition

t1, . . . ,mu “ P1 \ . . . \ Pℓ,
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for some ℓ ě 1 (that is, two indices v, v1 P t1, . . . ,mu belong to the same subset Pr if and only if

there is t ě 0 such that v1 “ ρtpvq, and for any element v there is a subset Pr containing v). The

sequence of cardinalities of P1, . . . ,Pℓ, ordered non-increasingly, is a partition πpρq of m, usually

called the cycle type (or cycle structure) of the permutation ρ (cf. [20, §2.2]). Conversely, for any

partition π “ pπ1, . . . , πℓq of m, denote by ρπ the permutation of t1, . . . ,mu given as composition of

cycles of length πr,

ρπ “ p1, . . . , π1qpπ1 ` 1, . . . , π1 ` π2q ¨ ¨ ¨ pπ1 ` . . . ` πℓ´1 ` 1, . . . ,m ´ 1,mq.

Clearly, πpρπq “ π. It is well known that for two permutations ρ and ρ1 of the set t1, . . . ,mu, we

have πpρq “ πpρ1q if and only if ρ and ρ1 are conjugated permutations (that is, ρ1 “ ξρξ´1 for some

permutation ξ of t1, . . . ,mu, see for instance [20, Proposition 2.33]). In particular, if P pρq denotes

the matrix with P pρqev “ eρpvq for any v P t1, . . . ,mu where ev is the v-th canonical vector of

Z
m (P pρq is called the permutation matrix of ρ), then the characteristic polynomial charP pρqpλq of

P pρq only depends on the cycle type πpρq of ρ. Since the characteristic polynomial of the permutation

matrix of a cycle of length r is pλr ´ 1q, if πpρq “ pπ1, . . . , πℓq then the characteristic polynomial of

P pρq is

charP pρqpλq “

ℓpπqź

a“1

pλπa ´ 1q.

Define the characteristic polynomial of a partition π as the characteristic polynomial of the permu-

tation matrix P pρπq, that is, charπpλq :“ charP pρπqpλq. By the comments above, charπpλq is the

characteristic polynomial of the permutation matrix of any permutation with cycle type π.

For arbitrary c ě 0 and m ě 1, we consider the set of partitions of the integer m having their

number of parts restricted by c as follows,

Pc
1pmq “ tπ $ m | 0 ď c ´ pℓpπq ´ 1q ” 0 mod 2u.

Overview of the paper.

The Coxeter matrix Φq of a unit form q is given by Φq “ ´ qGtr

q
qG´1
q (compare with more usual

definitions as given in [2] or [25]). The characteristic polynomial of Φq is called Coxeter polynomial

of q, and is denoted by ϕqpλq. It is well known that if q1 « q for a unit form q1, then ϕq1pλq “ ϕqpλq
(see for instance [13, Lemma 4.6]). Our goal is to prove the following result (see Theorem 6.3 below).

Main theorem.

For any integers 0 ď c ă n, there is a surjective function

UQuadc
Apnq

ct // Pc
1pn ´ c ` 1q,

which is invariant under strong Gram congruence, and such that for any q in UQuadc
Apnq,

ϕqpλq “ pλ ´ 1qc´1charctpqqpλq.
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The partition ctpqq will be referred to as cycle type of q, and the induced function on the quotient

UQuadc
Apnq{ « will be also denoted by ct. Although the constructions leading to the proof of

the Main Theorem are straightforward, most of the preparatory arguments are fairly technical. For

convenience, we sketch the steps of the proof (see precise definitions below).

i) For a quiver Q with m vertices and n arrows, and vertex-arrow incidence matrix IpQq, consider

the quadratic form qQ : Zn Ñ Z given by

qQpxq “
1

2
||IpQqx||2.

It is shown in [12] that the set UQuadc
Apnq is precisely the set tqQu over all connected loop-

less quivers Q with n arrows and m “ n ´ c ` 1 vertices. This “quiver realization” facilitates

the study of weak and strong Gram congruences within the set UQuadc
Apnq, as shown in [13].

ii) Using piq, the definition of the cycle type ctpqq of a quadratic form q in UQuadc
A

pnq follows

from the notion of Coxeter-Laplace matrix ΛQ of a loop-less quiver Q introduced in Theo-

rem 3.3, where it is shown that ΛQ is the permutation matrix of a permutation ξ´
Q of the set of

vertices of Q. The construction of ξ´
Q and the proof of Theorem 3.3 is the purpose of Sections 2

and 3.

iii) The strong Gram congruence invariance of the cycle type ct follows from Theorem 3.3 and

some observations on the mapping Q ÞÑ qQ presented in Lemma 6.1.

vi) Some technical considerations to determine the image of ct are given in Sections 4 and 5. In

particular, in Definition 5.2 we fix a set of quadratic forms q in UQuadc
Apnq representing those

Coxeter polynomials permitted by Proposition 4.5.

v) The Coxeter polynomial of a member of UQuadc
A

pnq is computed in Corollary 4.3 with help

of Theorem 3.3 (see also Algorithm 4).

The Main Theorem is proved in Section 6, collecting the results of previous sections. As applica-

tion, in Corollary 6.4 we determine the (reduced) Coxeter number of any unit form q in UQuadc
Apnq.

In Section 7 we provide algorithms to compute the cycle type (Algorithms 1 and 2) and Coxeter

polynomials of such unit forms (Algorithms 3 and 4), and comment on their spectral properties (Re-

mark 7.1).

All matrices in the paper have integer coefficients. The canonical basis of Z
n is denoted by

e1, . . . , en and the identity n ˆ n matrix is denoted by In, and simply by I for appropriate size.

The transpose of a matrix A is denoted by Atr, and if A is an invertible square matrix, then A´tr

denotes pA´1qtr. If A1, . . . , An are the columns of A, we write A “ rA1|A2| . . . |Ans.

2. Minimally monotonous walks

In this section we recall the definition of a quiver Q and its (vertex-arrow) incidence matrix IpQq. It

was shown in [13, Proposition 4.4] that if Q has no loop, and qGQ is the upper triangular Gram matrix

of Q (defined below), then IpQq qG´1

Q is also the incidence matrix of a loop-less quiver, called inverse
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quiver of Q and denoted by Q´1 (Proposition 2.2 below). The integer matrix IpQ´1q “ IpQq qG´1

Q

plays a fundamental role in our discussion, and deserves a careful analysis. To this end, minimally

monotonous (increasing or decreasing) walks were introduced in [13]. Here we use such walks to give

an alternative description of IpQ´1q (Lemma 2.3), which leads to part of the proof of Theorem 3.3.

By quiver we mean a quadruple Q “ pQ0, Q1, s, tq such that Q0 and Q1 are finite sets (called

vertices and arrows of Q respectively), and s, t : Q1 Ñ Q0 are functions (called source and target

function of Q). Since we want to associate to Q, unequivocally, an incidence matrix IpQq, throughout

the paper we assume that both the set of vertices and the set of arrows of any quiver are totally

ordered, and write i ď j for arrows i, j in Q1, and v ď w for vertices v,w in Q0. We identify

isomorphic quivers under the assumption that the isomorphism preserves the given orderings on the

sets of vertices and arrows. Thus, if |Q1| “ n and |Q0| “ m, we may assume without loss of

generality that Q1 “ t1, . . . , nu and Q0 “ t1, . . . ,mu.

The m ˆ n (vertex-arrow) incidence matrix IpQq of Q is given by,

IpQq “ rIi1 | . . . |Iins, where Ii “ espiq ´ etpiq for an arrow i,

where ev is the v-th canonical vector in Z
m and i1, . . . , in are the arrows in Q. Note that Ii “ 0 if and

only if i is a loop in Q. Observe also that if Q1 is a quiver obtained from Q by a reordering of the set of

arrows of Q, say via a permutation ρ of Q1, then IpQ1q “ IpQqP pρq. Similarly, if Q2 is obtained from

Q by a reordering of the set of vertices of Q, say by a permutation ξ of Q0, then IpQ2q “ P pξqIpQq.

For a quiver Q “ pQ0, Q1, s, tq and an arrow i P Q0 we take vpiq “ tspiq, tpiqu, the set of

vertices incident to arrow i. For a vertex v and an arrow i in Q, consider the following subsets of

arrows of Q,

Q1pvq “ tj P Q1 | v P vpjqu,

Qă
1 pv, iq “ tj P Q1 | v P vpjq and j ă iu,

Qď
1

pv, iq “ tj P Q1 | v P vpjq and j ď iu,

and take similarly Qą
1

pv, iq and Qě
1

pv, iq.

For a walk α “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq in Q we use the notation

α “ iǫ0
0
iǫ1
1

¨ ¨ ¨ iǫℓℓ , for signs ǫt “ ˘1,

where we take ǫt “ `1 if spitq “ vt´1 and tpitq “ vt, and ǫt “ ´1 in case spitq “ vt and tpitq “ vt´1

for t “ 0, . . . , ℓ (as usual, exponents `1 are omitted). The integer ℓ ` 1 is called length of α, and if

ℓ “ ´1 then α is called a trivial walk. We take spαq “ v´1 and tpαq “ vℓ, and call these vertices

origin and target of the walks α, respectively. The reversed walk of α, denoted by α´1, is given by

α´1 “ i
´ǫℓ
ℓ i

´ǫℓ´1

ℓ´1
¨ ¨ ¨ i´ǫ0

0
. The following special walks were considered in [13, Definition 4.1]:

a) We say that the walk α “ iǫ0
0
iǫ1
1

¨ ¨ ¨ iǫℓℓ is minimally decreasing if

it`1 “ maxQă
1 pvt, itq, for t “ 0, . . . , ℓ ´ 1.
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b) If α is minimally decreasing, we say that α is left complete if whenever βα is minimally

decreasing for some walk β, then β is a trivial walk. Similarly, α is right complete if whenever

αβ is minimally decreasing for some walk β, then β is a trivial walk. A left and right complete

minimally decreasing walk will be called a structural (decreasing) walk.

We will mainly consider the following particular minimally decreasing walks. For an arrow i there

are exactly two right complete minimally decreasing walks starting with arrow i, one starting at vertex

spiq and denoted by α´
Qpi`1q, and one starting at vertex tpiq and denoted by α´

Qpi´1q. To be precise,

if

α´
Qpi`1q “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq,

then v´1 “ spiq, i0 “ i, it`1 “ maxQă
1

pvt, itq for t “ 0, . . . , ℓ ´ 1, and Qă
1

pvℓ, iℓq “ H. Similarly,

if

α´
Qpi´1q “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq,

then v´1 “ tpiq, i0 “ i, it`1 “ maxQă
1

pvt, itq for t “ 0, . . . , ℓ ´ 1, and Qă
1

pvℓ, iℓq “ H. Note that

the walks α´
Qpi˘1q are determined by the initial vertex and the first arrow.

Consider now a vertex v and take i0 “ maxQ1pvq. If v “ spi0q (resp. if v “ tpi0q) then α´
Qpi`1

0
q

is also left complete (resp. α´
Qpi´1

0
q is also left complete), and it is therefore, a structural decreasing

walk starting at v, denoted by α´
Qpvq. If γ is an arbitrary structural decreasing walk starting at v, then

the first arrow of γ is necessarily i0 (otherwise γ could be extended on the left keeping the minimally

decreasing property), and therefore, γ “ α´
Qpvq.

Dually, the minimally increasing walks α`
Qpi˘1q are defined as follows. If

α`
Qpi`1q “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq,

then v´1 “ spiq, i0 “ i, it`1 “ minQą
1

pvt, itq for t “ 0, . . . , ℓ ´ 1, and Qą
1

pvℓ, iℓq “ H. Similarly,

if

α`
Qpi´1q “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq,

then v´1 “ tpiq, i0 “ i, it`1 “ minQą
1

pvt, itq for t “ 0, . . . , ℓ ´ 1, and Qą
1

pvℓ, iℓq “ H. If

i0 “ minQ1pvq, take α`
Qpvq :“ α`

Qpi`1

0
q if v “ spi0q, and α`

Qpvq :“ α`
Qpi´1

0
q if v “ tpi0q. The

following are straightforward observations.

Remark 2.1. Let Q be a loop-less quiver, with vertex v P Q0 and arrows i, j P Q1.

i) If w “ tpα´
Qpvqq, then α`

Qpwq “ α´
Qpvq´1.

ii) If i appears in α`
Qpvq in the positive orientation (resp. in the negative orientation), then tpα´

Qpi´1qq “

v (resp. tpα´
Qpi`1qq “ v).

iii) If v “ tpα´
Qpi˘1qq, then α`

Qpvq “ α´
Qpi˘1q´1γ, for some walk γ.
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The inverse quiver of a loop-less quiver Q “ pQ0, Q1, s, tq, as defined in [13, Definition 4.2], is

the quiver Q´1 “ pQ˚
0 , Q

˚
1 , s

˚, t˚q with the same set of vertices as Q, the same number of arrows as

Q (that is, Q˚
0 “ Q0 and |Q˚

1 | “ |Q1|), and such that for each arrow i in Q there corresponds an arrow

i˚ in Q´1 with

s˚pi˚q “ tpα´
Qpi´1qq, and t˚pi˚q “ tpα´

Qpi`1qq.

The arrows in Q´1 inherit the total ordering of the arrows in Q via the correspondence i ÞÑ i˚. When

allowed by the context, we will drop the asterisk ˚ on arrows of Q´1. The unique upper triangular

matrix qGQ such that IpQqtrIpQq “ qGQ ` qGtr

Q is called the triangular Gram matrix of a quiver Q

(cf. [13, Definition 3.1]).

Proposition 2.2. ([13], Proposition 4.4)

If Q is a loop-less quiver, then Q´1 is a loop-less quiver satisfying pQ´1q´1 “ Q,

IpQ´1q “ IpQq qG´1

Q , and qGQ´1 “ qG´1

Q .

Moreover, Q is connected if and only if Q´1 is connected.

Recall from [12, §4.1] that if α “ iǫ0
0
iǫ1
1

¨ ¨ ¨ iǫℓℓ is a walk in a quiver Q with n arrows, then the

incidence vector of α is the vector incpαq P Z
n given by

incpαq “
ℓÿ

t“0

ǫteit ,

where ei denotes the canonical vector of Zn corresponding to arrow i. We will need the following

alternative description of the inverse of a quiver.

Lemma 2.3. Let Q be a loop-less quiver with vertices v1, . . . , vm, and let Q´1 be its inverse quiver.

Then

IpQ´1qtr “
”
incrα`

Qpv1qs| . . . |incrα`
Qpvmqs

ı
.

Proof:

Let b be the column of IpQ´1qtr corresponding to vertex v P Q0. Hence b “

»
——–

b1
...

bn

fi
ffiffifl, where

bi “

$
’&
’%

`1, if s˚pi˚q “ v,

´1, if t˚pi˚q “ v,

0, if v R vpi˚q.

On the other hand, take α`
Qpvq “ iǫ0

0
iǫ1
1

¨ ¨ ¨ iǫℓℓ “ pv´1, i0, v0, i1, v1, . . . , vℓ´1, iℓ, vℓq (hence v´1 “
v). We prove that

A) If ǫt “ `1 then s˚pi˚t q “ v, and if ǫt “ ´1 then t˚pi˚t q “ v.

B) If v P vpj˚q for some arrow j˚ in Q´1, then j “ it for some t P t0, . . . , ℓu.
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To show claim pAq assume first that ǫt “ `1, that is, spitq “ vt´1 and tpitq “ vt. Then, by

definition of s˚ and Remark 2.1piiq,

s˚pi˚t q “ tpα´
Qpi´1

t qq “ v´1 “ v.

Assume now that ǫt “ ´1, that is, spitq “ vt and tpitq “ vt´1. Then, as before, we have t˚pi˚t q “
tpα´

Qpi`1

t qq “ v.

To show claim pBq assume first that s˚pj˚q “ v, that is,

v “ tpα´
Qpj´1qq.

By Remark 2.1piiiq, there is a walk γ such that α`
Qpvq “ α´

Qpj´1q´1γ. In particular, j “ it for some

t P t0, . . . , ℓu. Assuming now that t˚pj˚q “ v, then v “ tpα´
Qpj`1qq, and we proceed analogously

using Remark 2.1piiiq.

Finally, the identity b “ incrα`
Qpvqs follows directly from pAq and pBq. [\

3. Permutation of vertices determined by a quiver

In this section we show the main technical result of the paper, Theorem 3.3. The theorem introduces

the Coxeter-Laplace matrix ΛQ of a loop-less quiver Q, and shows that it is a permutation matrix that

can be obtained combinatorially from the structural walks of Section 2. This construction yields one

of the main definitions of the paper: the cycle type of a quiver.

For a connected loop-less quiver Q “ pQ0, Q1q, consider the function ξ´
Q : Q0 Ñ Q0 given by,

ξ´
Qpvq “ tpα´

Qpvqq,

and take similarly ξ`
Qpvq “ tpα`

Qpvqq. Next we show that ξ´
Q is a permutation of Q0, referred to as

permutation of vertices associated to the quiver Q.

Lemma 3.1. For any loop-less quiver Q and any vertex v P Q0 we have

ξ`
Qpξ´

Qpvqq “ v.

In particular, ξ´
Q is invertible and pξ´

Qq´1 “ ξ`
Q .

Proof:

Taking w “ ξ´
Qpvq, by Remark 2.1piq we have α`

Qpwq “ α´
Qpvq´1, and

ξ`
Qpwq “ tpα`

Qpwqq “ tpα´
Qpvq´1q “ spα´

Qpvqq “ v.

In particular, ξ´
Q is injective, hence invertible with inverse ξ`

Q . [\

We need another preliminary observation.
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Remark 3.2. For any loop-less quiver Q with incidence matrix IpQq, and any walk α in Q, we have

IpQqincpαq “ espαq ´ etpαq.

Proof:

Clearly, the claim holds for trivial walks, and by definition of IpQq if α “ i for some arrow i (since

IpQq “ rI1| . . . |Ins where Ii “ espiq ´ etpiq P Z
m and incpiq “ ei). The claim holds similarly for

α “ i´1 (since incpi´1q “ ´ei).

Now, for a concatenated walk αβ we have incpαβq “ incpαq ` incpβq, and therefore, by induc-

tion on the length of a walk,

IpQqincpαβq “ IpQqincpαq ` IpQqincpβq “ espαq ´ etpαq ` espβq ´ etpβq

“ espαq ´ etpβq “ espαβq ´ etpαβq,

since etpαq “ espβq. This completes the proof. [\

Let Q be a loop-less quiver with incidence matrix IpQq, inverse quiver Q´1 and associated permu-

tation of vertices ξ´
Q . Denote by Q the underlying graph of Q. Let IncpQq be the incidence bigraph

of Q defined in [13, Definition 3.3] (see also [12]) as follows. The set of vertices IncpQq0 of IncpQq
is the set of arrows of Q (that is, IncpQq0 “ Q1). The number of signed edges in IncpQq between

vertices i and j is the cardinality of vpiq X vpjq. The sign of such arrows is ´1 if ij or ji is a walk in

Q, and it is `1 if ij´1 or i´1j is a walk of Q. For a bigraph ∆ denote by }Adjp∆q the upper trian-

gular adjacency matrix of ∆ (resp. by Adjp∆q “ }Adjp∆q ` }Adjp∆qtr the symmetric adjacency

matrix of ∆), and by D∆ the diagonal matrix of degrees of ∆.

Theorem 3.3. Let Q be a connected loop-less quiver with m vertices and n arrows. Then the follow-

ing identities hold:

GQ :“ IpQqtrIpQq “ 2In ´ AdjpIncpQqq,

LQ :“ IpQqIpQqtr “ DQ ´ AdjpQq,

ΦQ :“ In ´ IpQqtrIpQ´1q “ ´ qGtr

Q
qG´1

Q ,

ΛQ :“ Im ´ IpQ´1qIpQqtr “ P pξ´
Qq,

where for a permutation ρ, the matrix P pρq has as i-th column the canonical vector eρpiq. Moreover,

i) The Gram matrix GQ of Q has Dynkin type Am´1 and corank n ´ m ` 1, and every such

Gram matrix can be obtained in this way.

ii) The Laplace matrix LQ of Q has corank one, with null space generated by the vector 1 having

all entries equal to 1.

Since the matrix ΦQ is the Coxeter-Gram matrix of the quadratic form qQ, we refer to the matrix

ΛQ as the Coxeter-Laplace matrix of Q.
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Proof:

The expression for GQ and claim piq were shown in [12] (see also [13, Lemma 3.4 and Corollary 3.6]).

For a vertex v P Q0, consider the v-th column bv “ IpQqtrev of the matrix IpQqtr. By definition,

the entries of bv are indexed by the arrows of Q, and are given by

bvi “

$
’&
’%

`1, if spiq “ v,

´1, if tpiq “ v,

0, otherwise,

since Q has no loop. Then pbvqtrbv “
ř

iPQ1
pbvi q2 is precisely the number of arrows i such that

spiq “ v or tpiq “ v, that is, the degree of v as a vertex in the underlying graph Q of Q. Moreover,

for vertices v ‰ v1 and an arrow i P Q1, we have bvi b
v1

i “ ´1 if i joins vertices v and v1 (in any

direction), and bvi b
v1

i “ 0 otherwise. Then ´pbvqtrbv
1

“
ř

iPQ1
´bvi b

v1

i is the number of edges in Q

joining vertices v and v1. Therefore, the identity

IpQqIpQqtr “ DQ ´ AdjpQq,

holds. To show piiq, recall that the i-th row of IpQqtr is espiq ´etpiq, which implies that IpQqtr1 “ 0.

Assume now that Q is connected, and that x P Z
m is a non-zero vector such that IpQqtrx “ 0. Then

xv “ xv1 for any vertices v, v1 joint by an arrow in Q, thus, the connectivity of Q implies that the

vector x is an integer multiple of 1. This shows claim piiq, since the null space of LQ “ IpQqIpQqtr

is the right null space of IpQqtr.

As shown in [13, Theorem 4.7], using Proposition 2.2 we have

ΦQ “ In ´ IpQqtrIpQ´1q “ In ´ IpQqtrIpQq qG´1

Q “ In ´ p qGQ ` qGtr

Q q qG´1

Q “ ´ qGtr

Q
qG´1

Q ,

since IpQqtrIpQq “ GQ “ qGQ ` qGtr

Q . It remains to show that ΛQ “ P pξ´
Qq.

For any vertex v P Q0, Lemma 2.3 and Remark 3.2 yield

ΛQev “ rI ´ IpQ´1qIpQqtrsev “ ev ´ IpQ´1qincrα`
Q´1pvqs

“ ev ´ re
spα`

Q´1
pvqq ´ e

tpα`

Q´1
pvqqs “ eξ`

Q´1
pvq,

since spα`
Q´1pvqq “ v and tpα`

Q´1pvqq “ ξ`
Q´1pvq. This shows that ΛQ “ P pξ`

Q´1q.

Using the identity IpQ´1q “ IpQq qG´1

Q from Proposition 2.2, observe also that

ΛQΛQ´1 “ rI ´ IpQ´1qIpQqtrsrI ´ IpQqIpQ´1qtrs

“ I ´ IpQ´1qIpQqtr ´ IpQqIpQ´1qtr ` IpQ´1qIpQqtrIpQqIpQ´1qtr

“ I ´ IpQ´1q qGtr

Q IpQ´1qtr ´ IpQ´1q qGQIpQ´1qtr ` IpQ´1qGQIpQ´1qtr

“ I ´ IpQ´1q
”

qGtr

Q ` qGQ ´ GQ

ı
IpQ´1qtr “ I,

that is, pξ`
Qq´1 “ ξ`

Q´1. By Lemma 3.1 we get

ΛQ “ P pξ`
Q´1q “ P ppξ`

Qq´1q “ P pξ´
Qq,

which completes the proof. [\
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4. Cycle type, restrictions and transpositions

This technical section presents some simple quiver constructions to obtain prescribed permutations

of vertices. The main result, Proposition 4.5, describes the possible permutations obtained among

connected loop-less quivers of a given number of vertices and arrows.

Let α be a walk in a loop-less quiver Q. Denote by Qrαs the quiver obtained from Q by adding

an arrow from spαq to tpαq, placed last in the total ordering in the arrows Q1 of Q. For two vertices

v ‰ w in Q, denote by rv,ws the permutation of Q0 that swaps vertices v and w (called transposition

of v and w).

Lemma 4.1. Let Q be a loop-less quiver, and take Q1 “ Qpiq the quiver obtained from Q by removing

the maximal arrow i of Q1. Then

ξ´
Q “ ξ´

Q1rspiq, tpiqs.

Proof:

Let v be a vertex of Q with v R vpiq. Then Q1pvq “ Q1
1
pvq and i ą maxQ1pvq, by maximality of

i. Hence α´
Qpvq “ α´

Q1pvq, that is, ξ´
Qpvq “ ξ´

Q1pvq. Observe that α´
Qpspiqq “ iα´

Q1ptpiqq and that

α´
Qptpiqq “ i´1α´

Q1pspiqq. Hence ξ´
Qpspiqq “ ξ´

Q1ptpiqq and ξ´
Qptpiqq “ ξ´

Q1pspiqq, which shows the

claim. [\

Let ρ be a permutation of a finite set Q0. The cycle type ctpρq of ρ is the (non-increasing)

sequence of cardinalities of the orbits of ρ. The cycle type ctpρq of ρ is a partition of the integer |Q0|.

Definition 4.2. For a connected loop-less quiver Q, define the cycle type ctpQq of Q as the cycle

type of the permutation of vertices ξ´
Q determined by Q,

ctpQq :“ ctpξ´
Qq.

By Coxeter polynomial of a loop-less quiver Q we mean the characteristic polynomial ϕQ of the

Coxeter matrix ΦQ of Q. Recall that if charM pλq denotes the characteristic polynomial of a square

matrix M , and that if A and B are m ˆ n and n ˆ m matrices respectively, then

charBApλq “ λn´mcharABpλq,

see for instance [33, §2.4]. As a consequence of Theorem 3.3, we get the following particular descrip-

tion of corresponding Coxeter polynomials.

Corollary 4.3. Let Q be a connected loop-less quiver. Then the Coxeter polynomial ϕQ of Q is given

by

ϕQpλq “ pλ ´ 1qc´1charctpQqpλq,

where charctpQqpλq “
ℓpπqś
a“1

pλπa ´ 1q if ctpQq “ pπ1, . . . , πℓpπqq.
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Proof:

Using Theorem 3.3, we have

ϕQpλq “ charΦQ
pλq “ char´IpQqtrIpQ´1qpλ ´ 1q

“ pλ ´ 1qn´mchar´IpQ´1qIpQqtrpλ ´ 1q “ pλ ´ 1qn´mcharΛQ
pλq

“ pλ ´ 1qc´1charP pξ´
Q

qpλq,

since c ´ 1 “ n ´ m. The characteristic polynomial of permutation matrices is well known (cf. [33,

§5.6]),

charP pξ´
Q

qpλq “

ℓpπqź

t“1

pλπt ´ 1q,

where ctpξ´
Qq “ π “ pπ1, . . . , πℓpπqq. This shows that ϕQpλq “ pλ ´ 1qc´1charctpQqpλq, which

completes the proof. [\

As alternative factorization of the Coxeter polynomial of Q, consider the polynomial νkpλq “
λk´1 ` λk´2 ` . . . ` λ ` 1 for k ě 1. Then λk ´ 1 “ pλ ´ 1qνkpλq, and

ϕQpλq “ pλ ´ 1qc`pℓ´1q
ℓź

t“1

νπtpλq, (1)

where ctpQq “ pπ1, . . . , πℓq and pℓ ´ 1q ě 0.

Lemma 4.4. Let Q be a tree quiver. Then ξ´
Q is a cyclic permutation.

Proof:

Consider the linear quiver L with m vertices,

L “ v1
1 // v2

2 // v3
3 // v4 ¨ ¨ ¨ vm´2

m´2// vm´1

m´1// vm.

Then ξ´
L pvtq “ vt`1 if t ă m, and ξ´

L pvmq “ v1, that is, ξ´
L is a cyclic permutation. By equation (1),

ϕLpλq “ νmpλq.

Assume now that Q is an arbitrary tree quiver. Using [13, Corollary 3.11 and Proposition 3.13],

we have qL « qQ, and in particular ϕQpλq “ ϕLpλq. If ξ´
Q is not a cyclic permutation, then ℓ “

ℓpctpQqq ą 1, and again by equation (1), the polynomial ϕQ has 1 as a root. This is impossible since

1 is not a root of ϕLpλq “ νmpλq. [\

Denote by UQuivmpnq the set of connected loop-less quivers having m vertices and n arrows.

We will also use the notation UQuivc
mpnq where c “ n ´ m ` 1, or simply UQuivcpnq.

Proposition 4.5. For a quiver Q in UQuivmpnq, the cycle type ctpQq of Q is a partition in Pc
1
pmq,

where c “ n ´ m ` 1.

Proof:

That ctpQq $ m is clear. We proceed by induction on c ě 0. If c “ 0, then Q is a tree, and by

Lemma 4.4, ξ´
Q is a cyclic permutation. In particular ℓpctpQqq “ 1 and ctpQq P P0

1 pmq.
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Assume the claim holds for non-negative integers smaller than c. Fix n ą c, take a quiver Q P
UQuivc

mpnq and consider the quiver Qpnq obtained from Q by removing the last arrow n.

Case 1. Assume first that Qpnq is connected. Then Qpnq P UQuivc´1
m pn ´ 1q, and by induction

hypothesis we have ξ´
Qpnq P P

pc´1q
1

pmq, that is,

0 ď pc ´ 1q ´ rℓpctpQpnqqq ´ 1s ” 0 mod 2.

By Lemma 4.1 we have ℓpctpQqq “ ℓpctpQpnqqq ` δ, where δ “ 1 if spnq and tpnq belong to the

same cycle of ξ´
Q , and δ “ ´1 otherwise. Hence

0 ď pc ´ 1q ´ rℓpctpQpnqqq ´ 1s

“ c ´ rℓpctpQpnqqq ` δ ´ 1s ` δ ´ 1

“ c ´ rℓpctpQqq ´ 1s ` δ ´ 1 ” 0 mod 2.

This shows that ctpQq P Pc
1
pmq, since δ ´ 1 ď 0.

Case 2. Assume now that Qpnq is not connected, that is, Qpnq “ Qs \ Qt where spnq P Qs and

tpnq P Qt. Note that Qs P UQuivcs

mspnsq and Qt P UQuivct

mtpntq for non-negative integers cs, ct,

ns, nt, ms and mt with cs ` ct “ c, ns ` nt “ n ´ 1 and ms ` mt “ m. Thus, by induction on c,

we may assume that

ctpξ´
Qsq P Pcs

1 pmsq, and ctpξ´
Qtq P Pct

1 pmtq,

in case cs, ct ą 0. If cs “ 0 or ct “ 0, we may use induction on n to get the same conclusion, that is,

0 ď cs ´ rℓpctpQsqq ´ 1s ” 0 mod 2, and 0 ď ct ´ rℓpctpQtqq ´ 1s ” 0 mod 2.

Note that, by Lemma 4.1, we have ℓpQq “ ℓpQsq ` ℓpQtq ´ 1. Therefore

0 ď pcs ´ rℓpctpQsqq ´ 1sq ` pct ´ rℓpctpQtqq ´ 1sq “ c ´ rℓpctpQqq ´ 1s ” 0 mod 2.

We conclude that ctpQq P Pc
1pnq. [\

5. Representative families of quivers

In this section we fix connected non-negative unit forms of Dynkin type Ar having as Coxeter poly-

nomial those permitted by Proposition 4.5. We need the following preliminary observation.

Remark 5.1. Let Q be a loop-less quiver (not necessarily connected) with n arrows. For any distinct

vertices v and w in Q, let Q1 be the quiver obtained from Q by adding a pair of parallel arrows from v

to w, labeled as

v
n`1 //

n`2

// w.

Then ξ´
Q1 “ ξ´

Q .
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Proof:

Follows from Lemma 4.1. [\

Let π “ pπ1, . . . , πℓq be a partition of the integer m ě 2, consisting of ℓ “ ℓpπq parts. Observe

that π P Pc
1pmq if and only if c “ ℓ´1`2d for some integer d ě 0. Below we determine a connected

quiver
ÝÑ
A
d

rπs and its inverse
ÝÑ
S
d

rπs, with cycle type π and corank c for such π and d ě 0, (that is,

connected quivers with m vertices, n “ m`ℓ`2pd´1q arrows and cycle type π). Roughly speaking,

we start with a tree on m vertices (which has cycle type pmq by Lemma 4.4), use Lemma 4.1 to break

its cyclic components, and then apply Remark 5.1 to obtain the correct corank, without modifying the

associated cycle type.

For a quiver Q with vertices v,w P Q0, denote by Qrv,ws the quiver obtained from Q by adding

an arrow from v to w, placed last in the ordering of Q1. Denote by Em “ ptv1, . . . , vmu,Hq the quiver

with m vertices v1, . . . , vm and no arrows, and consider the linear quiver
ÝÑ
Am and the maximal star

quiver
ÝÑ
S m each with m ´ 1 arrows, given by

ÝÑ
Am “ Emrv1, v2srv2, v3s ¨ ¨ ¨ rvm´2, vm´1srvm´1, vms,

and
ÝÑ
S m “ Emrv1, v2srv1, v3s ¨ ¨ ¨ rv1, vm´1srv1, vms.

Definition 5.2. For any partition π “ pπ1, . . . , πℓq of an integer m ě 2, and any d ě 0, consider the

connected quivers
ÝÑ
A
d

rπs and
ÝÑ
S
d

rπs, with m vertices and n “ m ` ℓ ` 2pd´ 1q arrows, defined as

follows. If ℓ ą 1, take the indices i1 “ m´π1, i2 “ m´pπ1`π2q, . . . , iℓ´2 “ m´pπ1`. . .`πℓ´2q,

and iℓ´1 “ m ´ pπ1 ` . . . ` πℓ´1q “ πℓ, (all of which belong to the set t1, . . . ,m ´ 1u).

i) Take
ÝÑ
A

0
rπs “

ÝÑ
Amrtpm´1q, spi1qsrspi1q, spi2qs ¨ ¨ ¨ rspiℓ´2q, spiℓ´1qs if ℓ ą 1, and

ÝÑ
A

0
rpmqs “

ÝÑ
Am if ℓ “ 1. Define recursively for d ą 0,

ÝÑ
A
d

rπs “

$
’’’&
’’’%

´
ÝÑ
A
d´1

rπs
¯

rspiℓ´1q, spiℓ´2qsrspiℓ´2q, spiℓ´1qs, if ℓ ą 2,´
ÝÑ
A
d´1

rπs
¯

rspi1q, tpm ´ 1qsrtpm ´ 1q, spi1qs, if ℓ “ 2,´
ÝÑ
A
d´1

rπs
¯

rtpm ´ 1q, spm ´ 1qsrspm ´ 1q, tpm ´ 1qs, if ℓ “ 1.

ii) Take
ÝÑ
S

0
rπs “

ÝÑ
S mrsp1q, tpi1qsrsp1q, tpi2qs ¨ ¨ ¨ rsp1q, tpiℓ´1qs if ℓ ą 1, and

ÝÑ
S

0
rpmqs “

ÝÑ
S m

if ℓ “ 1. Define recursively for d ą 0,

ÝÑ
S
d

rπs “

$
&
%

´
ÝÑ
S
d´1

rπs
¯

rsp1q, tpiℓ´1qsrsp1q, tpiℓ´1qs, if ℓ ą 1,´
ÝÑ
S
d´1

rπs
¯

rsp1q, tpm ´ 1qsrsp1q, tpm ´ 1qs, if ℓ “ 1.

For example, if m “ 2, π “ p1, 1q and d “ 1, then n “ 4, i1 “ 1, and

ÝÑ
A

1
rp1, 1qs “ ‚

1 //
oo 2

3 //
oo 4

‚
ÝÑ
S

1
rp1, 1qs “ ‚

1 //
2 //
3 //
4 //

‚
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If m “ 7, π “ p3, 2, 2q and d “ 1, then n “ 10, i1 “ 4, i2 “ 2, and we have

‚
1 // ‚ 2 // ‚ 3 // ‚ 4 //

8

ff
88

9

10

ff

‚
5 // ‚ 6 // ‚

7

bb ‚ ‚ ‚

‚

1

OO

8

??⑧⑧⑧⑧⑧⑧⑧
9

LL

10

LL2

??⑧⑧⑧⑧⑧⑧⑧

3

��❄
❄❄

❄❄
❄❄

4

��
7

��

5

��⑧⑧
⑧⑧
⑧⑧
⑧

6

__❄❄❄❄❄❄❄

‚ ‚ ‚

ÝÑ
A

1
rp3, 2, 2qs

ÝÑ
S

1
rp3, 2, 2qs

Remark 5.3. For any partition π of an integer m ě 2, and any d ě 0, the connected quivers
ÝÑ
A
d

rπs

and
ÝÑ
S
d

rπs are loop-less and inverse of each other.

Proof:

Take Q “
ÝÑ
A
d

rπs “ pQ0, Q1, s, tq, and keep the notation of Definition 5.2. Observe first that if ℓ ą 1,

then

tpm ´ 1q “ m ą i1 ą i2 ą . . . ą iℓ´1 ą 0.

Since the first m ´ 1 arrows of Q constitute the linear quiver
ÝÑ
Am, then Q is a connected loop-less

quiver. Clearly, the same holds if ℓ “ 1. Moreover, in any case we have tpiq “ spi ` 1q for any

i “ 1, . . . , n ´ 1. This shows that for any i P Q1,

α´
Qpi´1q “ i´1pi ´ 1q´1 ¨ ¨ ¨ 2´11´1,

and therefore, s˚pi˚q “ tp1´1q “ sp1q (see definition right before Proposition 2.2). On the other

hand,

α´
Qpi`1q “

$
’&
’%

i, if i “ 1, . . . ,m ´ 1,

iit, if i “ m, . . . ,m ` ℓ ´ 2,

iα´
Qppi ´ 1q`1q, if i “ m ` ℓ ´ 1, . . . , n,

where the list m, . . . ,m ` ℓ ´ 2 is empty if ℓ “ 1. Then

t˚pi˚q “

$
’&
’%

tpiq, if i “ 1, . . . ,m ´ 1,

tpitq, if i “ m, . . . ,m ` ℓ ´ 2,

tpjq, if i “ m ` ℓ ´ 1, . . . , n,

where j “ iℓ´1 if ℓ ą 1 and j “ m ´ 1 if ℓ “ 1. Taking Q1 “
ÝÑ
S
d

rπs “ pQ1
0
, Q1

1
, s1, t1q, we observe

directly form Definition 5.2piiq that s˚ “ s1 and t˚ “ t1, that is,

´
ÝÑ
A
d

rπs
¯´1

“
ÝÑ
S
d

rπs.

By Proposition 2.2, the quiver Q1 is also connected and loop-less. [\

Note that the column vector 1 having all entries equal to 1 is always a root of qQ for Q “
ÝÑ
A
d

rπs,

and that qQ´1 is always a weakly positive unit form (for Q´1 “
ÝÑ
S
d

rπs).
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6. Proof of main results

For a permutation ρ of the vertices Q0 of a quiver Q “ pQ0, Q1, s, tq, denote by ρ¨Q “ pQ0, Q
1
1, s

1, t1q
the quiver obtained by determining

s1pi1q “ ρpspiqq, and tpi1q “ ρptpiqq,

for an arrow i1 in ρ ¨ Q corresponding to the arrow i in Q. In other words, ρ ¨ Q is the unique quiver

satisfying Ipρ ¨ Qq “ P pρqIpQq. Observe that qGρ¨Q “ qGQ, and that pρ ¨ Qq´1 “ ρ ¨ Q´1. Indeed,

Ippρ ¨ Qq´1q “ Ipρ ¨ Qq qG´1

ρ¨Q “ P pρqIpQq qG´1

Q “ P pρqIpQ´1q “ Ipρ ¨ Q´1q.

The quadratic form qQ associated to a quiver Q is given by qQpxq “ 1

2
||IpQqx||2 for x P Z

n

(cf. [13, Definition 3.1]).

Lemma 6.1. Let Q and Q1 be connected loop-less quivers with n arrows and m vertices.

i) If qQ1 “ qQ, then there is a permutation of vertices ρ such that

ρ ¨ Q1 “ Q, or ρ ¨ Q1 “ Qop,

where Qop denotes the quiver obtained from Q by changing the orientation of all arrows (the

opposite quiver of Q).

ii) If qQ1 „ qQ, then there is a permutation of vertices ρ such that

Ipρ ¨ Q1q “ IpQqB,

for some Z-invertible matrix B.

iii) If qQ1 « qQ, then there is a permutation of vertices ρ such that

Ipρ ¨ Q1q “ IpQqB, and qGQ1 “ qGρ¨Q1 “ Btr qGQB,

for some Z-invertible matrix B. In particular, Ipρ ¨ pQ1q´1q “ IpQ´1qB´tr.

Proof:

For piq, if qQ1 “ qQ, by [12, Corollary 7.3] there is either an isomorphism of quivers pf0, f1q : Q1 Ñ
Q, or an isomorphism pf0, f1q : Q1 Ñ Qop. This means that, taking ρ “ f0, we have ρ ¨ Q1 “ Q or

ρ ¨ Q1 “ Qop.

To show piiq, assume that there is a Z-invertible matrix C such that qQ1 “ qQC . Then the columns

c1, . . . , cn of C are roots of the unit form qQ (since qQ1 is unitary), and by [12, Lemma 6.1] there

are walks γ1, . . . , γn in Q such that ci “ incpγiq for i “ 1, . . . , n. Denote by Q2 the quiver with

Q2
0

“ Q0 having an arrow i P Q2
1

from spγiq to tpγiq for each i “ 1, . . . , n. Then, by Remark 3.2, we

have IpQ2q “ IpQqC , and therefore

qQ2pxq “
1

2
xtrIpQ2qtrIpQ2qx “

1

2
xtrCtrIpQqtrIpQqCx “ qQpCxq “ qQ1pxq,
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for any x P Z
n. By piq, there is a permutation ρ of Q0 with ρ ¨ Q1 “ Q2 or ρ ¨ Q1 “ pQ2qop. Taking

B “ C in the first case, and B “ ´C in the second case, we get

Ipρ ¨ Q1q “ IpQ2q “ IpQqC “ IpQqB, or Ipρ ¨ Q1q “ IppQ2qopq “ ´IpQqC “ IpQqB,

since IpQopq “ ´IpQq.

To show piiiq, take C such that qGQ1 “ Ctr qGQC . By piiq we may assume that there is a permuta-

tion ρ of Q0 and a matrix B such that Ipρ ¨ Q1q “ IpQqB and qGQ1 “ Btr qGQB (for B “ ˘C). To

show the last claim note that, using Proposition 2.2,

Ipρ ¨ pQ1q´1q “ Ipρ ¨ Q1q qG´1

Q1 “ rIpQqBsrBtr qGQBs´1 “ IpQq qG´1

Q B´tr “ IpQ´1qB´tr,

which completes the proof. [\

The following is our main definition. Denote by Ppmq the set of partitions of the integer m ě 2.

Definition 6.2. Take 0 ď c ă n and m “ n ´ c ` 1. Assume that q P UQuadc
A

pnq, and that

Q P UQuivmpnq is a loop-less quiver such that q “ qQ. We define a function ct : UQuadc
A

pnq Ñ
Ppmq as the cycle type ctpqq :“ ctpQq of Q.

By Lemma 6.1piq, the assignment q ÞÑ ctpqq is well defined. Indeed, if q “ qQ1 for some other

quiver Q1, then ctpQ1q “ ctpρ ¨ Q1q “ ctppρ ¨ Q1qopq “ ctpQq.

Theorem 6.3. For any integers 0 ď c ă n, the function ct given in Definition 6.2 is invariant under

strong Gram congruence. Moreover, the image ctrUQuadc
Apnqs of ct is exactly Pc

1pn ´ c ` 1q, and

for any q in UQuadc
A

pnq, the Coxeter polynomial of q is given by

ϕqpλq “ pλ ´ 1qc´1charctpqqpλq.

Proof:

Assume that q1 « q, and choose quivers Q and Q1 such that q “ qQ and q1 “ qQ1 . By Lemma 6.1piiiq,

we may assume that there is a Z-invertible matrix B such that IpQ1q “ IpQqB and IppQ1q´1q “
IpQ1qB´tr (by replacing ρ ¨ Q1 by Q1 if necessary). Then

ΛQ1 “ I ´ IppQ1q´1qIpQ1qtr “ I ´ IpQ´1qB´trBtrIpQqtr “ I ´ IpQ´1qIpQqtr “ ΛQ,

and by Theorem 3.3, we have ξ´
Q1 “ ξ´

Q . In particular,

ctpq1q “ ctpQ1q “ ctpξ´
Q1q “ ctpξ´

Qq “ ctpQq “ ctpqq.

Now, by definition and Proposition 4.5, the partition ctpqq belongs to the set Pc
1pn ´ c ` 1q “

Pc
1
pmq, for any quadratic form q in UQuadc

A
pnq. That any partition in Pc

1
pmq is the cycle type ctpqq

of a quadratic form q in UQuadc
A

pnq follows from Definition 5.2. Indeed, take π P Pc
1
pmq with

ℓ “ ℓpπq, and consider the quiver Q “
ÝÑ
A
d

rπs where c “ ℓ ´ 1 ` 2d. Then qQ P UQuadc
Apnq and

ctpqQq “ π. The description of Coxeter polynomials was shown in Corollary 4.3. [\
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Recall that the Coxeter matrix Φq of a non-negative unit form q is a weakly periodic matrix, that

is, there is a minimal k ě 1 such that I ´ Φk
q is a nilpotent matrix (cf. [21] or [2]). Such minimal

power, denoted by Crepqq “ k, is called reduced Coxeter number of q. In case Φk
q “ I for some

minimal k ě 1, then cpqq “ k is called Coxeter number of q, otherwise we set cpqq “ 8.

Corollary 6.4. Let q be a unit form in UQuadc
A

pnq, and consider its cycle type ctpqq “ pπ1, . . . , πℓq.

Then

i) The Coxeter number cpqq of q is finite if and only if ℓ “ 1, in which case cpqq “ π1.

ii) The reduced Coxeter number Crepqq of q is given by

Crepqq “ lcmpπ1, . . . , πℓq,

where lcm denotes least common multiple.

Proof:

Take q “ qQ for some quiver Q. By Theorem 3.3 we have Φq “ ΦQ. Let us first show that Φk
Q “

I ´ IpQqtrνkpΛQqIpQ´1q for any k ě 1, where νkpλq is the polynomial νkpλq “ λk´1 ` λk´2 `
. . . ` λ ` 1. Indeed, by induction on k and from Theorem 3.3, we have

Φk
Q “ ΦQΦ

k´1

Q “ rI ´ IpQqtrIpQ´1qsrI ´ IpQqtrνk´1pΛQqIpQ´1qs

“ I ´ IpQqtrrI ` νk´1pΛQq ´ IpQ´1qIpQqtrνk´1pΛQqsIpQ´1q

“ I ´ IpQqtrrI ` rI ´ IpQ´1qIpQqtrsνk´1pΛQqsIpQ´1q

“ I ´ IpQqtrrI ` ΛQνk´1pΛQqsIpQ´1q

“ I ´ IpQqtrνkpΛQqIpQ´1q. (2)

For a vertex v P Q0 and an integer a ě 0, take va “ pξ´
Qqapvq. Let β be a walk in Q´1 from

a vertex v to a different vertex w. Note that, using equation ΛQ “ P pξ´
Qq of Theorem 3.3, and

Remark 3.2, we have

IpQqrI ´ Φk
Qsincpβq “ IpQqIpQqtrνkpΛQqIpQ´1qincpβq

“ LQνkpΛQqpev ´ ewq

“ LQrpev0 ` . . . ` evk´1
q ´ pew0

` . . . ` ewk´1
qs. (3)

Recall that, since Q is connected, the null space of the Laplace matrix LQ is generated by the (column)

vector 1 P Z
m with all entries equal to 1 (Theorem 3.3piiq).

To show piq, assume first that ℓ “ 1. Then νπ1
pΛQq “ π1r11trs (that is, the matrix with all entries

equal to π1), and therefore, Φπ1

Q “ I by equation (2). Now, if 1 ď k ă π1, taking a walk from v to

w “ v1, from (3) we get

IpQqrI ´ Φk
Qsincpβq “ LQpev0 ´ evkq ‰ 0,

since v0 ‰ vk (for ℓ “ 1 and k ă π1). This shows that the Coxeter number of q is cpqq “ π1.
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Assume now that ℓ ą 1. Note that if v and w belong to different ξ´
Q orbits in Q0, then

pev0 ` . . . ` evk´1
q ´ pew0

` . . . ` ewk´1
q R Z1,

and therefore, by (3) we have Φk
Q ‰ I for any k ě 1, which completes the proof of piq.

Observe now that,

rI ´ Φk
QsrI ´ ΦQs “ rIpQqtrνkpΛQqIpQ´1qsrIpQqtrIpQ´1qs

“ IpQqtrrνkpΛQqpI ´ ΛQqsIpQ´1q

“ IpQqtrrI ´ Λk
QsIpQ´1q, (4)

and

rI ´ Φk
Qs2 “ rIpQqtrνkpΛQqIpQ´1qsrIpQqtrνkpΛQqIpQ´1qs

“ IpQqtrrνkpΛQqpI ´ ΛQqνkpΛQqsIpQ´1q

“ IpQqtrrνkpΛQqpI ´ Λk
QqsIpQ´1q. (5)

To show piiq, recall that the order of ξ´
Q is lcmpctpξ´

Qqq. Since ΛQ “ P pξ´
Qq, by (4) we have

rI ´ Φk
QsrI ´ ΦQs “ 0 if k “ lcmpctpqqq, that is,

rI ´ Φk
Qs2 “ rI ´ Φk

QsrI ´ ΦQsνkpΦQq “ 0.

Assume now that k ă lcmpctpqqq, and choose a vertex v P Q0 such that v ‰ vk. Take w “ v1 and β

a walk from v to w in Q´1. Similarly, as in (3), by (5) we have

IpQqrI ´ Φk
Qs2incpβq “ LQνkpΛQqpI ´ Λk

Qqpev0 ´ ev1q

“ LQνkpΛQqrpev0 ´ ev1q ´ pevk ´ evk`1
qs

“ LQrev0 ` ev2k ´ 2evk s ‰ 0,

since ev0 ` ev2k ´ 2evk R Z1, for v0 ‰ vk. This shows that rI ´ Φk
Qs2 ‰ 0 for k ă lcmpctpqqq,

which completes the proof. [\

To illustrate the main results, we end this section with some examples of Coxeter polynomials and

(reduced) Coxeter numbers that occur among quadratic forms q P UQuadc
A

pnq for small n and c.

For instance, if n “ 5 and c “ 2, then m “ n ´ c ` 1 “ 4 and the set

P
2
1 p4q “ tπ $ m | ℓpπq P t1, 3uu,

contains only two partitions, namely p4q and p2, 1, 1q. By Theorem 6.3 and Corollary 6.4, for q P
UQuad2

Ap5q we have either

ϕqpλq “ pλ4 ´ 1qpλ ´ 1q, or ϕqpλq “ pλ2 ´ 1qpλ ´ 1q3,

with corresponding Coxeter numbers 4 and 8, and reduced Coxeter numbers 4 and 2. Similarly, if

n “ 8 and c “ 4, then m “ n ´ c ` 1 “ 5, and

P4
1 p5q “ tπ $ m | ℓpπq P t1, 3, 5uu.

The four partitions in P4
1 p5q, and corresponding Coxeter polynomials and (reduced) Coxeter numbers

among the unit forms in UQuad4
Ap8q, are listed in the following table.
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Partition Coxeter polynomial Coxeter number Reduced Coxeter number

(5) pλ5 ´ 1qpλ ´ 1q3 5 5

(3,1,1) pλ3 ´ 1qpλ ´ 1q5 8 3

(2,2,1) pλ2 ´ 1q2pλ ´ 1q4 8 2

(1,1,1,1,1) pλ ´ 1q8 8 1

7. Comments and algorithms

An important problem in the theory of quadratic forms, or the corresponding graphical formulation in

terms of edge-bipartite graphs developed by Simson and collaborators [25, 27, 31], is to find character-

izations for the strong Gram congruence. So far, the pair consisting of the Dynkin type and the spec-

trum of the Coxeter polynomial of a connected non-negative unit form q (the so-called Coxeter-Dynkin

type of q), seems to be a good candidate for such characterization (see for instance [25, Problem 1.9]).

Problem A.

Let q and rq be connected weakly Gram congruent non-negative unit forms. If the Coxeter polynomials

of q and rq coincide, are the unit forms q and rq strongly Gram congruent?

An affirmative answer to Problem A for positive unit forms with small number of variables (not

exceeding 9), including the exceptional cases E6, E7 and E8, is part of the work of Simson [27] and

collaborators [6, 15, 16, 17], aiming much general problems on edge-bipartite graphs, morsifications

and mesh-geometries. The positive cases of Dynkin type Dn and An were solved recently in [28]

and [29] respectively, also in a wider context, and similar results for principal unit forms associated to

posets were shown in [11]. The main construction of the paper, the cycle type, allows a reformulation

of Problem A for the case of Dynkin type Ar:

Problem B.

Does the cycle type assignment induce a bijection

ct : rUQuadc
Apnq{ «s ÝÑ P

c
1pn ´ c ` 1q,

for any n ě 1 and 0 ď c ă n?

The bijectivity of ct for the cases c P t0, 1u is consequence of the main results Theorems 3.16

and 4.12 of [13], concerning the positive and principal cases of Dynkin type An respectively. In an

upcoming work [14] we will approach Problem B in full generality with matricial techniques.

Let CSpecpqq denote the Coxeter spectrum of a connected non-negative unit form q, that is, the

multi-set of roots of the Coxeter polynomial ϕqpλq. By non-negativity, every λ P CSpecpqq is a root

of unity (cf. [21, Theorems 2.6 and 3.4]).
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Remark 7.1. Let q be a unit form in UQuadc
Apnq, for n ě 1 and 0 ď c ă n, and consider the cycle

type ctpqq “ pπ1, . . . , πℓq of q.

a) If η is a primitive d-root of unity for some d ą 1, then the multiplicity of η in CSpecpqq is

#ta P t1, . . . , ℓu such that d divides πau,

where #S denotes the cardinality of a set S.

b) The multiplicity of 1 in CSpecpqq is c ` pℓ ´ 1q.

Proof:

Recall from Corollary 4.3 that the Coxeter polynomial of q is given by

ϕqpλq “ pλ ´ 1qc´1

ℓź

a“1

pλπa ´ 1q.

Let η be a primitive d-root of unity for some d ą 1. It is well known that η is a root of pλt ´ 1q
if and only if d divides t, and in that case the multiplicity of η is one (see for instance [18, §3.3]).

This shows claim paq. To show pbq consider the alternative factorization (1) of ϕqpλq given right after

Corollary 4.3,

ϕQpλq “ pλ ´ 1qc`pℓ´1q
ℓź

t“1

νπtpλq.

Thus, claim pbq holds since νtp1q ‰ 0 for any t ě 0. [\

With Problem B in mind, the unit forms associated to the representative quivers of Section 5 are

proposed representatives of the strong Gram classes in UQuadc
A

pnq, playing the role of the canonical

extensions of Ar defined by Simson in [25] for the weak Gram congruence. The following straight-

forward observation, relating Simson’s construction with those in Section 5, will be useful for our

computations.

Remark 7.2. For r ě 1 and c ě 0, consider the quiver with r ` 1 vertices and r ` c arrows, given by

Qc
r “

$
&
%

ÝÑ
A

c
2 rpr ` 1qsVc

rT , if c is even,
ÝÑ
A

c´1

2 rpr, 1qsVc
r , if c is odd,

where, if c is even, Vc
r is the inversion of the arrows r ` 2i for i “ 1, . . . , c

2
, and T is the iterated

flation (see definition and notation in [13, §2.5]) given by

T “ T 1 ¨ ¨ ¨ T c{2, where T i :“ T `1

r`i,r´1
¨ ¨ ¨ T `1

r`i,2T
`1

r`i,1, for i “ 1, . . . , c{2.

If c is odd, Vc
r is the inversion of the arrows r ` 2i for i “ 1, . . . , c´1

2
. To be precise,

Qc
r “ ‚

1 // ‚ 2 // ‚ 3 // ‚ ¨¨¨ // ‚
r´1 // ‚ r // ‚

r`1

¨¨¨

kk

r`c
kk

Let pApcq
r be the canonical c-extension of Ar defined in [25]. Then pApcq

r “ Inc pQc
rq.
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Next we show how to find a quiver Q with n arrows such that q “ qQ, given that q is a connected

non-negative unit form of Dynkin type Ar in n ě r variables, following [13, Proposition 3.15].

Algorithm 1.

Input: A connected non-negative quadratic unit form q in n ě 1 variables, and of Dynkin type Ar for some

r ě 1.

Output: A connected loop-less quiver Q with n arrows and m “ r ` 1 vertices, such that q “ qQ.

Step 1. Compute the upper triangular Gram matrix qGq of q, and the corresponding symmetric Gram matrix

Gq “ qGq ` qGtr

q . Recall that eiGqej “ qpei ` ejq ´ qpeiq ´ qpejq, for any canonical vectors ei, ej in Z
n.

Step 2. Find a Z invertible matrix B such that GpApcq
r

“ BtrGqB, where GpApcq
r

denotes the symmetric Gram

matrix of the canonical c-extension pApcq
r of Ar. For instance, use Algorithm 3.18 in [31].

Step 3. Calculate the inverse matrix B´1, and take I :“ IpQc
rqB´1 where Qc

r is the quiver given in Re-

mark 7.2. Verify that

ItrI “ B´trIpQc
rqtrIpQc

rqB´1 “ B´trGpApcq
r

B´1 “ Gq.

Step 4. Take Q0 “ t1, . . . ,m “ r ` 1u and Q1 “ t1, . . . , nu. For every i P Q1, the column vector b “ Iei

satisfies btrb “ etri Gqei “ 2, since q is unitary. Then there are different indices s, t P Q0 with

b “ Ses ` Tet, for some signs S, T P t˘1u.

Moreover, 1trI “ 1

trIpQc
rqB´1 “ 0, which implies that 1trb “ 0. Then, after switching the labels s and t

if necessary, we may assume that S “ `1 and T “ ´1. Take spiq “ s and tpiq “ t, which defines a quiver

Q “ pQ0, Q1, s, tq with I “ IpQq. That Q has no loop is clear, since s ‰ t for an arrow i as above. That Q is

connected follows from [13, Lemma 3.4pdq]. By Step 3 and the definition qQpxq :“ 1

2
||IpQqx||2 for x P Z

n,

we have

qpxq “
1

2
xtrGqx “

1

2
xtrIpQqtrIpQqx “ qQpxq,

as wanted.

The cycle type ctpqq of a quadratic form q in UQuadc
Apnq, for any n ě 1 and any 0 ď c ă n,

can be found directly from a quiver Q with q “ qQ. Indeed, compute first the permutation ξ´
Q (either

by constructing the structural decreasing walks α´
Qpvq for any vertex v, or directly by computing the

matrix ΛQ “ Im ´ IpQq qG´1
q IpQqtr “ P pξ´

Qq, cf. Theorem 3.3 and Proposition 2.2). Then find

a cycle decomposition of ξ´
Q , using for instance the full_cyclic_form() sympy Python library

function, and store the corresponding lengths, ordered non-increasingly, in a list ctpqq. We stress that

the cycle type ctpqq can be recovered from the Coxeter polynomial of q (or its spectrum), as indicated

in Algorithm 2 below. We need the following straightforward observation.

Remark 7.3. Let π “ pπ1, . . . , πℓq $ m be a partition of the integer m ě 1. Then

π1 “ maxtt ě 1 such that pλt ´ 1q divides charπpλqu.

Proof:

Take m0 :“ maxtt ě 1 such that pλt ´ 1q divides charπpλqu. Since charπpλq “
śℓ

a“1
pλπa ´ 1q,

clearly m0 ě maxtπ1, . . . , πℓu “ π1. On the other hand, since pλm0 ´ 1q divides charπpλq, any

primitive m0-root of unity is a root of charπpλq. By Remark 7.1paq, this means that m0 divides πa for

some a P t1 . . . , ℓu. In particular m0 ď π1, and the claim follows. [\
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Algorithm 2.

Input: The Coxeter polynomial ϕqpλq of a quadratic form q in UQuadc
A

pnq, for n ě 1 and 0 ď c ă n.

Output: The cycle type ctpqq of q.

Step 1. Take an empty list ctpqq “ H.

Step 2. By Theorem 6.3, there is a polynomial p0pλq such that ϕqpλq “ pλc´1 ´ 1qp0pλq, and a partition

π0 of m0 “ m such that p0pλq is the characteristic polynomial of π0.

Step 3. Given the non-constant polynomial pipλq for i ě 0, find the maximal t ě 1 such that pipλq is a

multiple of pλt ´ 1q, and define pi`1pλq such that pipλq “ pi`1pλqpλt ´ 1q. By Remark 7.3, if pipλq is the

characteristic polynomial of the partition πi “ pπi
1
, . . . , πi

ℓi
q, then pi`1pλq is the characteristic polynomial of

the partition πi`1 :“ pπi
2, . . . , π

i
ℓi

q. Append the integer t “ πi
1 to the list ctpqq.

Step 4. Starting with the polynomial p0pλq of Step 2, repeat Step 3 until we find a constant polynomial

pℓpλq ” 1. We end up with a list ctpqq with ℓ elements, which is the wanted cycle type of q by Remark 7.3.

We close our discussion with a procedure to explicitly find all partitions of fixed length (Algo-

rithm 3). Using the Main Theorem of the paper, we may find in this way all Coxeter polynomials

among connected non-negative unit forms of Dynkin type Am´1 (Algorithm 4). For the sake of read-

ability, partitions of the integer m ě 1 will be called simply m-partitions.

Algorithm 3. We describe an implementable function partitions_by_lengthpm, ℓq that recursively con-

structs all m-partitions of fixed length ℓ.

Input: Integers m ě 1 and ℓ ě 1.

Output: A (possibly empty) set P containing all m-partitions of length ℓ.

Step 1. If 1 ă ℓ ă m, consider the result P1 of partitions_by_lengthpm´ 1, ℓ ´ 1q, and take

P1 “ tpπ1
1, . . . , π

1
ℓ´1, 1q such that pπ1

1 . . . , π
1
ℓ´1q P P1u.

Clearly, P1 is the set of all m-partitions pπ1, . . . , πℓq of length ℓ having πℓ “ 1.

Step 2. If 1 ă ℓ ă m, consider the result P2 of partitions_by_lengthpm´ ℓ, ℓq, and take

P2 “ tpπ2
1

` 1, . . . , π2
ℓ ` 1q such that pπ2

1
. . . , π2

ℓ q P P2u.

Clearly, P2 is the set of all m-partitions pπ1, . . . , πℓq of length ℓ having πℓ ą 1.

Step 3. Return

P “

$
’’’&
’’’%

pmq, if ℓ “ 1,

P1 Y P2, if 1 ă ℓ ă m,

p1, . . . , 1q, if ℓ “ m,

H, if ℓ ą m.

Recall that for any c ě 0 and m ě 1,

Pc
1pmq “ tπ $ m | 0 ď c ´ pℓpπq ´ 1q ” 0 mod 2u.

Algorithm 4.

Input: Integers n ě 1 and 0 ď c ă n.

Output: The set CPc
A

pnq of all Coxeter polynomials among the quadratic unit forms in UQuadc
A

pnq.

Step 1. Take m “ n ´ c ` 1 and consider the set L “ tℓ ě 1 | 0 ď c ´ pℓ ´ 1q ” 0 mod 2u.
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Step 2. For any ℓ P L take Pℓ the result of the function partitions_by_lengthpm, ℓq constructed in

Algorithm 3, and take the (disjoint) union

P “
ď

ℓPL

Pℓ.

Step 3. For any partition π “ pπ1, . . . , πℓq in P, take the polynomial

charπpλq “
ℓź

a“1

pλπa ´ 1q,

and consider the set CPc
Apnq “ tpλ ´ 1qc´1charπpλq | π P Pu. By Theorem 6.3, we have

CPc
A

pnq “ tϕqpλq | q P UQuadc
A

pnqu,

where ϕqpλq denotes the Coxeter polynomial of a quadratic form q.

Remark 7.4. Observe that, as consequence of Algorithm 2, the sets P and CPc
A

pnq constructed in

Algorithm 4 have the same cardinality. That is, the number of Coxeter polynomials appearing among

connected non-negative unit forms in n-variables, of Dynkin type Am´1 and corank c, is the number

of partitions of the integer m “ n ´ c ` 1 whose lengths ℓ satisfy 0 ď c ´ pℓ ´ 1q ” 0 mod 2.
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