
ar
X

iv
:2

10
2.

08
14

6v
4

 [
cs

.L
O

]
 2

6
A

pr
 2

02
2

Fundamenta Informaticae 185(3) : 247–283 (2022) 247

Available at IOS Press through:

https://doi.org/10.3233/FI-222110

Nominal Unification and Matching of

Higher Order Expressions with Recursive Let

Manfred Schmidt-Schauß *

GU Frankfurt, Germany

schauss@ki.cs.uni-frankfurt.de

Temur Kutsia

RISC, JKU Linz, Austria

kutsia@risc.jku.at

Jordi Levy

IIIA - CSIC, Spain

levy@iiia.scic.es

Mateu Villaret

IMA, Universitat de Girona, Spain

villaret@ima.udg.edu

Yunus Kutz

GU Frankfurt, Germany

kutz@ki.cs.uni-frankfurt.de

Abstract. A sound and complete algorithm for nominal unification of higher-order expressions

with a recursive let is described, and shown to run in nondeterministic polynomial time. We also

explore specializations like nominal letrec-matching for expressions, for DAGs, and for garbage-

free expressions and determine their complexity. We also provide a nominal unification algorithm

for higher-order expressions with recursive let and atom-variables, where we show that it also runs

in nondeterministic polynomial time. In addition we prove that there is a guessing strategy for

nominal unification with letrec and atom-variable that is a trade-off between exponential growth

and non-determinism. Nominal matching with variables representing partial letrec-environments

is also shown to be in NP.

Keywords: Nominal unification, lambda calculus, higher-order expressions, recursive let, atom

variables

This paper is an extended version of the conference publication [1].

*Address for correspondence: Goethe-Universität Frankfurt am Main Fachbereich 12: Informatik und Mathematik, Robert-

Mayer-Straße 11-15, 60325 Frankfurt am Main, Grrmany.

Received February 2021; accepted April 2022.

http://arxiv.org/abs/2102.08146v4
https://orcid.org/https://orcid.org/0000-0001-8809-7385
https://orcid.org/https://orcid.org/0000-0003-4084-7380
https://orcid.org/https://orcid.org/0000-0001-5883-5746
https://orcid.org/https://orcid.org/0000-0002-8066-3458
https://orcid.org/https://orcid.org/0000-0002-5060-502X

248 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

1. Introduction

Unification [2] is an operation to make two logical expressions equal by finding substitutions into vari-

ables. There are numerous applications in computer science, in particular of (efficient) first-order uni-

fication, for example in automated reasoning, type checking and verification. Unification algorithms

are also extended to higher-order calculi with various equivalence relations. If equality includes α-

conversion and β-reduction and perhaps also η-conversion of a (typed or untyped) lambda-calculus,

then unification procedures are known (see, e.g., [3]), however, the problem is undecidable [4, 5].

Our motivation comes from syntactical reasoning on higher-order expressions, with equality be-

ing α-equivalence of expressions, and where a unification algorithm is demanded as a basic service.

Nominal unification is the extension of first-order unification with abstractions. It unifies expressions

w.r.t. α-equivalence, and employs permutations as a mathematically clean treatment of renamings. It

is known that nominal unification is decidable [6, 7], where the complexity of the decision problem is

polynomial time [8]. It can be seen also from a higher-order perspective [9], as equivalent to Miller’s

higher-order pattern unification [10]. There are efficient algorithms [8, 11], formalizations of nom-

inal unification [12], formalizations with extensions to commutation properties within expressions

[13], and generalizations of nominal unification to narrowing [14]. Equivariant (nominal) unification

[15, 16, 17] extends nominal unification by permutation-variables, but it can also be seen as a general-

ization of nominal unification by permitting abstract names for variables.

We are interested in unification w.r.t. an additional extension with cyclic let. To the best of our

knowledge, there is no nominal unification algorithm for higher-order expressions permitting general

binding structures like a cyclic let. Higher-order unification could be applied, however, the algorithms

are rather general and thus the obtained complexities of specializations are too high. Thus we propose

to extend and adapt usual nominal unification [6, 7] to languages with recursive let.

The motivation and intended application scenario is as follows: constructing syntactic reasoning

algorithms for showing properties of program transformations on higher-order expressions in call-by-

need functional languages (see for example [18, 19]) that have a letrec-construct (also called cyclic let)

[20] as in Haskell [21], (see e.g. [22] for a discussion on reasoning with more general name binders,

and [23] for a formalization of general binders in Isabelle). Extended nominal matching algorithms

are necessary for applying program transformations that could be represented as rewrite rules. Basic

properties of program transformations like commuting properties of conflicting applications or over-

laps can be analyzed in an automated way if there is a nominal unification algorithm of appropriate

complexity. There may be applications also to co-inductive extensions of logic programming [24] and

strict functional languages [25]. Basically, overlaps of expressions have to be computed (a variant of

critical pairs) and reduction steps (under some strategy) have to be performed. To this end, first an

expressive higher-order language is required to represent the meta-notation of expressions. For exam-

ple, the meta-notation ((λx.e1) e2) for a beta-redex is made operational by using unification variables

X1,X2 for e1, e2. The scoping of X1 and X2 is different, which can be dealt with by nominal tech-

niques. In fact, a more powerful unification algorithm is required for meta-terms employing recursive

letrec-environments.

Our main algorithm LETRECUNIFY is derived from first-order unification and nominal unification:

From first-order unification we borrow the decomposition rules, and the sharing method from Martelli-

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 249

Montanari-style unification algorithms [26]. The adaptations of decomposition for abstractions and the

advantageous use of permutations of atoms is derived from nominal unification algorithms. Decom-

posing letrec-expression requires an extension by a permutation of the bindings in the environment,

where, however, one has to take care of scoping. Since in contrast to basic nominal unification, there

are nontrivial fixpoints of permutations (see Example 3.2), novel techniques are required and lead to

a surprisingly moderate complexity: a fixed-point shifting rule (FPS) and a redundancy removing rule

(ElimFP) are required. These rules bound the number of fixpoint equations X
.
= π·X (where π is a

permutation) using techniques and results from computations in permutation groups. The application

of these techniques is indispensable (see Example 4.6) for obtaining efficiency.

Inspired by the applications in programming languages, we investigate the notion of garbage-

free expressions. The restriction to garbage-free expressions permits several optimizations of the

unification algorithms. The first is that testing α-equivalence is polynomial. Another advantage is that

due to the unique correspondence of positions for two α-equal garbage-free expressions, we show that

in this case, fixpoint equations can be replaced by freshness constraints (Corollary 8.3).

As a further extension, we study the possibility to formulate input problems using atom variables

as in [27, 28] in order to take advantage of the potential of less nondeterminism. The corresponding

algorithm LETRECUNIFYAV requires permutation expressions and generalizes freshness constraints

as further expressibility, and also other techniques such as explicit compression of permutations. The

algorithm runs in NP time. We added a strategy to really exploit the extended expressivity and the

omission of certain nondeterministic choices.

Related Work: Besides the already mentioned related work, we highlight further work. In nomi-

nal commutative unification [29], one can observe that there are nontrivial fixpoints of permutations.

This is similar to what we have in nominal unification with recursive let (when garbage-freeness is

not required), which is not surprising, because, essentially, this phenomenon is related to the lack

of the ordering: in one case among the arguments of a commutative function symbol, in the other

case among the bindings of recursive let. Consequently, nominal C-unification reduces to fixpoint

constraints. Those constraints may have infinitely many incomparable solutions expressed in terms

of substitutions and freshness constraints (which is the standard way to represent nominal unifiers).

In [30], the authors proposed to use fixpoint constraints as a primitive notion (instead of freshness

constraints) to axiomatize α-equivalence and, hence, use them in the representation of unifiers, which

helped to finitely represent solutions of nominal C-unification problems. The technical report [31] con-

tains explanations how to obtain a nominal C-unification algorithm from a letrec unification algorithm

and transfers the NP-completeness result for letrec unification to nominal commutative unification.

An investigation into nominal rewriting and nominal matching is in [32], where a nominal match-

ing algorithm is implicitly derived from nominal unification.

The ρg-calculus [33] integrates term rewriting and lambda calculus, where cyclic, shared terms

are permitted. Such term-graphs are represented as recursion constraints, which resemble to recursive

let environments. The evaluation mechanism of the ρg-calculus is based on matching for such shared

structures. Matching and recursion equations are incorporated in the object level and rules for their

evaluation are presented.

Unification of higher-order expressions with recursive let (but without nominal features) has been

studied in the context of proving correctness of program transformations in call-by-need λ-calculi [34,

250 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

35]. Later, in [36], the authors proposed a more elaborated approach to address semantic properties of

program calculi, which involves unification of meta-expressions of higher-order lambda calculi with

letrec environments. This unification problem extends those from [34, 35]: environments are treated as

multisets, different kinds of variables are considered (for letrec environments, contexts, and binding

chains), more than one environment variable is permitted, and non-linear unification problems are

allowed. Equivalence there is syntactic, in contrast to our nominal approach where equality modulo α
is considered. Unlike [36], our unification problems do not involve context and chain variables, but we

do have environment variables in matching problems. We investigate an extension of nominal letrec

unification with atom variables.

There are investigations into variants of nominal techniques with a modified view of variables and

their renamings and algorithms for the respective variants of nominal unification [37], however, it is

unclear whether this can be extended to letrec.

Results: The nominal letrec unification algorithm is complete and runs in nondeterministic poly-

nomial time (Theorem 5.2, 5.4). The nominal letrec matching is NP-complete (Theorems 6.4, 5.1), as

well as the nominal letrec unification problem (Theorems 5.4, 5.1). Nominal letrec matching for DAGs

is in NP and outputs substitutions only (subsection 6.1), and a very restricted nominal letrec match-

ing problem is already graph-isomorphism hard (Theorem 7.2). Nominal unification for garbage-free

expressions can be done with simple fixpoint rules (Corollary 8.3). In the extension with atom vari-

ables, nominal unification can be done using further useful strategies with less nondeterminism and

is NP-complete (Theorem 9.15). We construct an algorithm for nominal matching including letrec-

environment variables, which runs in NP time (Theorem 10.4).

Structure of the paper. It starts with a motivating intuition on nominal unification (Sec. 2). After

explaining the ground letrec-language LLR in Sec. 3, the unification algorithm LETRECUNIFY for

LLR-expression is described in Sec. 4. Sec. 5 contains the arguments for soundness and completeness

of LETRECUNIFY. Sec. 6 describes an improved algorithm for nominal matching on LLR: LETREC-

MATCH. Further sections are on extensions. Sec. 7 shows Graph-Isomorphism-hardness of nominal

letrec matching and unification on garbage-free expressions (Theorem 7.2). Sec. 8 shows that fixpoint-

equations for garbage-free expressions can be translated into freshness constraints (Cor. 8.3). Sec. 9

considers nominal unification in an extension with atom variables, an nominal unification algorithm

LETRECUNIFYAV is defined and the differences to LETRECUNIFY are highlighted. It is shown that

there is a simple strategy such that nominal unification runs in NP time (Theorem 9.15). The last

section (Sec. 10) presents a nominal matching algorithm LETRECENVMATCH that is derived from

the corresponding nominal unification algorithm LETRECUNIFYAV. Sec. 11 concludes the paper.

2. Some intuitions

In first order unification we have a language of applications of function symbols over a (possible

empty) list of arguments (fe1 . . . en), where n is the arity of f , and variables X. Solutions of equa-

tions between terms are substitutions for variables that make both sides of equations syntactically

equal. First order unification problems may be solved using the following two problem transformation

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 251

rules:

(Decomposition)
Γ ·∪{(f e1 . . . en)

.
= (f e′1 . . . e

′
n)}

Γ ∪ {e1
.
= e′1 . . . en

.
= e′n}

(Instantiation)
Γ ·∪{X

.
= e}

[X 7→ e]Γ
If X does not occur in e.

The substitution solving the original set of equation may be easily recovered from the sequence of

transformations. However, the algorithm resulting from these rules is exponential in the worst case.

Martelli and Montanari [26] described a set of improved rules that result into an O(n log n) time

algorithm1 where n is the size of the input equations. In a first phase the problem is flattened,2 result-

ing into equations where every term is a variable or of the form (f X1 . . . Xn). The second phase is a

transformation using the following rules:

(Decomposition)
Γ ·∪{(f X1 . . . Xn)

.
= (f Y1 . . . Yn)}

Γ ∪ {X1
.
= Y1, . . . ,Xn

.
= Yn}

(Variable Instantiation)
Γ ·∪{X

.
= Y }

[X 7→ Y]Γ

(Elimination)
Γ ·∪{X

.
= e}

Γ
If X neither occurs in e nor in Γ

(Merge)
Γ ·∪{X

.
= (f X1 . . . Xn),X

.
= (f Y1 . . . Yn)}

Γ ∪ {X
.
= (f X1 . . . Xn),X1

.
= Y1, . . . ,Xn

.
= Yn}

Notice that in these rules the terms involved in the equations are not modified (they are not in-

stantiated), except by the replacement of a variable by another in the Variable Instantiation rule. We

can define a measure on problems as the number of distinct variables, plus the number of equations,

plus the sum of the arities of the function symbol occurrences. All rules decrease this measure (for

instance, the merge rule increases the number of equations by n − 1, but removes a function symbol

occurrence of arity n). Since this measure is linear in the size of the problem, this proves that the

maximal number of rule applications is linear. The Merge rule is usually described as

Γ ·∪{X
.
= e1,X

.
= e2}

Γ ∪ {X
.
= e1, e1

.
= e2}

If e1 and e2 are not variables

However, this rule does not decrease the proposed measure. We can force the algorithm to, if

possible, immediately apply a decomposition of the equation e1
.
= e2. Then, the application of both

rules (resulting into the first proposed Merge rule) does decrease the measure.

1The original Martelli and Montanari’s algorithm is a bit different. In fact, they do not flatten equations. However, the

essence of the algorithm is basically the same as the one described here.
2In the flattening process we replace every proper subterm (fe1 . . . en) by a fresh variable X , and add the equation X

.
=

(fe1 . . . en). We repeat this operation (at most a linear number of times) until all proper subterms are variable occurrences.

252 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

2.1. Nominal unification

Nominal unification is an extension of first-order unification in the presence of lambda-binders. Vari-

ables of the target language are called atoms, and the unification-variables are simply called variables.

Bound atoms can be renamed. For instance, λa.(f a) is equivalent to λb.(f b). We also have permuta-

tions of atom names (represented as swappings) applied to expressions of the language. When these

permutations are applied to a variable, this is called a suspension. The action of a permutation on a

term is simplified until we get a term where permutations are innermost and only apply to variables.

For instance, (a b)·λa.(f X a (f b c)), where (a b) is a swapping between the atoms a and b, results

into λb.(f (a b)·X b (f a c)). As we will see below, we also need a predicate to denote that an atom a
cannot occur free in a term e, noted a#e.

We can extend the previous first-order unification algorithm to the nominal language modulo α-

equivalence. The decomposition of λ-expressions distinguishes two cases, when the binder name is

the same and when they are distinct and we have to rename one of them:

(Decomposition

lambda 1)

Γ ·∪{λa.s
.
= λa.t}

Γ ∪ {s
.
= t}

(Decomposition

lambda 2)

Γ ·∪{λa.s
.
= λb.t}

Γ ∪ {s
.
= (a b)·t, a#t}

As we see in the second rule, we introduce a freshness constraint that has to be checked or solved,

so we need a set of transformations for this kind of equations. This set of freshness constraints is

solved in a second phase of the algorithm.

As we have said, permutations applied to variables cannot be longer simplified and result into

suspensions. Therefore, now, we deal with suspensions instead of variables, and we do not make any

distinction between X and Id ·X. Variable instantiation distinguishes two cases:

(Variable

Instantiation)

Γ ·∪{π ·X
.
= π′ · Y } X 6= Y

[X 7→ (π−1 ◦ π′) · Y]Γ
(Fixpoint)

Γ ·∪{π ·X
.
= π′ ·X}

Γ ∪ {a#X | a ∈ dom(π−1 ◦ π′)}

Notice that equations between the same variable X
.
= X that are trivially solvable in first-order unifi-

cation, adopt now the form π · X
.
= π′ ·X. This kind of equations are called fixpoint equations and

impose a restriction on the possible instantiations of X, when π and π′ are not the identity. Namely,

π ·X
.
= π′ ·X is equivalent to {a#X | a ∈ dom(π−1 ◦ π′)}, where the domain dom(π) is the set of

atoms a such that π(a) 6= a.

From this set of rules we can derive an O(n2 log n) algorithm, similar to the algorithms described

in [8, 11]. This algorithm has three phases. First, it flattens all equations. Second, it applies this

set of problem transformation rules. Using the same measure as in the first-order case (considering

lambda abstraction as a unary function symbol and not counting the number of freshness equations),

we can prove that the length of problem transformation sequences is always linear. In a third phase, we

deal with freshness equations. Notice that the number of distinct non-simplifiable freshness equations

a#X is quadratically bounded.

2.2. Letrec expressions

Letrec expressions have the form (letrec a1.e1; . . . ; an.en in e). Variables ai are binders where

the scope is in all expressions ej and in e. (Here we will use α-equivalence in an informal fashion;

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 253

it is defined in Def. 3.1.) We view the environment part a1.e1; . . . ; an.en as a multiset. We can re-

name these binders, obtaining an equivalent expression. For instance, (letrec a.(f a) in (g a)) ∼
(letrec b.(f b) in (g b)) 3. Moreover, we can also swap the order of definitions. For instance,

(letrec a.f ; b.g in (ha b)) ∼ (letrec b.g; a.f in (ha b)). Schmidt-Schauß et al. [38] prove

that equivalence of letrec expressions is graph-isomorphism (GI) complete and Schmidt-Schauß and

Sabel [36] prove that unification is NP-complete. The GI-hardness can be elegantly proved by encod-

ing any graph, like G = (V,E) = ({v1, v2, v3}, {(v1, v2), (v2, v3)}), into a letrec expression, like

(letrec v1.a; v2.a; v3.a in letrec e1.(c v1 v2); e2.(c v2 v3) in a). Here, vi represent the nodes and

(c vi vj) the edges of the graph.

There are nontrivial fixpoints of permutations in the letrec-language. For example, (letrec a1.b1,
a2.b2, a3.a3 in a3) is a fixpoint of the equation X

.
= (b1 b2) · X, although b1 and b2 are not

fresh in the expression, which means (b1 b2)·(letrec a1.b1, a2.b2, a3.a3 in a3) ∼ (letrec a1.b1,
a2.b2, a3.a3 in a3). Therefore, the fixpoint rule of the nominal algorithm in [6] would not be complete

in our setting: to ensure X
.
= (b1 b2) ·X we cannot require b1#X and b2#X. See also Example 3.2.

Hence, fixpoint equations can in general not be replaced by freshness constraints. For the general case

we need a complex elimination rule, called fixed point shift:

(FixPointShift)
Γ ·∪{π1·X

.
= π′

1·X, . . . , πn·X
.
= π′

n·X,π·X
.
= e}

Γ ∪ {π1π−1·e
.
= π′

1π
−1·e, . . . , πnπ−1·e

.
= π′

nπ
−1·e}

,
if X neither occurs in e
nor in Γ.

The substitution is X → π−1·e. This rule can generate an exponential number of equations (see

Example 4.6). In order to avoid this effect, we will use a property on the number of generators of

permutation groups (see end of Section 3).

For the decomposition of letrec expressions we also need to introduce a (don’t know) nondeter-

ministic choice.

Γ ·∪{letrec a1.s1; . . . ; an.sn in r
.
= letrec b1.t1; . . . ; bn.tn in r′}

|{ρ} (Γ ∪ {s1
.
= π·tρ(1), . . . , sn

.
= π·tρ(n), r

.
= π·r′}

Where the necessary freshness constraints are {ai#(letrec b1.t1; . . . ; bn.tn in r′) | i = 1, . . . , n}.

The permutation ρ on {1, . . . , n} is chosen using don’t-know non-determinism, indicated by the ver-

tical bar and {ρ}, and π is an (atom-)permutation that extends {bρ(i) 7→ ai | i = 1, . . . , n)} with

dom(π) ⊆ {a1, . . . , an, b1, . . . , bn}.

In Section 4, we will describe in full detail all the transformation rules of our algorithm.

3. The ground language of expressions

The very first idea of nominal techniques [6] is to use concrete variable names in lambda-calculi

(also in extensions), in order to avoid implicit α-renamings, and instead use operations for explic-

itly applying bijective renamings. Suppose s = λx.x and t = λy.y are concrete (syntactically dif-

ferent) lambda-expressions. The nominal technique provides explicit name-changes using permuta-

3Here we will use ∼ informally as α-equivalence, which will be formally defined in Def. 3.1

254 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

tions. These permutations are applied irrespective of binders. For example (x y)·(λx.λx.a) results

in λy.λy.a. Syntactic reasoning on higher-order expressions, for example unification of higher-order

expressions modulo α-equivalence will be emulated by nominal techniques on a language with con-

crete names, where the algorithms require certain extra constraints and operations. The gain is that all

conditions and substitutions etc. can be computed and thus more reasoning tasks can be automated,

whereas the implicit name conditions under non-bijective renamings have a tendency to complicate

(unification-) algorithms and to hide the required conditions on equality/disequality/occurrence/non-

occurrence of names. We will stick to a notation closer to lambda calculi than most other papers on

nominal unification, however, note that in general the differences are only in notation and the con-

structs like application and abstraction can easily be translated into something equivalent in the other

language without any loss.

3.1. Preliminaries

We define the language LRL (LetRec Language) of (ground-)expressions, which is a lambda calculus

extended with a recursive let construct. The notation is consistent with [6]. The (infinite) set of atoms

A is a set of (concrete) symbols a, b which we usually denote in a meta-fashion; so we can use symbols

a, b also with indices (the variables in lambda-calculus). There is a set F of function symbols with

arity ar(·). The syntax of the expressions e of LRL is:

e ::= a | λa.e | (f e1 . . . ear(f)) | (letrec a1.e1; . . . ; an.en in e)

We assume that binding atoms a1, . . . , an in a letrec-expression (letrec a1.e1; . . . ; an.en in e)
are pairwise distinct. Sequences of bindings a1.e1; . . . ; an.en may be abbreviated as env . The ex-

pressions (letrec a1.e1; . . . ; an.en in e) and (letrec aρ(1).eρ(1); . . . ; aρ(n).eρ(n) in e) are defined

as equivalent for every permutation ρ of {1, . . . , n}, i.e. in the following we view the environment

a1.e1; . . . ; an.en of a letrec-expression as a multi-set.

The scope of atom a in λa.e is standard: a has scope e. The letrec-construct has a special scop-

ing rule: in (letrec a1.s1; . . . ; an.sn in r), every atom ai that is free in some sj or r is bound by

the environment a1.s1; . . . ; an.sn. This defines in LRL the notion of free atoms FA(e), bound atoms

BA(e) in expression e, and all atoms AT (e) in e. For an environment env = {a1.e1, . . . , an.en},

we define the set of letrec-atoms as LA(env) = {a1, . . . , an}. Note that this is well-defined, since

environments are multisets, but names are meant syntactically. We say a is fresh for e iff a 6∈ FA(e)
(also denoted as a#e). As an example, the expression (letrec a.cons s1 b; b.cons s2 a in a) repre-

sents an infinite list (cons s1 (cons s2 (cons s1 (cons s2 . . .)))), where s1, s2 are expressions. The

functional application operator in functional languages (which is usally implicit) can be encoded by

a binary function app, which also allows to deal with partial applications. Our language LRL is a

fragment of core calculi [18, 19], since for example the case-construct is missing, but this could also

be represented.

We will use mappings on atoms from A. A swapping (a b) is a bijective function (on LRL-

expressions) that maps an atom a to atom b, atom b to a, and is the identity on other atoms. We

will also use finite permutations π on atoms from A, which could be represented as a composition

of swappings in the algorithms below. Let dom(π) = {a ∈ A | π(a) 6= a}. Then every finite

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 255

permutation can be represented by a composition of at most (|dom(π)| − 1) swappings. Composition

π1 ◦π2 and inverse π−1 can be immediately computed, where the complexity is polynomial in the size

of dom(π). Permutations π operate on expressions simply by recursing on the structure. For a letrec-

expression this is π ·(letrec a1.s1; . . . ; an.sn in e) = (letrec π ·a1.π ·s1; . . . ;π ·an.π ·sn in π ·e).
Note that permutations also change names of bound atoms.

We will use the following definition (characterization) of α-equivalence:

Definition 3.1. The α-equivalence ∼ on expressions e ∈ LRL is defined as follows:

• a ∼ a.

• if ei ∼ e′i for all i, then (fe1 . . . en) ∼ (fe′1 . . . e
′
n) for an n-ary f ∈ F .

• If e ∼ e′, then λa.e ∼ λa.e′.

• If a#e′ and e ∼ (a b) · e′, then λa.e ∼ λb.e′.

• If there is a permutation π on atoms such that

– dom(π) ⊆ {a1, . . . , an} ∪ {b1, . . . , bn}, where ai 6= aj and bi 6= bj for all i 6= j,

– π(bi) = ai for all i,

– {a1, . . . , an}#(letrec b1.t1, . . . , bn.tn in r′), and

– r ∼ π(r′) and si ∼ π(ti) for i = 1, . . . , n hold.

Then (letrec a1.s1, . . . , an.sn in r) ∼ (letrec b1.t1, . . . , bn.tn in r′).

The last phrase includes (letrec a1.s1, . . . , an.sn in r) ∼ (letrec bρ(1).tρ(1), . . . , bρ(n).tρ(n) in
r′) for every permutation ρ on {1, . . . , n}, by the definition of syntactic equality that treats the let-

environment as a multi-set.

Note that {a1, . . . , an}#(letrec b1.t1, . . . , bn.tn in r′) is equivalent to

({a1, . . . , an} \ {b1, . . . , bn}) # (letrec b1.t1, . . . , bn.tn in r′). Note also that ∼ is identical to

α-equivalence, i.e., the relation generated by renamings of binding constructs and permutation of

bindings in a letrec. We omit a proof, since it detracts the attention from the main contents. Such a

proof is not hard to construct by using that α-equivalence holds, if and only if the graph constructed by

replacing bindings by pointing edges, where the outgoing edges from an environment are unordered

and the one from a function application are ordered. Note that our view is that algorithms work on the

syntactic terms as given, and not with equivalence classes modulo ∼.

A nice and important property that is often implicitly used is: e1 ∼ e2 is equivalent to π·e1 ∼ π·e2
for any (atom-)permutation π.

In usual nominal unification, the solutions of fixpoint equations X
.
= π·X, i.e. the sets {e | π ·e ∼

e} can be characterized by using finitely many freshness constraints [6]. Clearly, all these sets and

also all finite intersections are nonempty, since at least fresh atoms are elements and since A is infinite.

However, in our setting, these sets are nontrivial:

256 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

Example 3.2. The α-equivalence (a b) · (letrec c.a; d.b in True) ∼ (letrec c.a; d.b in True)
holds, which means that there are expressions t in LRL with t ∼ (a b) · t and FA(t) = {a, b}. This is

in contrast to usual nominal unification.

3.2. Permutation groups

Below we will use the results on complexity of operations in finite permutation groups, see [39, 40].

We summarize some facts on the so-called symmetric group and its properties. We consider a set

{o1, . . . , on} of distinct objects oi (in our case atoms), and the symmetric group Σ({o1, . . . , on}) (of

size n!) of permutations of these objects. We will also look at its elements, subsets and subgroups.

Subgroups of Σ({o1, . . . , on}) can always be represented by a set of generators (represented as per-

mutations on {o1, . . . , on}). If H is a set of elements (or generators), then 〈H〉 denotes the generated

subgroup of Σ({o1, . . . , on}). Some facts are:

• A permutation can be represented in space linear in n.

• Every subgroup of Σ({o1, . . . , on}) can be represented by ≤ n2 generators.

However, elements in a subgroup may not be representable as a product of polynomially many of these

generators.

The following questions can be answered in polynomial time:

• The element-question: π ∈ G.

• The subgroup question: G1 ⊆ G2.

However, intersection of groups and set-stabilizer (i.e. {π ∈ G | π(M) = M}) are not known to

be computable in polynomial time, since those problems are as hard as graph-isomorphism (see [39]).

4. A nominal letrec unification algorithm

4.1. Preparations

As an extension of LRL, there is a countably infinite set of (unification) variables Var ranged over by

X,Y where we also use indices. The syntax of the language LRLX (LetRec Language eXtended) is

e ::= a | X | π ·X | λa.e | (f e1 . . . ear(f)) | (letrec a1.e1; . . . ; an.en in e)

π := ∅ | (a b)·π

Var (e) is the set of variables X occurring in e.

The expression π·e for a non-variable e means an operation, which is performed by shifting π
down, using the additional simplification π1·(π2·e)→ (π1 ◦π2)·e, where after the shift, π only occurs

in the subexpressions of the form π ·X, which are called suspensions. Usually, we do not distinguish

X and Id ·X, notationally. A single freshness constraint in our unification algorithm is of the form

a#e, where e is an LRLX -expression, and an atomic freshness constraint is of the form a#X. A

conjunction (or set) of freshness constraints is sometimes called freshness context.

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 257

{a#b} ·∪∇

∇
if a 6= b

{a#(f s1 . . . sn)} ·∪∇

{a#s1, . . . , a#sn} ∪ ∇

{a#(λa.s)} ·∪∇

∇

{a#(λb.s)} ·∪∇

{a#s} ∪ ∇
if a 6= b

{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇

∇
if a ∈ {a1, . . . , an}

{a#a} ·∪∇

⊥

{a#(letrec a1.s1; . . . , an.sn in r)} ·∪∇

{a#s1, . . . a#sn, a#r} ∪ ∇
if a 6∈ {a1, . . . , an}

{a#(π ·X)} ·∪∇

{π−1(a)#X} ∪ ∇

Figure 1. Simplification of freshness constraints in LRLX

Lemma 4.1. The rules in Fig. 1 for simplifying sets of freshness constraints in LRLX run in poly-

nomial time and the result is either ⊥, i.e. fail, or a set of freshness constraints where all single

constraints are atomic. This constitutes a polynomial decision algorithm for satisfiability of ∇: If ⊥
is in the result, then unsatisfiable, otherwise satisfiable.

We can assume in the following algorithms that sets of freshness constraint are immediately simplified.

In the following we will use Var (Γ,∇), and Var(Γ, e) and similar notation for the set of unification-

variables occurring in the syntactic objects mentioned in the brackets.

Definition 4.2. An LRLX -unification problem is a pair (Γ,∇), where Γ is a set of equations {s1
.
=

t1, . . . , sn
.
= tn}, and ∇ is a set of freshness constraints {a1#X1, . . . , am#Xm}. A (ground) solution

of (Γ,∇) is a substitution ρ, mapping variables in Var(Γ,∇) to ground expressions, such that siρ ∼
tiρ, for i = 1, . . . , n, and aj#(Xjρ), for j = 1, . . . ,m.

The decision problem is whether there is a ground solution for a given (Γ,∇) or not.

For the unification algorithms below, we employ a representation of unifiers as iterated single

substitutions which is like a DAG-compression of a substitution. For example the representation

{x 7→ f(y, z), y 7→ f(a, a), z 7→ g(b, b)} represents the substitution {x 7→ f(f(a, a), g(b, b)), y 7→
f(a, a), z 7→ g(b, b)}.

Definition 4.3. Let (Γ,∇) be an LRLX -unification problem. We consider triples (σ,∇′,FIX) as

representing general unifiers, where σ is a substitution represented by a sequence of single assignments

(which has the effect of a DAG-compression), mapping variables to LRLX -expressions, ∇′ is a set

of freshness constraints, and FIX is a set of fixpoint equations of the form π′·X
.
= π·X, where

X 6∈ dom(σ).

A triple (σ,∇′,FIX) is a unifier of (Γ,∇), if

(i) there exists a ground substitution ρ that solves (∇′σ,FIX), i.e., for every a#X in ∇′, a#Xσρ
is valid, and for every fixpoint equation π′·X

.
= π·X ∈ FIX , it holds π′·(Xρ) ∼ π·(Xρ); and

(ii) for every ground substitution ρ that instantiates all variables in V ar(Γ,∇) and which solves

(∇′σ,FIX), the ground substitution σρ is a solution of (Γ,∇).

A set M of unifiers is complete, if every solution µ is covered by at least one unifier, i.e., there is some

unifier (σ,∇′,FIX) in M , and a ground substitution ρ, such that Xµ ∼ Xσρ for all X ∈ Var(Γ,∇).

258 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

We will employ nondeterministic rule-based algorithms computing unifiers: There are clearly

indicated disjunctive (don’t know nondeterministic) rules, and all other rules are don’t care nondeter-

ministic. This distinction is related to the completeness of the solution algorithms: don’t care means

that the rule has several possibilities where it is sufficient for completeness to take only one. On the

other hand, don’t know means that for achieving completeness, every possibility of the rule has to be

explored. The collecting variant of the algorithm runs and collects all solutions from all alternatives

of the disjunctive rule(s). The decision variant guesses and verifies one possibility and tries to detect

the existence of a single unifier.

Since we want to avoid the exponential size explosion of the Robinson-style unification, keep-

ing the good properties of Martelli Montanari-style algorithms [26], we stick to a set of equations as

data structure. As a preparation for the algorithm, all expressions in equations are exhaustively flat-

tened as follows: (f t1 . . . tn) → (f X1 . . . Xn) plus the equations X1
.
= t1, . . . ,Xn

.
= tn. Also

λa.s is replaced by λa.X with equation X
.
= s, and (letrec a1.s1; . . . , an.sn in r) is replaced by

(letrec a1.X1; . . . , an.Xn inX) with the additional equations X1
.
= s1; . . . ;Xn

.
= sn;X

.
= r. The

introduced variables Xi,X are fresh ones. Thus, all expressions in equations are of depth at most 1,

not counting the permutation applications in the suspensions.

In the notation of the rules, we use [e/X] as substitution that replaces X by e, whereas {X → t} is

used for constructing a syntactically represented substitution. In the written rules, we may omit ∇ or θ
if they are not changed. We will use a notation “|” in the consequence part of a rule, usually with a set

of possibilities indicated by for example {ρ}, to denote disjunctive (i.e. don’t know) nondeterminism.

The only nondeterministic rule that requires exploring all alternatives is rule (6) in Fig. 2. The other

rules can be applied in any order, where it is not necessary to explore alternatives.

(1)
Γ ·∪{e

.
= e},∇, θ

Γ,∇, θ
(2)

Γ ·∪{π1·X
.
= π2·Y },∇, θ Y 6= X

Γ[π−1
1 π2·Y/X],∇[π−1

1 π2·Y/X], θ ∪ {X 7→ π−1
1 π2·Y }

(3)
Γ ·∪{(f s1 . . . sn)

.
= (f s′1 . . . s

′
n)},∇, θ

Γ ∪ {s1
.
= s′1, . . . , sn

.
= s′n},∇, θ

(4)
Γ ·∪{λa.s

.
= λa.t},∇, θ

Γ ∪ {s
.
= t},∇, θ

(5)
Γ ·∪{λa.s

.
= λb.t},∇, θ a 6= b

Γ ∪ {s
.
= (a b)·t},∇∪ {a#t}, θ

(6)
Γ ·∪{letrec a1.s1; . . . ; an.sn in r

.
= letrec b1.t1; . . . ; bn.tn in r′},∇, θ

∣

∣

∣

{ρ}

(Γ ∪ {s1
.
= π·tρ(1), . . . , sn

.
= π·tρ(n), r

.
= π·r′},

∇ ∪ {ai#(letrec b1.t1; . . . ; bn.tn in r′) | i = 1, . . . , n}, θ)

where ρ is a permutation on {1, . . . , n}. The permutation π is chosen don’t care such that

it extends {bρ(i) 7→ ai | i = 1, . . . , n)} with dom(π) ⊆ {a1, . . . , an, b1, . . . , bn}

Figure 2. Standard (1,2) and decomposition rules (3,4,5,6)

4.2. Rules of the algorithm LETRECUNIFY

The top symbol of an expression is defined as tops(f s1 . . . sn) = f , tops(a) = a, tops(λa.s) = λ,

and tops(letrec env in s) = (letrec, n), where n is the number of bindings in env. It is undefined

for variables X.

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 259

(MMS)
Γ ·∪{π1·X

.
= e1, π2·X

.
= e2},∇, θ

Γ ∪ {π1·X
.
= e1} ∪ Γ′,∇∪∇′, θ

,

if e1, e2 are not suspensions, where Γ′ is the set of

equations generated by decomposing π−1
1 ·e1

.
= π−1

2 ·e2
using (3)–(6), and where ∇′ is the corresponding

resulting set of freshness constraints.

(FPS)
Γ ·∪{π1·X

.
= π′

1·X, . . . , πn·X
.
= π′

n·X, π·X
.
= e},∇, θ

Γ ∪ {π1π−1·e
.
= π′

1π
−1·e, . . . , πnπ−1·e

.
= π′

nπ
−1·e},∇, θ ∪ {X 7→ π−1·e}

,

If neither X ∈ Var(Γ, e), nor e is a suspension, nor (Cycle) (see Fig.4) is applicable.

(ElimFP)
Γ ·∪{π1·X

.
= π′

1·X, . . . , πn·X
.
= π′

n·X, π·X
.
= π′·X},∇, θ

Γ ∪ {π1·X
.
= π′

1·X, . . . , πn·X
.
= π′

n·X},∇, θ
,

If π−1π′ ∈ 〈π−1
1 π′

1, . . . , π
−1
n π′

n〉.

(Output)
Γ,∇, θ

(θ,∇,Γ)
if Γ only consists of fixpoint-equations.

Figure 3. Main Rules of LETRECUNIFY

Definition 4.4. The rule-based algorithm LETRECUNIFY is defined in the following. Its rules are in

Figs. 2, 3 and 4. LETRECUNIFY operates on a tuple (Γ,∇, θ), where Γ is a set of flattened equations

e1
.
= e2, and where we assume that

.
= is symmetric, ∇ contains freshness constraints, and θ represents

the already computed substitution as a list of mappings of the form X 7→ e. Initially θ is empty.

The final state will be reached, i.e. the output, when Γ only contains fixpoint equations of the form

π1·X
.
= π2·X that are non-redundant, and the rule (Output) fires. Note that the rule (FPS) represents

the usual solution rule if the premise is only a single equation.

The rules (1)–(6), and (ElimFP) have highest priority; then (MMS) and (FPS). The rule (Out-

put) (lowest priority) terminates an execution on Γ0 by outputting a unifier (θ,∇′,FIX). A general

explanation of the vertical-bar-notation is at the end of Subsection 4.1.

We assume that the algorithm LETRECUNIFY halts if a failure rule (see Fig.4) is applicable.

(Clash)
Γ ·∪{s

.
= t},∇, θ tops(s) 6= tops(t) and s and t are not suspensions

⊥

(Cycle)

Γ ∪ {π1·X1
.
= s1, . . . , πn·Xn

.
= sn},∇, θ











where si are not suspensions and

Xi+1 occurs in si for

i = 1, . . . , n− 1 and X1 occurs in sn.

⊥

(FailF)
Γ,∇∪ {a#a}, θ

⊥
(FailFS)

Γ,∇∪ {a#X}, θ and a occurs free in (Xθ)

⊥

Figure 4. Failure Rules of LETRECUNIFY

Note that the two rules (MMS) and (FPS), without further precaution, may cause an exponential

blow-up in the number of fixpoint-equations (see Example 4.6). The rule (ElimFP) will bound the

number of generated fixpoint equations by exploiting knowledge on operations within permutation

groups.

260 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

Note that the application of every rule can be done in polynomial time. In particular rule (FailFS),

since the computation of FA((X)θ) can be done in polynomial time by iterating over the solution

components.

Example 4.5. We illustrate the letrec-rule (6) by a ground example without flattening. Here we use

pairs, which are functional expressions, i.e., (s1, s2) means f(s1, s2) for a binary function symbol f
in the language.

Let the equation be: (letrec a.(a, b), b.(a, b) in b)
.
= (letrec b.(b, c), c.(b, c) in c). The algo-

rithm has to follow two possibilities for ρ: the identity, and the swapping (1 2).
We show the computation for the identity (position-)permutation ρ, which results in: π = {b 7→ a;
c 7→ b; a 7→ c}, where the third binding that has to be added, such that the result is a bijection is

a 7→ c, which is not relevant for the result, but unique in this case.

Decomposition of the equations (a, b)
.
= π·(b, c), (a, b)

.
= π·(b, c), b

.
= π·c} is possible without fail

and yields only trivial equations.

The freshness constraints are a#(letrec b.(b, c), c.(b, c) in c) and b#(letrec b.(b, c), c.(b, c) in c),
which holds.

Example 4.6. This example shows that FPS (together with the standard and decomposition rules) may

give rise to an exponential number of equations in the size of the original problem. Let there be vari-

ables Xi, i = 1, . . . , n and the equations Γ = {Xn
.
= π·Xn, Xn

.
= (f Xn−1 ρn·Xn−1), . . . ,X2

.
=

(f X1 ρ2·X1)} where π, ρ1, . . . , ρn are permutations. We prove that this unification problem may give

rise to 2n−1 equations, if the redundancy rule (ElimFP) is not there.

The first step is by (FPS):

{

f Xn−1 ρn·Xn−1
.
= π·(f Xn−1 ρn·Xn−1),

Xn−1
.
= (f Xn−2 ρn−1·Xn−2), . . .

}

Using decomposition and inversion:











Xn−1
.
= π·Xn−1,

Xn−1
.
= ρ−1

n ·π·ρn·Xn−1,

Xn−1
.
= (f Xn−2 ρn−1·Xn−2), . . .











After (FPS):











(f Xn−2 ρn−1·Xn−2)
.
= π·(f Xn−2 ρn−1·Xn−2),

(f Xn−2 ρn−1·Xn−2)
.
= ρ−1

n ·π·ρn·(f Xn−2 ρn−1·Xn−2),

Xn−2
.
= (f Xn−3 ρn−2·Xn−3), . . .











Decomposition and inversion:































Xn−2
.
= π·Xn−2,

Xn−2
.
= ρ−1

n−1·π·ρn−1·Xn−2,

Xn−2
.
= ρ−1

n ·π·ρn·Xn−2,

Xn−2
.
= ρ−1

n−1·ρ
−1
n ·π·ρn·ρn−1·Xn−2,

Xn−2
.
= (f Xn−3 ρn−2·Xn−3), . . .































Now it is easy to see that all equations X1
.
= π′·X1 are generated, with π′ ∈ {ρ−1πρ where ρ is a com-

position of a subsequence of ρn, ρn−1, . . . , ρ2}, which makes 2n−1 equations. The permutations are

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 261

pairwise different using an appropriate choice of ρi and π. The starting equations can be constructed

using the decomposition rule of abstractions.

Without (ElimFP) all elements of the generated group of permutations have to be implicitly stored in

Γ. The rule (ElimFP) would permit to only keep a set of generators of the group of permutations. The

explicit algorithmic treatment of generators and group operations is standard and not explained in this

paper.

5. Soundness, completeness, and complexity of LETRECUNIFY

5.1. NP-Hardness of nominal letrec unification and matching

First we show that a restricted problem class of nominal letrec unification is already NP-hard. If the

equations for unification are of the form s1
.
= t1, . . . , sn

.
= tn, and the expressions ti do not contain

variables Xi, then this is a nominal letrec-matching problem (see also Section 6).

Theorem 5.1. Nominal letrec matching (hence also unification) in LRL is NP -hard, for two letrec

expressions, where subexpressions are free of letrec.

Proof:

We encode the NP -hard problem of finding a Hamiltonian cycle in a 3-regular graph [41, 42], which

are graphs where all nodes have the same degree k = 3. Let G be a graph, a1, . . . , an be the

vertexes of the graph G, and E be the set of edges of G. The first environment part is env1 =
a1.(node a1); . . . ; an.(node an), and a second environment part env2 consists of bindings b.(f a a′)
and b′.(f a′ a) for every edge (a, a′) ∈ E for fresh names b, b′. Then let t := (letrec env1; env2 in 0)
which is intended to represent the graph. Let the second expression encode the question whether

there is a Hamiltonian cycle in a regular graph as follows: The first part of the environment is

env ′1 = a1.(node X1), . . . , an.(node Xn). The second part is env ′2 consisting of b1.(f X1 X2);
b2.(f X2 X3); . . . ; bn.(f Xn X1), where all bi are different atoms. This part encodes the Hamil-

tonian cycle. We also need a third part that matches the edges that are not part of the Hamiltonian

cycle. The third part env ′3 consists of entries of the form b.(f Z Z ′), where b is always a fresh atom

for every binding, and Z,Z ′ are fresh variables for every entry. Thus every such entry matches one

edge. The number of these dummy entries can be computed as 3 ∗ n − n due to the assumption that

the degree of G is 3, and the edges in the cycle are already covered by the second part. Let s :=
(letrec env ′1; env

′
2; env

′
3 in 0), representing the question of the existence of the Hamiltonian cycle.

Then the matching problem s ✂ t is solvable iff the graph has a Hamiltonian cycle. The degree is 3,

hence it is not possible that there are shortcuts in the cycle. ⊓⊔

5.2. Properties of the nominal unification algorithm LETRECUNIFY

We will use size(Γ) for estimating the runtime of LETRECUNIFY, which is the sum of the sizes of the

equated expressions, and where the size of an expression is its size as a term tree, where we assume

that names have size 1. We do not count the size of permutations.

262 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

For a non-deterministic algorithm outputting unifiers, we explain the deterministic variant that

follows all proper choices, but not the don’t-care choices, and prints all solutions one after the other.

This is called the collecting (and deterministic) version of the algorithm.

Theorem 5.2. The decision variant of the algorithm LETRECUNIFY runs in nondeterministic polyno-

mial time, where a single unifier is represented in polynomial space. The number of rule applications

is O(S3 log(S)) where S is the size of the input. The collecting version of LETRECUNIFY returns

exponentially many unifiers, where their number is bounded by O(exp(S4) log(S))).

Proof:

Let (Γ0,∇0) be the input, where Γ0 is assumed to be flattened, and Sall be size(Γ0,∇0). We use

S = size(Γ0) to argue on the number of steps of LETRECUNIFY. The execution of a single rule can

be done in polynomial time depending on the size of the intermediate state, thus we have to show that

the size of the intermediate states remains polynomial and that the number of rule applications is at

most polynomial.

The number of fixpoint-equations for every variable X is at most S ∗ log(S) since the number

of atoms is never increased, and since we assume that (ElimFP) is applied whenever possible. The

size of the permutation group on the set of all atoms in the input is at most S!, and so the length

of proper subset-chains and hence the maximal number of (necessary) generators of a subgroup is at

most log(S!) ≤ S ∗ log(S). The redundancy of generators can be tested in polynomial time depending

on the number of atoms. Note also that applicability of (ElimFP) can be tested in polynomial time by

checking the maximal possible subsets.

The lexicographically ordered termination measure (#Var,#LrλFA,#Eqs) is used:

1. #Var is the number of different variables in Γ,

2. #LrλFA is the number of letrec-, λ, function-symbols and atoms in Γ, but not in permutations,

3. #Eqs is the number of equations in Γ.

Since shifting permutations down and simplification of freshness constraints both terminate in

polynomial time, and do not increase the measures, we only compare states which are normal forms

for shifting down permutations and simplifying freshness constraints. The following table shows the

effect of the rules:

The entries +m represents an increase of at most m in the relevant measure component. This form

of table permits an easy check that the complexity of a single run is polynomial. Note that we omit

the failure rules in the table, since these stop immediately.

#Var #LrλFA #Eqs

(2) < ≤ <

(FPS) < +2S log(S) <

(MMS) = < +2S

(3), (4), (5), (6) = < +S

(ElimFP) = = <

(1) ≤ ≤ <

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 263

The table shows that every rule application strictly decreases the lexicographic measure as a com-

bination of the three basic measures. The entries can be verified by checking the rules, and using the

argument that there are not more than S log(S) fixpoint equations for a single variable X. We use the

table to argue on the (overall) number of rule applications and hence the complexity: The rules (2) and

(FPS) strictly reduce the number of variables in Γ and can be applied at most S times. (FPS) increases

the second measure at most by 2 ∗ S log(S), since the number of symbols may be increased as often

as there are fixpoint-equations and there are at most S log(S). Since no other rule increases the mea-

sure, #LrλFA will never be greater than 2S2 log(S). The rule (MMS) strictly decreases #LrλFA.

Hence#Eqs, i.e. the number of equations is bounded by 4S3 log(S). Thus, the number of rule appli-

cations is O(S3 log(S)).
The complexity of applications of single rules is polynomial, in particular (FPS), see Section 3.2. The

complexity of the constraint simplification (Lemma 4.1) is also polynomial. We also have to argue

on the failure rules. These detect all fail cases, and the size of the state part ∇ remains polynomial.

The checks within the failure rules can be done in polynomial time in Sall, where the argument for

polynomiality of the check in (FailFS) is an algorithm that iteratively applies parts of θ and checks.

The arguments for the complexity of the size a single solution are already given. Additional

arguments are needed for an upper bound on the number of solutions for the collecting version of

LETRECUNIFY. An upper bound on the number of different possibilities that have to be explored

at a single rule application of (6) is O(exp(S)). In a single run of LETRECUNIFY the number of

executions of (6) is at most O(S3 log(S)), hence we obtain an exponential bound exp(S4) log(S)) for

the number of solutions that are outputted by the collecting version. ⊓⊔

Theorem 5.3. The algorithm LETRECUNIFY is sound and complete. I.e., every computed unifier is

a unifier of the input problem (soundness), and for every ground unifier of the input problem, there

is a run of the (non-deterministic) algorithm that produces a unifier that has the ground unifier as an

instance.

Proof:

Soundness of the algorithm holds, by easy arguments for every rule, similar as in [6], and since the

letrec-rule follows the definition of ∼ in Def. 3.1. A further argument is that the failure rules are

sufficient to detect states without solutions.

Completeness requires more arguments. The decomposition and standard rules, with the exception

of rule (6), retain the set of solutions. The same for (MMS), (FPS), and (ElimFP). Note that the

nondeterminism in (ElimFP) does not affect the current set of solutions. The nondeterministic rule (6)

provides all possibilities for potential ground solutions. Moreover, the failure rules are not applicable

to states that are solvable.

A final output of LETRECUNIFY for a solvable input has at least one ground solution as instance:

we can instantiate all variables that remain in Γout by a fresh atom. Then all fixpoint equations are

satisfied, since the permutations cannot change this atom, and since the (atomic) freshness constraints

hold. This ground solution can be represented in polynomial space by using θ, plus an instance X 7→ a
for all remaining variables X and a fresh atom a, and removing all fixpoint equations and freshness

constraints. ⊓⊔

Theorem 5.4. The nominal letrec-unification problem is NP -complete.

264 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

Proof:

This follows from Theorems 5.2 and 5.3, and Theorem 5.1. ⊓⊔

6. Nominal matching with letrec: LETRECMATCH

Reductions using reductions rules of the form l → r in higher order calculi with letrec, for example

in a core-language of Haskell, require a (nominal) matching algorithm, matching the rules’ left hand

side to an expression or subexpression that is to be transformed. An example is the beta-reduction

(see the example below), but also a lot of other transformation rules can serve as examples. For the

application it is sufficient if the instance of the right hand side rσ is ground if lσ is ground, and

the variable convention holds for rσ. In [32] nominal rewriting (without letrec) is discussed, where

more examples can be found, and where nominal matching is derived from the nominal unification

algorithm. In this work also rewriting using freshness contexts is investigated, and matching is defined

using terms-in-context . We only concentrate on the nominal matching part, since adding constraints

is not problematic.

Example 6.1. Consider the (lbeta)-rule, which is the version of (beta) used in call-by-need calculi

with sharing [43, 18, 19]. Note that in this case, the binding is used, but not the property “recursive

binding“.

(lbeta) (λx.e1) e2 → letrec x.e2 in e1.

An (lbeta) step, for example, reducing ((λx.x) (λy.y)) to (letrec x = (λy.y) in x) is performed

by representing the target in LRL and the beta-rule in the language LRLX, where e1, e2 are rep-

resented as variables X1,X2, and then matching (app (λc.X1) X2) ✂ (app (λa.a) (λb.b)), where

app is the explicit representation of the binary application operator. This results in σ := {X1 7→
c;X2 7→ λb.b}, and the reduction result is the instance (using σ) of (letrec c.X2 in X1), which is

(letrec c.(λb.b) in c). Note that this form of reduction sequences permits α-equivalence as interme-

diate steps.

We derive a nominal letrec matching algorithm as a specialization of LETRECUNIFY. We use non

symmetric equations written s ✂ t, where s is an LRLX -expression (also with permutations), and t
is ground, i.e., does not contain free variables. It is easy to see that we can also assume that t does

not contain permutations, since these can immediately be simplified. We assume that the input is a

set s1 ✂ t1, . . . , sn ✂ tn of match equations of expressions, where for all i: si may contain variables,

and ti is ground. We omit freshness constraints in the input, since these could be checked after the run

of the algorithm. Note that suspensions are not necessary in the solution, and hence also no fixpoint

equations.

Definition 6.2. The rules of the nondeterministic algorithm LETRECMATCH w.r.t. the language LRLX

are in Fig. 5 and the corresponding failure rules are in Fig. 6. The result is either a fail, or a substitution

in the form X1 ✂ s1, . . . ,Xn ✂ sn.

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 265

Γ ·∪{e ✂ e}

Γ

Γ ·∪{(f s1 . . . sn) ✂ (f s′1 . . . s
′
n)}

Γ ∪ {s1 ✂ s′1, . . . , sn ✂ s′n}

Γ ·∪{λa.s ✂ λa.t}

Γ ∪ {s ✂ t}

Γ ·∪{λa.s ✂ λb.t} a#t

Γ ∪ {s ✂ (a b)·t}

Γ ·∪{π·X ✂ e}

Γ ∪ {X ✂ π−1·e}

Γ ·∪{X ✂ e1, X ✂ e2} e1 ∼ e2
Γ ∪ {X ✂ e1}

Γ ·∪

{

letrec a1.s1; . . . ; an.sn in r

✂ letrec b1.t1; . . . ; bn.tn in r′

}

ai#(letrec b1.t1; . . . ; bn.tn in r′) for i = 1, . . . , n

|
{ρ}

Γ ∪ {s1 ✂ π·tρ(1), . . . , sn ✂ π·tρ(n), r ✂ π·r′}

where ρ is a permutation on {1, . . . , n}, and π is an (atom-) permutation that extends

{bρ(i) 7→ ai | i = 1, . . . , n)} with dom(π) ⊆ {a1, . . . , an, b1, . . . , bn}

Figure 5. Rules of the matching algorithm LETRECMATCH

Γ ·∪

{

letrec a1.s1; . . . ; an.sn in r

✂ letrec b1.t1; . . . ; bn.tn in r′

}

ai is fresh in (letrec b1.t1; . . . ; bn.tn in r′)

for some i ∈ {1, . . . , n}

⊥

s ✂ t ∈ Γ, and s is not a suspension, but tops(s) 6= tops(t)

⊥

Γ ·∪{λa.s ✂ λb.t} a is fresh in t)

⊥

Γ ·∪{X ✂ e1, X ✂ e2} e1 6∼ e2
⊥

Figure 6. Failure rules of the matching algorithm LETRECMATCH

Note that the rules are designed such that permutations are moved to the rhs, and conditions can be

immediately evaluated.The α-equivalence test e1 ∼ e2 may for example be performed as a subroutine call to this (nonde-

terministic) matching procedure in the collecting version, i.e., the test succeeds if there is a nondeter-

ministic execution with success as result.

Example 6.3. We illustrate the failure rule that signals fail, if λa.s ✂ λb.t is a match-equations and a
is fresh in t. In the case λc.c ✂ λb.a, the failure rule signals “fail”. We also could proceed and replace

it using the lambda-rule by c ✂ (c b)·a, which immediately reduces to c ✂ a, which is fail sind the top

symbols are different.

Standard arguments show:

Theorem 6.4. LETRECMATCH is sound and complete for nominal letrec matching. It decides nom-

inal letrec matching in nondeterministic polynomial time. Its collecting version returns a finite com-

plete set of an at most exponential number of matching substitutions, which are of at most polynomial

size.

Theorem 6.5. Nominal letrec matching is NP-complete.

266 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

Proof:

The problem is in NP, which follows from Theorem 6.4. It is also NP-hard, which follows from

Theorem 5.1. ⊓⊔

6.1. Remarks on letrec-matching with DAGs

A more general situation for nominal letrec matching occurs, when the matching equations Γ0 are com-

pressed using a DAG. We construct a practically more efficient algorithm LETRECDAGMATCH from

LETRECUNIFY as follows. First we generate Γ1 from Γ0, which only contains flattened expressions

by encoding the DAG-nodes as variables X together with an equation X
.
= r for the subexpression,

which results in a unification equation. This representation is no longer a letrec-matching problem,

since there may be variables in the left and right-hand side of equations. However, it has structural

properties inherited from the sharing. An expression is said Γ0-ground, if it does not reference vari-

ables from Γ0 (also via equations). In order to avoid suspension on the rhs (i.e. to have nicer results),

the decomposition rule for λ-expressions with different binder names is modified as follows :

Γ ·∪(λa.s
.
= λb.t},∇

Γ ∪ {s
.
= (a b)·t},∇ ∪ {a#t}

λb.t is Γ0-ground

The extra conditions a#t and Γ0-ground can be tested in polynomial time. The equations Γ1 are

processed applying LETRECUNIFY (with the mentioned modification) with the guidance that the right-

hand sides of match-equations are also right-hand sides of equations in the decomposition rules. The

resulting matching substitutions can be interpreted as the instantiations into the variables of Γ0. Since

Γ0 is a matching problem, the result will be free of fixpoint equations, and there will be no freshness

constraints in the solution.

This construction would permits better performance than simply treating the DAG-matching prob-

lem as a unification problem.

7. Graph-isomorphism-hardness of nominal letrec matching and unifi-

cation without garbage

We will show in this section that Nominal Letrec Matching is at least as hard as Graph-Isomorphism.

Graph-Isomorphism is known to have complexity between PTIME and NP . There are arguments

that it is strictly weaker than the class of NP-complete problems [44]. There is also a claim that it is

quasi-polynomial [45], which means that it requires less than exponential time. The general conjecture

is that Graph-Isomorphism is properly between PTIME and NP .

First we clarify the notion of garbage, which is a notion from a programming language point of

view.

Definition 7.1. We say that an expression t contains garbage, iff there is a subexpression (letrec env
in r), and the environment env can be split into two environments env = envg; envng, such that envg
(the garbage) is not empty, and the atoms from LA(env g) occur neither free in envng nor in r. Other-

wise, the expression t is free of garbage (or garbage-free).

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 267

An example illustrating the notions is letrec a.b; b.c in b, where a, b, c are (different) atoms.

The binding a.b is not used in the in-expression b, hence it can be classified as garbage, whereas the

binding b.c is used. In a programming language, the garbage collector would remove this binding and

replace the expression by letrec b.c in b.

Since α-equivalence of LRL-expressions is Graph-Isomorphism-complete [38], but α-equivalence

of garbage-free LRL-expressions is polynomial, it is useful to look for improvements of unification

and matching for garbage-free expressions.

We will show that even very restricted nominal letrec matching problems are Graph-Isomorphism

complete, which makes it very unlikely that there is a polynomial algorithm.

Theorem 7.2. Nominal letrec matching with one occurrence of a single variable and a garbage-free

target expression is Graph-Isomorphism-hard.

Proof:

Let G1, G2 be two regular graphs with degree ≥ 1. Let t be (letrec envG1
in g b1 b

′
1 . . . bm b′m) the

encoding of an arbitrary graph G1 where envG1
is the encoding as in the proof of Theorem 5.1: nodes

are encoded as a1, . . . , an,i.e., the bindings in the environment are a1.(node a1), . . . , an1.(node an),
and the edges are encoded as follows: The i-th edge (ak al) is encoded as bi.(edge ak al), b

′
i.(edge al ak).

Then t is free of garbage, since the graph G1 is regular. Let the environment envG2
be the encoding

of G2 in s = (letrec envG2
inX), where envG2

is constructed in the same way from the graph G2.

Then s matches t iff the graphs G1, G2 are isomorphic. If there is an isomorphism of G1 and G2, then

it is easy to see that this bijection leads to an equivalence of the environments, and we can instantiate

X with (g b1 b
′
1 . . . bm b′m). Since the graph-isomorphism problem for regular graphs of degree ≥ 1 is

GI-hard [46], we have shown GI-hardness. ⊓⊔

8. On fixpoints and garbage

We will show in this section that LRLX -expressions without garbage only have trivial fix-pointing per-

mutations. Looking at Example 3.2, the α-equivalence (a b) · (letrec c.a; d.b in True) ∼ (letrec
c.a; d.b in True) holds, where dom((a b)) ∩ FA(letrec c.a; d.b in True) = {a, b} 6= ∅. However,

we see that the expressions is equivalent (in a programming language semantics) to True, and that the

whole environment in this example is garbage, since no binding is referenced from the in-expression

(see Def. 7.1).

As a helpful information, we write the α-equivalence-rule for letrec-expressions in the ground

language LRL as an extension of the rule for lambda-abstractions.

r ∼ π·r′, si ∼ π·tρ(i), i = 1, . . . , n, M#(letrec b1.t1; . . . ; bn.tn in r′)

letrec a1.s1; . . . ; an.sn in r ∼ letrec b1.t1; . . . ; bn.tn in r′

where ρ is a permutation on {1, . . . , n}, M = {a1, . . . , an} \ {b1, . . . , bn}, and π is an

atom-permutation-extension of the bijective function {bi 7→ aρ(i), i = 1, . . . , n} such that

dom(π) ⊆ ({b1, . . . , bn} ∪ {a1, . . . , an}).

268 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

Note that α-equivalence of s, t means structural equivalence of s, t as trees, and a justification

always comes with a bijective relation between the positions of s, t where only the names of atoms at

nodes may be different.

A further example of garbage is (letrec a.0; b.1 in (f b)), where a is unused, but b is used in the

right hand side. In this case a.0 is garbage. Another example is e := (letrec a.d; b.1; c.d in (f b)),
which is an example with a free atom d, and the garbage consists of two bindings, {a.d; c.d}. It is

α-equivalent to (letrec a′.d; b.1; c′.d in (f b)) =: e′. Note that in this case, there are two different

permutations (bijective functions) mapping e′ to (the α-equivalent) e: {a′ 7→ a; c′ 7→ c} and {a′ 7→
c; c′ 7→ a}.

The next lemma shows that this situation is only possible if the expressions contain garbage.

Lemma 8.1. If s ∼ t, and s is free of garbage, then α-equivalence provides a unique correspondence

of the positions of s and t.

Proof:

The proof is by induction on the structure and size of expressions. For the structure, the only nontrivial

case is letrec: Let s = (letrec a1.e1, . . . , an.en in e) ∼ (letrec b1.f1, . . . , bn.fn in f) = t. Note

that due to syntactic equality all permutations of the environments are also to be considered. Then

there is bijective mapping ϕ, with ϕ(bi) = aρ(i), i = 1, . . . , n, where ρ is a permutation on {1, . . . , n},

and such that ei ∼ ϕ(fρ(i)), i = 1, . . . , n, e ∼ ϕ(f), and ({a1, . . . , an} \ {b1, . . . , bn})#t holds. Let

ϕ be the atom-permutation that extends ϕ, mapping ({a1, . . . , an} \ {b1, . . . , bn}) to ({b1, . . . , bn} \
{a1, . . . , an}).

The induction hypothesis implies a unique position correspondence of e and f , since e ∼ ϕ(f).
This implies that the bindings for {a1, . . . , an}∩FA(e) have a unique correspondence to the bindings

in t. This is continued by exhaustively following free occurrences of atoms ai in the right hand sides

of the top bindings in s. Since there is no garbage in s, all bindings can be reached by this process,

hence we have uniqueness of the correspondence of positions. ⊓⊔

Proposition 8.2. Let e be an expression that does not have garbage, and let π be a permutation. Then

π·e ∼ e implies dom(π) ∩ FA(e) = ∅.

Proof:

The proof is by induction on the size of the expression.

• If e is an atom, then this is trivial.

• If e = f e1en, then no ei contains garbage, and π·ei ∼ ei implies dom(π) ∩ FA(ei) = ∅,

hence also dom(π) ∩ FA(e) = ∅.

• If e = λa.e′, then there are two cases:

1. π(a) = a. Then π·e′ ∼ e′, and we can apply the induction hypothesis.

2. π(a) = b 6= a. Then (a b)·π fixes e′, and b#e′. The induction hypothesis implies

dom((a b)·π) ∩ FA(e′) = ∅. We have dom(π) ⊆ dom((a b)·π)) ∪ {a, b}, hence

dom(π) ∩ FA(λa.e′) = ∅.

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 269

• First a simple case with one binding in the environment: t = (letrec a1.e1 in e), π·t ∼
t. If π(a1) = a1, then π·(e, e1) ∼ (e, e1), and the induction hypothesis implies dom(π) ∩
FA(e, e1) = ∅, which in turn implies dom(π) ∩ FA(t) = ∅.

If π(a1) = b 6= a1, then b#(e, e1) and for π′ := (a1 b)·π, it holds π′·(e, e1) ∼ (e, e1), and

so dom((a1 b)·π) ∩ FA(e, e1) = ∅. since dom(π) ⊆ dom((a1 b)·π) ∪ {a1, b}, we obtain

dom(π) ∩ t = ∅. In the case of one binding, it is irrelevant whether the binding is garbage or

not.

• Let t = (letrec a1.e1; . . . ; an.en in e), and t is a fixpoint of π, i.e. π(t) ∼ t. Note

that no part of the environment is garbage. The permutation π can be split into π = π1·π2,

where dom(π1) ⊆ FA(t) and dom(π2) ∩ FA(t) = ∅. From t ∼ π·t and Lemma 8.1 we

obtain that there is a unique permutation ρ on {1, . . . , n}, such that there is an injective map-

ping ϕ : π(a1) 7→ aρ(1), . . . , π(an) 7→ aρ(n), and e ∼ ϕπ(e), eρ(i) ∼ ϕπ(ei). Then

α-equivalence implies that ϕπ can be extended to a atom-permutation ϕπ by mapping the

atoms in {a1, . . . , an} \ {π(a1), . . . , π(an)} bijectively to {π(a1), . . . , π(an)} \ {a1, . . . , an}.

By the freshness constraints for α-equivalences of letrec-expressions, ϕπ(e) = ϕπ(e) and

ϕπ(ei) = ϕπ(ei) which in turn implies that e ∼ ϕπ(e) and ei ∼ ϕπ(ie), and we can apply the

induction hypothesis.

This shows that FA(e) \ {a1, . . . , an} are not moved by ϕπ, and the same for all ei, hence this

also holds for t. ⊓⊔

Corollary 8.3. Let e be an expression that does not have garbage, and let π be a permutation. Then

π·e ∼ e is equivalent to dom(π) ∩ FA(e) = ∅.

Proof:

This follows from Proposition 8.2. The other direction is easy. ⊓⊔

The proof also shows a slightly more general statement:

Corollary 8.4. Let e be an expression such that in all environments with at least two bindings there are

no garbage bindings, and let π be a permutation. Then π·e ∼ e is equivalent to dom(π) ∩ FA(e) = ∅.

In case that the input does not represent garbage-parts, and the semantics is defined such that only

ground garbage free expressions are permitted, the set of rules in the case without atom-variables can

be optimized as follows: (ElimFP) can be omitted and instead of (FPS) there are two rules:

(FPS2)
Γ ·∪{X

.
= π·X},∇

Γ,∇∪ {a#X | a ∈ dom(π)}
,

(ElimX)
Γ ·∪{X

.
= e}, θ

Γ, θ ∪ {X 7→ e}
, if X 6∈ Var(Γ), and e is not a suspension of X.

Example 8.5. It cannot be expected that the letrec-decomposition rule (7) can be turned into a deter-

ministic rule, and to obtain a unitary nominal unification, under the restriction that input expressions

are garbage-free, and also instantiations are garbage-free. Consider the equation:

(letrec a1.e1; a2.e2 in ((a1, a2),X))
.
= (letrec b1.f1; b2.f2 in (X ′, (b1, b2))).

270 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

Then the in-expressions do not enforce a unique correspondence between the bindings of the left and

right-hand bindings. An example also follows from the proof of Theorem 7.2, which shows that even

nominal matching may have several incomparable solutions for garbage-free expressions.

9. Nominal unification with letrec and atom-variables

In this section we extend the unification algorithm to the language LRLXA, which is an extension of

LRLX with atom variables. Atom-variables increase the expressive power of a term language with

atoms alone. If in an application example it is known that in a pair (x1, x2) the expressions x1, x2 can

only be atoms, but x1 = x2 as well as x1 6= x2 is possible, then two different unification problems have

to be formulated. If atom variables are possible, then the notation (A1, A2) covers both possibilities.

It is known that the nominal unification problem with atom-variables but without letrec is NP-

complete [27]. An algorithm and corresponding rules and discussions can be found in [27]. An

implication is NP-hardness of nominal unification with atom variables and letrec.

9.1. Extension with atom-variables

As an extension of LRLX , we define the languageLRLXA as follows: Let A denote atom variables,

V denote atom variables or atoms, W denote suspensions of atoms or atom variables, X denotes

expression variables, π a permutation, and e an expression. The syntax of the language LRLXA is

V ::= a | A

W ::= π · V

π ::= ∅ | (W W) | π◦π

e ::= π·X | W | λW.e | (f e1 . . . ear(f)) | (letrecW1.e1; . . . ;Wn.en in e)

Let Var(e) be the set of atom or expression variables occurring in e, and let AtVar(e) be the set of

atom variables occurring in e. Similarly for sequences of expressions or permutations.

The expression π·e for a non-variable expression e means an operation, which is performed by shifting

π down in the expression, using the simplifications π1·(π2·X)→ (π1 ◦π2)·X, where only expressions

π·X and π·V remain, where the latter are called suspensions and where π·V is abbreviated as W .

Remark 9.1. An alert for the reader: In this section the use of atom-variables induces generaliza-

tions and changes in the LRLXA-formulation of problems: binders may now be suspensions of atom-

variables, and also “nested” permutation representations are permitted, which is due to atom variables,

since in general, this permutation representation cannot be simplified.

Several simple facts and intuitions that are used for LRLX no longer hold.

A freshness constraint in our unification algorithm is of the form V#e where e is an LRLXA-

expression. The justification for the slightly more complex form as usual (a#X) is that atom variables

prevent a simplification to this form. The notation π−1 is defined as the reversed list of swappings of

π, where the single (perhaps complex) swappings are not modified. A semantical justification for this

inverse is by checking the ground instantiations.

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 271

We also view π · V#e as identical to the constraint V#π−1 · e.

Naively applying ground substitutions may lead to syntactically invalid ground expressions, since

instantiation may make binding atoms in letrecs equal, which is illegal. This will be prevented by

freshness constraints.

Example 9.2. The equation

(app (letrec A.a,B.a in B) A)
.
= (app (letrec A.a,B.a in B) B)

enforces that A,B are instantiated with the same atom, which contradicts the syntactic assumption

on distinct atoms for the binding names in letrec-expressions. This will be dealt with by adding the

freshness constraint A#B. However,

(app (letrec A.a,C.a in C) A)
.
= (app (letrec A.a,D.a inD) B)

is solvable. Note that the additional freshness constraints are A#C,A#D.

Remark 9.3. We circumvent the problem of illegal ground instances by adding for every letrec-

expression in the input of the unification algorithm sufficiently many freshness constraint that prevent

these illegal expressions (see below). It is sufficient to prevent equal binding names in every single

letrec-environment.

Definition 9.4. An LRLXA-unification problem is a pair (Γ,∇), where Γ is a set of equations s
.
= t,

and ∇ is a set of freshness constraints V#e. In addition, for every letrec-subexpression letrecW1.e1,

. . . , Wm.em in e, which occurs in Γ or ∇, the set ∇ must also contain the freshness constraint Wi#Wj

for all i, j = 1, . . . ,m with i 6= j.

A (ground) solution of (Γ,∇) is a substitution ρ (mapping variables in Var (Γ,∇) to ground

expressions), such that sρ ∼ tρ for all equations s
.
= t in Γ, and for all V#e ∈ ∇: V ρ#(eρ) holds.

The decision problem is whether there is a solution for a given (Γ,∇).

Proposition 9.5. The LRLXA-unification problem is in NP, and hence NP-complete.

Proof:

The argument is that every ground instantiation of an atom variable is an atom, which can be guessed

and checked in polynomial time: guess the images of atom variables under a ground solution ρ in the

set of atoms in the current state, or in an arbitrary set of fresh atom variables of cardinality at most

the number of different atom variables in the input. Then instantiate accordingly thereby removing all

atom-variables. The resulting problem can be decided (and solved) by an NP-algorithm as shown in

this paper (Theorem 5.2). ⊓⊔

Remark 9.6. Note that the equation A = π·B for atom variables A,B can be encoded as the freshness

constraint A#λπ·B.A. In the following we may use equations V1 =# π·V2 as a more readable version

of V1#λπ·V2.V1.

272 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

9.2. Rules of the algorithm LETRECUNIFYAV

Now we describe the nominal unification algorithm LETRECUNIFYAV for LRLXA. It will extend

the algorithm LETRECUNIFY by a treatment of atom variables that extend the expressibility. It has

flexible rules, such that a strategy can be added to control the nondeterminism and such that it is

an improvement over a brute-force guessing-algorithm that first guesses all atom instances of atom-

variables and then uses Algorithm LETRECUNIFY (see Algorithm 9.13 for such an improvement).

The simple idea is to only make these guesses if a certain space-bound of the whole state is exceeded

and then use the guesses and further rules to shrink the size of the problem representation. Note that

permutations with atom variables may lead to an exponential blow-up of their size due to iterated

application of rules, which is defeated by a compression mechanism. Note also that equations of the

form A
.
= e, in particular A

.
= π·A′, cannot be solved by substitutions (A 7→ π·A′) for two reasons:

(i) the atom variable A may occur in the right hand side, and (ii) due to our compression mechanism

(see below), the substitution may introduce cycles into the compression, which is forbidden.

(1)
Γ ·∪{e

.
= e}

Γ
(2)

Γ ·∪{π1·V1
.
= π2·V2},∇, θ

Γ,∇∪ {V1 =# π−1
1 π2·V2}, θ

(3a)
Γ ·∪{π1·X

.
= π2·Y },∇, θ X 6= Y

Γ[π−1
1 π2·Y/X],∇[π−1

1 π2·Y/X], θ ∪ {X 7→ π−1
1 π2Y }

(3b)
Γ ·∪{π1·X

.
= π2·V },∇, θ

Γ[π−1
1 π2·V/X],∇[π−1

1 π2·V/X], θ ∪ {X 7→ π−1
1 π2V }

(4)
Γ ·∪{(f (π1·X1) . . . (πn·Xn))

.
= (f (π′

1·X
′
1) . . . (π

′
n·X

′
n))}

Γ ∪ {π1·X1
.
= π′

1·X
′
1, . . . , πn·Xn

.
= π′

n·X
′
n}

(5)
Γ ·∪{(λW.π1·X1

.
= λW.π2·X2}

Γ ∪ {π1·X1
.
= π2·X2}

(6)
Γ ·∪(λW1.π1·X1

.
= λW2.π2·X2},∇

Γ ∪ {π1·X1
.
= (W1 W2)·π2·X2},∇∪ {W1#(λW2.π2·X2)}

(7)

Γ ·∪

{

letrecW1.π1·X1; . . . ;Wn.πn·Xn in π·Y
.
=

letrecW ′
1.π

′
1·X

′
1; . . . ;W

′
n.π

′
n·X

′
n in π′·Y ′

}

,∇

∣

∣

∣

∣

∣

∣

∣

{ρ}













Γ ∪

{

decompose(n+1, λW1 . . . λWn.(π1·X1, . . . , πn·Xn, π·Y)
.
= λW ′

ρ(1). . . . λW
′
ρ(n).(π

′
ρ(1)·X

′
ρ(1), . . . , π

′
ρ(n)·X

′
ρ(n), π

′·Y ′))

}

,

∇ ∪

{

decompfresh(n+1, λW1 . . . λWn.(π1·X1, . . . , πn·Xn, π·Y)
.
= λW ′

ρ(1). . . . λW
′
ρ(n).(π

′
ρ(1)·X

′
ρ(1), . . . , π

′
ρ(n)·X

′
ρ(n), π

′·Y ′))

}













where ρ is a permutation on {1, . . . , n} and decompose(n, .) is the equation part of n-fold

application of rules (4), (5) or (6) and decomposefresh(n, .) is the freshness constraint

part of the n-fold application of rules (4), (5) or (6); (in both cases after flattening).

Figure 7. Standard and decomposition rules with atom variables of LETRECUNIFYAV.

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 273

(MMS), (FPS), (ElimFP) and (Output) are almost the same as the ones in Fig 3.

(MMS)
Γ ·∪{π1·X

.
= e1, π2·X

.
= e2},∇

Γ ∪ {π1·X
.
= e1} ∪ Γ′,∇ ∪∇′

,

if e1, e2 are not suspensions, where Γ′ is the set of

equations generated by decomposing π−1
1 ·e1

.
= π−1

2 ·e2
using (1)–(7), and where ∇′ is the corresponding

resulting set of freshness constraints.

(FPS)
Γ ·∪{π1·X

.
= π′

1·X, . . . , πn·X
.
= π′

n·X, π·X
.
= e}, θ

Γ ∪ {π1π−1·e
.
= π′

1π
−1·e, . . . , πnπ−1·e

.
= π′

nπ
−1·e}, θ ∪ {X 7→ π−1·e}

,

If X 6∈ Var(Γ, e), and e is not a suspension, and (Cycle) (see Fig.4) is not applicable.

(ElimFP)
Γ ·∪{π1·X

.
= π′

1·X, . . . , πn·X
.
= π′

n·X, π·X
.
= π′·X}, θ

Γ ∪ {π1·X
.
= π′

1·X, . . . , πn·X
.
= π′

n·X}, θ
,

If π−1π′ ∈ 〈π−1
1 π1, . . . , π

−1
n πn〉,

and πi, π
′
i, π, π

′ are ground, i.e. do not contain atom variables.

(Output)
Γ,∇, θ

(θ,∇,Γ)
if Γ only consists of fixpoint-equations.

(ElimA)
Γ,∇, θ

|
{

atoms in Γ,∇, θ

and a fresh atom a

}

Γ[a/A],∇[a/A], θ ∪ {A 7→ a}

Figure 8. Main rules of LETRECUNIFYAV

(Clash)
Γ ·∪{s

.
= t},∇, θ tops(s) 6= tops(t) and s and t are not suspensions

⊥

(ClashA)

{s
.
= t} is in Γ, and

s is a suspension of an atom or atom variable

and tops(t) is a function symbol, λ or letrec

⊥

(Clashab)
Γ ·∪{a

.
= b},∇, θ a 6= b

⊥

(Cycle)

If π1·X1
.
= s1, . . . , πn·Xn

.
= sn in Γ where si are not suspensions

and Xi+1 occurs in si for i = 1, . . . , n− 1 and X1 occurs in sn.

⊥

(FailF)
a#a ∈ ∇

⊥
(FailFS)

a#X ∈ ∇ and a occurs free in (Xθ)

⊥
Figure 9. Failure Rules of LETRECUNIFYAV

Atoms in the input are permitted. In the rules an extra mention of atoms is only in (2), (3),

(ElimFP), (ElimA), (Clashab), (FailF), (FailFS) and in (ElimFP).

Definition 9.7. The algorithm LETRECUNIFYAV operates on a tuple (Γ,∇, θ), where the rules are

defined in Figs. 7 and 8, and failure rules are in Fig. 9.

The rules (7) and (ElimA) are don’t know non-deterministic, whereas the other ones are don’t care

274 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

non-deterministic. The following explanations are in order:

1. Γ is assumed to be a set of flattened equations e1
.
= e2 (see the remarks after Definition 4.3).

2. We assume that
.
= is symmetric,

3. ∇ contains freshness constraints, like a#e, A#e, which in certain cases may be written as

equations of the form A =# π·A′ (see Remark 9.6, for better readability and simplicity).

4. θ represents the already computed substitution as a list of replacements of the form X 7→ e. We

assume that the substitution is the iterated replacement. Initially θ is empty.

The final state will be reached, i.e. the output, when Γ only contains fixpoint equations of the form

π1·X
.
= π2·X, and the rule (Output) fires.

In the notation of the rules, we will use [e/X] as substitution that replaces X by e. We may omit ∇
or θ in the notation of a rule, if they are not changed. We will also use a notation “|” in the consequence

part of rule (6), where all possibilities for ρ have to be considered (denoted as the set {ρ}), to denote

disjunctive (i.e. don’t know) nondeterminism. There are two nondeterministic rules with disjunctive

nondeterminism: the letrec-decomposition rule (7) exploring all alternatives of the correspondence

between bindings; the other one is (ElimA) that guesses the instantiation of an atom-variable. In case

it is guessed to be different from all currently used atoms, we remember this fact (for simplicity) by

selecting a fresh atom for instantiation. The other rules can be applied in any order, where it is not

necessary to explore alternatives.

We assume that permutations in the algorithm LETRECUNIFYAV are compressed using a grammar-

mechanism, as a variation of grammar-compression in [47, 48]. However, we do not mention it in the

rules of the algorithm, but we will use it in the complexity arguments (see below).

The use of the iterated decomposition in rule (7) appears clumsy at a first look, however, it is an

easy algorithmic representation of the method to define the permutations (with atom variables) in a

recursive fashion, where the introduction of permutation variables is avoided.

Definition 9.8. The components of a permutation grammar G, used for compression, are:

• Nonterminals Pi.

• For every nonterminal Pi there is an associated inverse Pj , which can also be written as P i.

• Rules of the form Pi → w1 . . . wn, n ≥ 1 where wi is either a nonterminal or a terminal. At

all times P i → wn . . . w1 holds, i.e., if a nonterminal is added its inverse is added accordingly.

Usually, n ≤ 2, but also another fixed bound for n is possible.

• Terminal elements are ∅, (V1 V2).

The grammar is deterministic: every nonterminal is on the left-hand side of exactly one rule. It is also

non-recursive: the terminal index is such that Pi can only be in right-hand sides of the nonterminal

Pj with j < i. The function inv, mapping Pi → P i and T → T for terminals T computes the

inverse in constant time. This is true by construction, because if P → w1 . . . wn then inv(P) →
inv(wn) . . . inv(w1) and inv(T) = T for terminals. Every nonterminal P represents a permutation

val(P), which is computed from the grammar as follows:

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 275

1. val(P) = val(w1) . . . val(wn) (as a composition of permutations), if P → w1 . . . wn.

2. val(∅) = Id .

3. val((P1·V1 P2·V2)) = (val(P1)·V1 val(P2)·V2).

Lemma 9.9. For nonterminals P of a permutation grammar G, the permutation val(inv(P)) is the

inverse of val(P).

9.3. Arguments for correctness and completeness

Let S denote in the following the size of the initial unification problem.

Proposition 9.10. Let G be a permutation grammar, and let P be a nonterminal, such that val(P)
contains n atoms, and does not contain any atom variables. Then val(P) can be transformed into a

permutation of length at most n in polynomial time.

Proof:

For every P the size of the set At(P) has an upper bound S and can be computed in time O(S · log(S))
For every such atom a ∈ At(P) we compute its image P · a and save the result in a mapping from

atoms to atoms. The computation of P · a can be done in O(S2), yielding a total of O(S3) for the

construction of this map, which has size O(S). At last, the construction of the permutation list can be

done in linear time, i.e. O(S). ⊓⊔

Now we consider the operations to extend the grammar during the unification algorithm. By

extension we mean to add non-terminals and rules to the grammar, where the grammar is used as a

compression device.

Proposition 9.11. Extending n times the grammar G can be performed in polynomial time in n, and

the size of the initial grammar G.

Proof:

We check the extension operations:

Adding a nonterminal can be done in constant time. Adding an inverse of P is in constant time, since

the inverses of the sub-permutations are already available. Adding a composition P = P1·P2 and at

the same time the inverse, can be done in constant time. ⊓⊔

This polynomial upper bound will be used in the Proof of Theorem 9.15.

As a summary we obtain: Generating the permutation grammar on the fly during the execution of the

unification rules can be done in polynomial time, since (as we will show below) the number of rule

executions is polynomial in the size of the initial input. Also the operation of applying a compressed

ground permutation to an atom is polynomial.

Note that (MMS) and (FPS), without further precaution, may cause an exponential blow-up in the

number of fixpoint equations (see Example 4.6). The rule (ElimFP) will limit the number of fixpoint

equations for atom-only permutations by exploiting knowledge on operations on permutation groups.

276 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

The rule (ElimA) can be used according to a dynamic strategy (see below): if the space requirement

for the state is too high, then it can be applied until simplification rules make (Γ,∇) smaller.

The rule (Output) terminates an execution on Γ0 by outputting a unifier (θ,∇′,X), where the solv-

ability of ∇′ needs to be checked using methods as in the algorithm proposed in [27]. The method is to

nondeterministically instantiate atom-variables by atoms, and then checking the freshness constraints,

which is in NP (see also Theorem 5.2).

We will show that the algorithm runs in polynomial time by applying (ElimA) following a strategy

defined below. There are two rules, which can lead to a size increase of the unification problem if we

ignore the size of the permutations: (MMS) and (FPS):

• (MMS) Given the equations X
.
= e1,X

.
= e2, the increase of the size of Γ after the application

of the rule has an upper bound O(S).

• (FPS) Given X
.
= π1·X, . . . ,X

.
= πk·X,X

.
= e, the size increase has an upper bound O(S).

Disregarding the permutations of only atoms, it is not known whether there exists a polynomial

upper bound of the number of independent permutations with atom variables - but it seems very

unlikely.

Definition 9.12. Let p(x) be some easily computable function R
+ → R

+. The rule ElimAB(p) is

defined as follows:

ElimAB(p): If there are k > p(S) fixpoint equations X
.
= π1·X, . . . ,X

.
= πk·X

in Γ for some variable X, then apply (ElimA) for all A ∈ AtVar(π1, . . . , πk). Then

immediately apply (ElimFP) exhaustively.

Definition 9.13. The guided version LETRECUNIFYAVB(p) of LETRECUNIFYAV is obtained by re-

placing (ElimA) with ElimAB(p) where p(x) is some (easily computable) function R
+ → R

+, such

that ∀x ∈ R
+ : q(x) ≥ p(x) ≥ x ∗ log(x) holds for some polynomial q. In addition the priority of the

rules is as follows, where highest priority comes first: (1), . . . , (6), (ElimFP), (MMS), (Output). Then

ElimAB(p), (FPS), and the nondeterministic rule (7) with lowest priority.

Lemma 9.14. Let Γ,∇ be a solvable input. For every function p(x) with ∀x ∈ R
+ : p(x) ≥ x log(x),

the algorithm LETRECUNIFYAVB(p) does not get stuck, and for every intermediate state of the algo-

rithm LETRECUNIFYAVB(p) it holds that the number of fixpoint equations per expression variable is

bounded above by p(S).

Proof:

The upper bound of the number of fixpoint equations is proved as follows: Let m be the number of

atoms in the original unification problem. The rule (ElimA) (called by (ElimAB)) introduces at most

S − m new atoms, which implies at most S atoms at any time. If LETRECUNIFYAVB(p) exceeds

its upper space bound and applies ElimAB(p) on the fixpoint equations X
.
= π1·X, . . . ,X

.
= πk·X,

the number of fixpoint equations of X can be reduced to at most S log(S) ≤ p(S) (see the proof of

Theorem 5.2).

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 277

Since the input is solvable, the choices can be made accordingly, guided by the solution, and then

it is not possible that there is an occurs-check-failure for the variables. Hence if the upper line of the

preconditions of (FPS) is a part of Γ, there will also be a maximal variable X, such that the condition

X 6∈ Var(Γ, e) can be satisfied. ⊓⊔

The following theorem shows that the (non-deterministic) algorithm for nominal unification with

letrec and atom-variables can be guided by a strategy that instantiates atom-variables only if the num-

ber of fixpoint equations grows too large. The problem is that with atom-variables we could not

exhibit a redundancy eliminating rule for fixpoint-constraints as for the case with atoms. The al-

gorithm LETRECUNIFYAVB(p) provides this compromise. It guesses the instantiation of certain

atom-variables if the number of fixpoint equations is greater than a bound. This strategy prevents

for example an exponential growth of the number of fixpoint-equations. There is flexibility through

the choice of a threshold-function. Thus Theorem 9.15 shows that with a threshold function satisfy-

ing only weak conditions, the algorithm can be controlled and that there is a chance to find a good

practical compromise between too much non-determinism and space-explosion.

The algorithm is sound and also complete, however, we do not provide explicit arguments here.

Theorem 9.15. Let Γ,∇ be a solvable input. For every function p(x) such that there is a polynomial

q(x) with ∀x : q(x) ≥ p(x) ≥ x log(x), LETRECUNIFYAVB(p) does not get stuck and runs in

polynomial space and time.

Proof:

The proof is inspired by the proof of Theorem 5.2, and uses Lemma 9.14 that shows that the number

of fixpoint-equations for a single variable is at most p(S).

Below we show some estimates on the size and the number of steps. The termination measure

(#Var,#LrλFA,#Eqs,#EqNonX), which is ordered lexicographically, is as follows:

#Var is the number of different variables in Γ,

#LrλFA is the number of letrec-, λ, function-symbols and atoms in Γ, but not in permutations,

#Eqs is the number of equations in Γ, and

#EqNonX is the number of equations where non of the equated expressions is a variable.

Since shifting permutations down and simplification of freshness constraints both terminate and

do not increase the measures, we only compare states which are normal forms for shifting down

permutations and simplifying freshness constraints.

The following table shows the effect of the rules: Let S be the size of the initial (Γ0,∇0) where

Γ is already flattened. Again, the entries +W represent a size increase of at most W in the relevant

measure component.

278 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

#Var #LrλFA #Eqs #EqNonX

(3) < ≤ = ≤

(FPS) < +2p(S) < +2p(S)

(MMS) = < +2S =

(4), (5), (6), (7) = < +S ≤

ElimAB(p) = = < ≤

(1) ≤ ≤ < ≤

(2) = = = <

The table shows that the rule applications strictly decrease the measure. The entries can be verified

by checking the rules, and using the argument that there are not more than p(S) fixpoint equations

for a single variable X. We use the table to argue on the number of rule applications and hence the

complexity: The rules (3) and (FPS) strictly reduce the number of variables in Γ and can be applied

at most S times. The rule (FPS) increases the second measure at most by 2p(S), since the number of

symbols may be increased as often as there are fixpoint-equations, and there are at most p(S). Thus

the measure #LrλFA will never be greater than 2Sp(S).

The rule (MMS) strictly decreases #LrλFA, hence #Eqs, i.e. the number of equations, is

bounded by 4S2p(S). The same bound holds for #EqNonX. Hence the number of rule applica-

tions is O(S2p(S)). Of course, there may be a polynomial effort in executing a single rule, and by

Proposition 9.11 the contribution of the grammar-operations is also only polynomial. Finally, since

p(x) is polynomially bounded by q(x), the algorithm can be executed in polynomial time. ⊓⊔

10. Nominal letrec matching with environment variables

We extend the language LRLXA by variables E that may encode (partial) letrec-environments for a

nominal matching algorithm, which leads to a larger coverage of practically occurring nominal match-

ing problems in reasoning about the (small-step operational) semantics of programming languages

with letrec.

Example 10.1. Consider as an example a rule (llet-e) of the operational seman-

tics of a functional core language, which merges letrec-environments (see [19]):

(letrec E1 in (letrec E2 in X)) → (letrec E1;E2 in X). It can be applied to

an expression (letrec a.0; b.1 in (letrec c.(a, b, c) in c)) as follows: The left-hand side

(letrec E1 in (letrec E2 in X)) of the reduction rule matches (letrec a.0; b.1 in (letrec
c.(a, b, c) in c)) with the match: {E1 7→ {a.0; b.1};E2 7→ {c.(a, b, c)};X 7→ c}, producing

the next expression as an instance of the right hand side (letrec E1;E2 in X), which is

(letrec a.0; b.1; c.(a, b, c) in c). Note that for application to extended lambda calculi, more care

is needed w.r.t. scoping in order to get valid reduction results in all cases. The restriction that a

single letrec environment binds different variables becomes more important. The reduction (llet-e) is

correctly applicable, if the target expression satisfies the so-called distinct variable convention, i.e.,

if all bound variables are different and if all free variables in the expression are different from all

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 279

bound variables. In this section we will add freshness constraints that enforce different binders in

environments.

An alternative that is used for a similar unification task in [36] requires the additional construct

of non-capture constraints: NCC (env1, env2), which means that for every valid instantiation ρ, vari-

ables occurring free in env1ρ are not captured by the top letrec-binders in env2ρ. In this paper we

focus on nominal matching for the extension with environment variables, and leave the investigation

of reduction rules and sequences for further work.

Definition 10.2. The grammar for the extended language LRLXAE (LetRec Language eXtended

with Atom variables and Environment) variables E is:

V ::= a | A

W ::= π · V

π ::= ∅ | (W W) | π◦π

e ::= π·X | W | λW.e | (f e1 . . . ear(f)) | (letrec env in e)

env ::= E | W.e | env ; env | ∅

We define a nominal matching algorithm, where in addition environment variables may occur (also

non-linear) in left hand sides, but not in the right hand sides.

The matching algorithm with environment variables is described below. It can be obtained from

the algorithm LETRECUNIFYAV by adding a rule that (nondeterministically) instantiates environment

variables by environments of the form W1.X1; . . . ;Wk.Xk. This can eliminate all environment vari-

ables. After this operation of eliminating all environment variables, it is possible to use the algorithm

LETRECUNIFYAV. However, since the equations are match-equations, it is possible to derive simpli-

fied and optimized rules of LETRECUNIFYAV. We describe the rules explicitly, in order to exhibit the

optimization possibilities of a matching algorithm compared with a unification algorithm.

Definition 10.3. The matching algorithm LETRECENVMATCH is described in Fig. 10. Permitted

inputs are matching equations between expressions, i.e. variables are only permitted in left hand sides

of (matching) equations. The don’t know-nondeterminism is indicated in the respective rules.

It is assumed that in the input as well as after instantiating the env -variables, the freshness constraints

contain constraints that prevent that a letrec-environment contains bindings with the same binder (see

Remark 9.3). The result is a substitution, a freshness constraint and a substitution.

We omit failure rules, since these obviously follow from the nominal matching algorithm. Guess-

ing the number of instances into environment variables may lead to clashes due to a wrong number of

bindings in environments. An implementation can be more clever by checking the possible number of

bindings before guessing.

It is easy to see that the problem itself is in NP, by the following argument: Guess atom-variables

in the left hand side, where we only have to choose from the already existing atom-variables in the

problem and a fresh atom, and iterate this until all atom-variables are replaced. Then we guess the

environment variables in a general way, as in rule (8), where the number of bindings is at most the max-

imal number of bindings in the letrec-environments in the right hand side. This (non-deterministic)

280 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

guessing and replacement is polynomial. Then we can apply Theorem 5.4. Since the rules of LETRE-

CENVMATCH are simplified rules of the algorithm LETRECUNIFYAV, we obtain:

Theorem 10.4. The nominal matching algorithm LETRECENVMATCH is sound and complete and

runs in NP time.

11. Conclusion and future research

We construct nominal unification algorithms for expressions with letrec, for the case where only atoms

are permitted, and also for the case where in addition atom variables are permitted. We also describe

several nominal letrec matching algorithms for variants, in particular also for expressions with envi-

ronment variables. All algorithms run in (nondeterministic) polynomial time. Future research is to

investigate extensions of nominal unification with environment variables E , perhaps as an extension

of the matching algorithm.

Future work is also an investigation into the connection with equivariant nominal unification

[15, 16, 17], and to investigate nominal matching together with equational theories. Also applications

(1)
Γ ·∪{e ✂ e}

Γ
(2)

Γ ·∪{π1·A ✂ a},∇, θ

Γ[π−1
1 ·a/A],∇[π−1

1 ·a/A], θ ∪ {A 7→ π−1
1 ·a}

(3)
Γ ·∪{π1·X ✂ e},∇, θ

Γ[π−1
1 ·e/X],∇[π−1

1 ·e/X], θ ∪ {X 7→ π−1
1 ·e}

(4)
Γ ·∪{(f e1 . . . en)) ✂ (f e′1 . . . e

′
n)}

Γ ∪ {e1 ✂ e′1, . . . en ✂ e′n}

(5)
Γ ·∪{(λa.e1 ✂ λa.e2}

Γ ∪ {e1 ✂ e2}
(6)

Γ ·∪{(λW.e1 ✂ λa.e2},∇

Γ ∪ {(W a)·e1 ✂ e2},∇∪ {a#λW.e1}

(7)

Γ ·∪

{

letrecW1.e1; . . . ;Wn.en in e ✂

letrec a1.e
′
1; . . . ; an.e

′
n in e′

}

,∇
If the left hand side environment

does not contain environment variables.
∣

∣

∣

∣

∣

∣

∣

{ρ}













Γ ∪

{

decompose(n+1, λW1 . . . λWn.(e1, . . . , en, e))

✂ λaρ(1). . . . λaρ(n).(e
′
ρ(1), . . . , e

′
ρ(n), e

′))

}

,

∇ ∪

{

decompfresh(n+1, λW1 . . . λWn.(e1, . . . , en, e))
.
= λaρ(1). . . . λaρ(n).e

′
ρ(1), . . . , e

′
ρ(n), e

′))

}













where ρ is a permutation on {1, . . . , n} and decompose(n, .) is the equation part of n-fold

application of rules (4), (5) or (6) and decomposefresh(n, .) is the freshness constraint

part of the n-fold application of rules (4), (5) or (6).

(8)
Γ ·∪{letrecW1.e1; . . . ;E; . . . ;Wn.en in e ✂ letrec a1.e

′
1; . . . ; an.e

′
m in e′},∇, θ

∣

∣

∣

{σ}
((Γ∪{letrecW1.e1; . . . ;E; . . . ;Wn.en in e ✂ letrec a1.e

′
1; . . . ; an.e

′
m in e′})σ,∇σ, θ∪σ

where σ = {E 7→ A1.X1, . . . Ak.Xk} where Ai, Xi are fresh variables and k ≤ m− n.

Figure 10. Standard and decomposition matching rules with environment variables of LETRECENVMATCH.

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 281

of nominal techniques to reduction steps in operational semantics of calculi with letrec and transfor-

mations should be more deeply investigated. Also nominal unification in the combination of letrec,

environment variables and atom variables is subject to future research.

Acknowledgements

The research of Manfred Schmidt-Schauß was partially supported by the Deutsche Forschungsgemein-

schaft (DFG) under grant SCHM 986/11-1.

The research for the author Temur Kutsia was partially supported by the Austrian Science Fund (FWF)

project P 28789-N32.

The research of Jordi Levy was partially supported by the MINECO/FEDER projects RASO

(TIN2015-71799-C2-1-P) and LoCoS (TIN2015-66293-R).

The research of Mateu Villaret was partially supported by UdG project MPCUdG2016/055.

We thank the reviewers for their detailed comments that greatly helped to improve the paper.

References

[1] Schmidt-Schauß M, Kutsia T, Levy J, Villaret M. Nominal Unification of Higher Order Expressions

with Recursive Let. In: Hermenegildo MV, López-Garcı́a P (eds.), Logic-Based Program Synthesis and

Transformation - 26th International Symposium, LOPSTR 2016, Edinburgh, UK, September 6-8, 2016,

Revised Selected Papers, volume 10184 of Lecture Notes in Computer Science. Springer, 2016 pp. 328–

344. doi:10.1007/978-3-319-63139-4 19.

[2] Baader F, Snyder W. Unification Theory. In: Robinson JA, Voronkov A (eds.), Handbook of Automated

Reasoning, pp. 445–532. Elsevier and MIT Press, 2001.

[3] Huet GP. A Unification Algorithm for Typed lambda-Calculus. Theor. Comput. Sci., 1975. 1(1):27–57.

doi:10.1016/0304-3975(75)90011-0.

[4] Goldfarb WD. The Undecidability of the Second-Order Unification Problem. Theor. Comput. Sci., 1981.

13:225–230. doi:10.1016/0304-3975(81)90040-2.

[5] Levy J, Veanes M. On the Undecidability of Second-Order Unification. Inf. Comput., 2000. 159(1-2):125–

150. doi:10.1006/inco.2000.2877.

[6] Urban C, Pitts AM, Gabbay M. Nominal Unification. In: 17th CSL, 12th EACSL, and 8th KGC, volume

2803 of LNCS. Springer, 2003 pp. 513–527. doi:10.1007/978-3-540-45220-1 41.

[7] Urban C, Pitts AM, Gabbay MJ. Nominal unification. Theor. Comput. Sci., 2004. 323(1–3):473–497.

doi:10.1016/j.tcs.2004.06.016.

[8] Calvès C, Fernández M. A polynomial nominal unification algorithm. Theor. Comput. Sci., 2008. 403(2-

3):285–306. doi:10.1016/j.tcs.2008.05.012.

[9] Levy J, Villaret M. Nominal Unification from a Higher-Order Perspective. ACM Trans. Comput. Log.,

2012. 13(2):10. doi:10.1145/2159531.2159532.

[10] Miller D. A Logic Programming Language with Lambda-Abstraction, Function Variables, and Simple

Unification. J. Log. Comput., 1991. 1(4):497–536. doi:10.1093/logcom/1.4.497.

282 M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let

[11] Levy J, Villaret M. An Efficient Nominal Unification Algorithm. In: Lynch C (ed.), Proc. 21st RTA,

volume 6 of LIPIcs. Schloss Dagstuhl, 2010 pp. 209–226. doi:10.4230/LIPIcs.RTA.2010.209.

[12] Ayala-Rincón M, Fernández M, Rocha-Oliveira AC. Completeness in PVS of a Nominal Unification

Algorithm. ENTCS, 2016. 323(3):57–74. doi:10.1016/j.entcs.2016.06.005.

[13] Ayala-Rincón M, de Carvalho Segundo W, Fernández M, Nantes-Sobrinho D. A Formalisation of Nominal

α-equivalence with A and AC Function Symbols. Electr. Notes Theor. Comput. Sci., 2017. 332:21–38.

doi:10.1016/j.entcs.2017.04.003.

[14] Ayala-Rincón M, Fernández M, Nantes-Sobrinho D. Nominal Narrowing. In: Pientka B, Kesner D (eds.),

Proc. first FSCD, LIPIcs. 2016 pp. 11:1–11:17. doi:10.4230/LIPIcs.FSCD.2016.11.

[15] Cheney J. Equivariant Unification. J. Autom. Reasoning, 2010. 45(3):267–300. doi:10.1007/

s10817-009-9164-3.

[16] Cheney J. Nominal Logic Programming. Ph.D. thesis, Cornell University, Ithaca, New York, U.S.A.,

2004.

[17] Aoto T, Kikuchi K. A Rule-Based Procedure for Equivariant Nominal Unification. In: Informal proceed-

ings HOR. 2016 p. 5.

[18] Moran AKD, Sands D, Carlsson M. Erratic Fudgets: A semantic theory for an embedded coordination

language. In: Coordination ’99, volume 1594 of LNCS. Springer-Verlag, 1999 pp. 85–102. doi:10.1007/

3-540-48919-3 8.

[19] Schmidt-Schauß M, Schütz M, Sabel D. Safety of Nöcker’s Strictness Analysis. J. Funct. Programming,

2008. 18(04):503–551. doi:10.1017/S0956796807006624.

[20] Ariola ZM, Klop JW. Cyclic Lambda Graph Rewriting. In: Proc. IEEE LICS. IEEE Press, 1994 pp.

416–425. doi:10.1109/LICS.1994.316066.

[21] Marlow S (ed.). Haskell 2010 – Language Report. 2010. URL https://www.haskell.org.

[22] Cheney J. Toward a General Theory of Names: Binding and Scope. In: MERLIN 2005. ACM, 2005 pp.

33–40. doi:10.1145/1088454.1088459.

[23] Urban C, Kaliszyk C. General Bindings and Alpha-Equivalence in Nominal Isabelle. Log. Methods

Comput. Sci., 2012. 8(2). doi:10.2168/LMCS-8(2:14)2012.

[24] Simon L, Mallya A, Bansal A, Gupta G. Coinductive Logic Programming. In: Etalle S, Truszczynski M

(eds.), 22nd ICLP, LNCS. 2006 pp. 330–345. doi:10.1007/11799573 25.

[25] Jeannin J, Kozen D, Silva A. CoCaml: Functional Programming with Regular Coinductive Types. Fundam.

Inform., 2017. 150(3-4):347–377. doi:10.3233/FI-2017-1473.

[26] Martelli A, Montanari U. An efficient unification algorithm. ACM Trans. Program. Lang. Syst., 1982.

4(2):258–282. doi:10.1145/357162.357169.

[27] Schmidt-Schauß M, Sabel D, Kutz YDK. Nominal unification with atom-variables. J. Symb. Comput.,

2019. 90:42–64. doi:10.1016/j.jsc.2018.04.003.

[28] Schmidt-Schauß M, Sabel D. Nominal Unification with Atom and Context Variables. In: Kirchner [49],

2018 pp. 28:1–28:20. doi:10.4230/LIPIcs.FSCD.2018.28.

[29] Ayala-Rincón M, de Carvalho Segundo W, Fernández M, Nantes-Sobrinho D. Nominal C-Unification.

In: Fioravanti F, Gallagher JP (eds.), 27th LOPSTR, Revised Selected Papers, volume 10855 of LNCS.

Springer, 2017 pp. 235–251. doi:10.1007/978-3-319-94460-9 14.

https://www.haskell.org

M. Schmidt-Schauss et al. / Nominal Unification with Recursive Let 283

[30] Ayala-Rincón M, Fernández M, Nantes-Sobrinho D. Fixed-Point Constraints for Nominal Equational

Unification. In: Kirchner [49], 2018 pp. 7:1–7:16. doi:10.4230/LIPIcs.FSCD.2018.7.

[31] Schmidt-Schauss M, Kutsia T, Levy J, Villaret M. Nominal Unification of Higher Order Expressions with

Recursive Let. RISC Report Series 16-03, RISC, Johannes Kepler University Linz, Austria, 2016.

[32] Fernández M, Gabbay M. Nominal rewriting. Inf. Comput., 2007. 205(6):917–965. doi:10.1016/j.ic.2006.

12.002.

[33] Baldan P, Bertolissi C, Cirstea H, Kirchner C. A rewriting calculus for cyclic higher-order term graphs.

Mathematical Structures in Computer Science, 2007. 17(3):363–406. doi:10.1017/S0960129507006093.

[34] Rau C, Schmidt-Schauß M. A Unification Algorithm to Compute Overlaps in a Call-by-Need Lambda-

Calculus with Variable-Binding Chains. In: Proc. 25th UNIF. 2011 pp. 35–41.

[35] Rau C, Schmidt-Schauß M. Towards Correctness of Program Transformations Through Unification and

Critical Pair Computation. In: Proc. 24th UNIF, volume 42 of EPTCS. 2010 pp. 39–54. doi:10.4204/

EPTCS.42.4.

[36] Schmidt-Schauß M, Sabel D. Unification of program expressions with recursive bindings. In: Cheney J,

Vidal G (eds.), 18th PPDP. ACM, 2016 pp. 160–173. doi:10.1145/2967973.2968603.

[37] Dowek G, Gabbay MJ, Mulligan DP. Permissive nominal terms and their unification: an infinite, co-

infinite approach to nominal techniques. Log. J. IGPL, 2010. 18(6):769–822. doi:10.1093/jigpal/jzq006.

[38] Schmidt-Schauß M, Rau C, Sabel D. Algorithms for Extended Alpha-Equivalence and Complexity. In:

van Raamsdonk F (ed.), 24th RTA 2013, volume 21 of LIPIcs. Schloss Dagstuhl, 2013 pp. 255–270.

doi:10.4230/LIPIcs.RTA.2013255.

[39] Luks EM. Permutation Groups and Polynomial-Time Computation. In: Finkelstein L, Kantor WM (eds.),

Groups And Computation, volume 11 of DIMACS. DIMACS/AMS, 1991 pp. 139–176.

[40] Furst ML, Hopcroft JE, Luks EM. Polynomial-Time Algorithms for Permutation Groups. In: 21st FoCS.

IEEE Computer Society, 1980 pp. 36–41. doi:10.1109/SFCS.1980.34.

[41] Picouleau C. Complexity of the Hamiltonian Cycle in Regular Graph Problem. Theor. Comput. Sci., 1994.

131(2):463–473. doi:10.1016/0304-3975(94)90185-6.

[42] Garey MR, Johnson DS, Tarjan RE. The Planar Hamiltonian Circuit Problem is NP-Complete. SIAM J.

Comput., 1976. 5(4):704–714. doi:10.1137/0205049.

[43] Ariola ZM, Felleisen M, Maraist J, Odersky M, Wadler P. A call-by-need lambda calculus. In: POPL’95.

ACM Press, San Francisco, CA, 1995 pp. 233–246. doi:10.1145/199448.199507.

[44] Schöning U. Graph Isomorphism is in the Low Hierarchy. J. Comput. Syst. Sci., 1988. 37(3):312–323.

doi:10.1016/0022-0000(88)90010-4.

[45] Babai L. Graph Isomorphism in Quasipolynomial Time. http://arxiv.org/abs/1512.03547v2, 2016.

[46] Booth KS. Isomorphism Testing for Graphs, Semigroups, and Finite Automata Are Polynomially Equiva-

lent Problems. SIAM J. Comput., 1978. 7(3):273–279. doi:10.1137/0207023.

[47] Lohrey M, Maneth S, Schmidt-Schauß M. Parameter reduction and automata evaluation for grammar-

compressed trees. J. Comput. Syst. Sci., 2012. 78(5):1651–1669. doi:10.1016/j.jcss.2012.03.003.

[48] Gascón A, Godoy G, Schmidt-Schauß M. Unification and matching on compressed terms. ACM Trans.

Comput. Log., 2011. 12(4):26:1–26:37. doi:10.1145/1970398.1970402.

[49] Kirchner H (ed.). 3rd International Conference on Formal Structures for Computation and Deduction,

FSCD 2018, July 9-12, 2018, Oxford, UK, volume 108 of LIPIcs. Schloss Dagstuhl, 2018.

	1 Introduction
	2 Some intuitions
	2.1 Nominal unification
	2.2 Letrec expressions

	3 The ground language of expressions
	3.1 Preliminaries
	3.2 Permutation groups

	4 A nominal letrec unification algorithm
	4.1 Preparations
	4.2 Rules of the algorithm LetrecUnify

	5 Soundness, completeness, and complexity of LetrecUnify
	5.1 NP-Hardness of nominal letrec unification and matching
	5.2 Properties of the nominal unification algorithm LetrecUnify

	6 Nominal matching with letrec: LetrecMatch
	6.1 Remarks on letrec-matching with DAGs

	7 Graph-isomorphism-hardness of nominal letrec matching and unification without garbage
	8 On fixpoints and garbage
	9 Nominal unification with letrec and atom-variables
	9.1 Extension with atom-variables
	9.2 Rules of the algorithm LetrecUnifyAV
	9.3 Arguments for correctness and completeness

	10 Nominal letrec matching with environment variables
	11 Conclusion and future research

