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Abstract. The aim of this paper is to obtain closed formulas for the perfect domination num-

ber, the Roman domination number and the perfect Roman domination number of lexicographic

product graphs. We show that these formulas can be obtained relatively easily for the case of the

first two parameters. The picture is quite different when it concerns the perfect Roman domina-

tion number. In this case, we obtain general bounds and then we give sufficient and/or necessary

conditions for the bounds to be achieved. We also discuss the case of perfect Roman graphs and

we characterize the lexicographic product graphs where the perfect Roman domination number

equals the Roman domination number.

Keywords: Roman domination; perfect domination; perfect Roman domination; lexicographic

product

1. Introduction

Given a graph G, a set S ⊆V (G) of vertices is a dominating set if every vertex in V (G)\S is adjacent

to at least one vertex in S. Let D(G) be the set of dominating sets of G. The domination number of G

is defined to be,

γ(G) = min{|S| : S ∈D(G)}.
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Now, S ⊆V (G) is a perfect dominating set of G if every vertex in V (G)\S is adjacent to exactly one

vertex in S. Let Dp(G) be the set of perfect dominating sets of G. The perfect domination number of

G is defined to be,

γ p(G) = min{|S| : S ∈D
p(G)}.

Notice that Dp(G)⊆D(G), which implies that γ(G)≤ γ p(G).

The domination number has been extensively studied. For instance, we cite the following books,

[17, 18]. The theory of perfect domination was introduced by Livingston and Stout in [26] and has

been studied by several authors, including [9, 11, 13, 15, 22, 24].

Cockayne, et al. [10] defined a Roman dominating function, abbreviated RDF, on a graph G to

be a function f : V (G)−→ {0,1,2} satisfying the condition that every vertex u for which f (u) = 0 is

adjacent to at least one vertex v for which f (v) = 2. The weight of f is defined to be

ω( f ) = ∑
v∈V (G)

f (v).

For X ⊆ V (G) we define the weight of X as f (X) = ∑v∈X f (v). The Roman domination number,

denoted by γR(G), is the minimum weight among all Roman dominating functions on G, i.e.,

γR(G) = min{ω( f ) : f is an RDF on G}.

An RDF of weight γR(G) is called a γR(G)-function. Obviously, γR(G)≤ 2γ(G) for every graph G. A

Roman graph is a graph G with γR(G) = 2γ(G).

Recently, a perfect version of Roman domination was introduced by Henning, Klostermeyer and

MacGillivray [20]. They defined a perfect Roman dominating function, abbreviated PRDF, as an RDF

f satisfying the condition that every vertex u for which f (u) = 0 is adjacent to exactly one vertex v for

which f (v) = 2. The perfect Roman domination number, denoted by γ
p
R(G), is the minimum weight

among all perfect Roman dominating functions on G, i.e.,

γ
p
R(G) = min{ω( f ) : f is a PRDF on G}.

For results on perfect Roman domination in graphs we cite [3, 12, 19, 33].

A PRDF of weight γ
p
R(G) is called a γ

p
R(G)-function. Observe that γR(G)≤ γ

p
R(G)≤ 2γ p(G) for

every graph G. Those graphs attaining the equality γ
p
R(G) = 2γ p(G) are called perfect Roman graphs.

All perfect Roman trees were characterized in [29].

Figure 1 shows three copies of a graph G with γR(G) = γ
p
R(G) = 4. Notice that the labellings

correspond to the positive weights of all γR(G)-functions. In particular, the labellings on the center

and on the right correspond to the positive weights of γ p
R(G)-functions.

Figure 2 shows a Roman graph G, namely, γR(G) = 6 = 2γ(G). In this case, γ p(G) = 6 and

γ
p
R(G) = 9. The set of labelled vertices form a γ p(G)-set and the labels describe the positive weights

of a γ
p
R(G)-function.

The aim of this paper is to obtain closed formulas for the perfect domination number, the Roman

domination number and the perfect Roman domination number of lexicographic product graphs. The
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Figure 1. The labellings associated to the positive weights of all γR(G)-functions on the same graph. The

labellings on the center and on the right correspond to the case of γ
p
R(G)-functions.
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Figure 2. The set of labelled vertices form a γ p(G)-set and the labels correspond to the positive weights of a

γ
p
R(G)-function.

paper is organised as follows. In Section 2 we declare the general notation, terminology and basic

tools needed to develop the remaining sections. In Section 3 we obtain closed formulas for the perfect

domination number and the Roman domination number of lexicographic product graphs. Finally,

Section 4 is devoted to provide tight bounds and closed formulas for the perfect Roman domination

number of lexicographic product graphs.

2. Notation, terminology and basic tools

Throughout the paper, we will use the notation Kk and Nk for a complete graph and an empty graph

of order k, respectively. We use the notation u ∼ v if u and v are adjacent vertices, and G ∼= H if G

and H are isomorphic graphs. For a vertex v of a graph G, N(v) will denote the set of neighbours or

open neighbourhood of v, i.e., N(v) = {u ∈ V (G) : u ∼ v}. The closed neighbourhood, denoted by

N[v], equals N(v)∪{v}. Given a set S ⊆V (G) and a vertex v ∈ S, the external private neighbourhood

epn(v,S) of v with respect to S is defined to be epn(v,S) = {u ∈V (G)\S : N(u)∩S = {v}}.

We denote by deg(v) = |N(v)| the degree of vertex v, as well as δ (G) = minv∈V (G){deg(v)} the

minimum degree of G, ∆(G) = maxv∈V (G){deg(v)} the maximum degree of G and n(G) = |V (G)| the

order of G. Given a set S ⊆V (G), N(S) = ∪v∈SN(v), N[S] = N(S)∪S and the subgraph of G induced

by S will be denoted by G[S].

A set S ⊆ V (G) is a total dominating set of a graph G without isolated vertices if every vertex

v ∈ V (G) is adjacent to at least one vertex in S. Let Dt(G) be the set of total dominating sets of G.
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The total domination number of G is defined to be,

γt(G) = min{|S| : S ∈Dt(G)}.

By definition, Dt(G) ⊆ D(G), so that γ(G) ≤ γt(G). Furthermore, γt(G) ≤ 2γ(G). We define

a γt(G)-set as a set S ∈ Dt(G) with |S| = γt(G). The same agreement will be assumed for optimal

parameters associated to other characteristic sets defined in the paper. For instance, a γ(G)-set will be

a set S ∈D(G) with |S|= γ(G).

A graph invariant closely related to the domination number is the packing number. A set S⊆V (G)
is a packing if N[u]∩N[v] =∅ for every pair of different vertices u,v ∈ S. We define

℘(G) = {S ⊆V (G) : S is a packing of G}.

The packing number, denoted by ρ(G), is the maximum cardinality among all packings of G, i.e.,

ρ(G) = max{|S| : S ∈℘(G)}.

Obviously, γ(G) ≥ ρ(G). Furthermore, Meir and Moon [27] showed in 1975 that γ(T ) = ρ(T ) for

every tree T . We would point out that, in general, these γ(T )-sets and ρ(T)-sets are not identical.

Notice that D(G)∩℘(G) 6=∅ if and only if there exists a γ(G)-set which is a ρ(G)-set. A graph G is

an efficient closed domination graph if D(G)∩℘(G) 6=∅.

A set S ⊆V (G) is an open packing, if N(u)∩N(v) =∅ for every pair of different vertices u,v ∈ S.

We define

℘o(G) = {S ⊆V (G) : S is an open packing of G}.

The open packing number of G, denoted by ρo(G), is the maximum cardinality among all open pack-

ings of G, i.e.,

ρo(G) = max{|S| : S ∈℘o(G)}.

By definition, ℘(G)⊆℘o(G), so that ρ(G)≤ ρo(G) for every graph G, and ρo(G)≤ γt(G) for every

graph G without isolated vertices. Besides, if S ∈℘o(G), then every vertex of G[S] has degree at most

one, which implies that we can write S = S0 ∪ S1, where S0 is the set of isolated vertices of G[S] and

S1 = S\S0. Obviously, S1 =∅ if and only if S ∈℘(G).

A graph G is an efficient open domination graph if there exists a set D, called an efficient open

dominating set, for which V (G) = ∪u∈DN(u) and N(u)∩N(v) = ∅ for every pair of distinct vertices

u,v∈D. As shown in [23], if G is an efficient open domination graph with an efficient open dominating

set D, then γt(G) = |D|. Hence, the following remark holds.

Remark 2.1. A graph G is an efficient open domination graph if and only if there exists S ∈D
p(G)

such that G[S]∼= ∪K2. In such a case, |S|= γt(G) = ρo(G).

Corollary 2.2. If G is an efficient open domination graph, then γ p(G)≤ γt(G).

Given two nontrivial graphs G and H , we define the following properties, which will become

important tools in the next sections.
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P1(G,H): δ (H) = 0 and G is an efficient open domination graph.

P2(G,H): γ(H) = 1 and G is an efficient closed domination graph.

P3(G,H): δ (H) = 0, G is an efficient open domination graph and γ p(G) = γt(G).

Let f : V (G) −→ {0,1,2} be a function on G and let Vi = {v ∈ V (G) : f (v) = i}, where i ∈
{0,1,2}. We will identify f with the subsets V0,V1,V2, and so we will use the unified notation

f (V0,V1,V2) for the function and these associated subsets.

An RDF f (V0,V1,V2) on G is a total Roman dominating function if V1 ∪V2 ∈ Dt(G) [1]. The

total Roman domination number, denoted by γtR(G), is the minimum weight among all total Roman

dominating functions on G. By definition, γR(G)≤ γtR(G).
The lexicographic product of two graphs G and H is the graph G ◦H whose vertex set is V (G ◦

H) =V (G)×V (H) and (u,v)(x,y) ∈ E(G◦H) if and only if ux ∈ E(G) or u = x and vy ∈ E(H). For

simplicity, the neighbourhood of (x,y) ∈V (G◦H) will be denoted by N(x,y) instead of N((x,y)), and

for any PRDF f on G◦H we will write f (x,y) instead of f ((x,y)).

Notice that for any u ∈V (G) the subgraph of G◦H induced by {u}×V (H) is isomorphic to H .

We will denote this subgraph by Hu. For any u ∈V (G) and any function f on G◦H we define

f (Hu) = ∑
v∈V (H)

f (u,v) and f [Hu] = ∑
x∈N[u]

f (Hx).

For basic properties of the lexicographic product of two graphs we suggest the books [16, 21]. A

main problem in the study of product of graphs consists of finding exact values or sharp bounds for

specific parameters of the product of two graphs and express them in terms of invariants of the factor

graphs. In particular, we cite the following works on domination theory of lexicographic product

graphs. For instance, the reader is referred to [25, 28] for the domination number, [4] for the double

domination number, [30] for the Roman domination number, [6, 8] for the total Roman domination

number, [31] for the rainbow domination number, [14] for the super domination number, [32] for the

weak Roman domination number, [7] for the total weak Roman domination number and the secure

total domination number, [5] for the Italian domination number and [2] for the doubly connected

domination number.

For the remainder of the paper, definitions will be introduced whenever a concept is needed.

3. Perfect domination and Roman Domination in lexicographic product

graphs

The next theorem merges two results obtained in [30] and [34].

Theorem 3.1. ([30] and [34])

For any graph G with no isolated vertex and any nontrivial graph H ,

γ(G◦H) =







γ(G) if γ(H) = 1,

γt(G) if γ(H)≥ 2.
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As the following result shows, when computing the perfect domination number of lexicographic

product graphs G◦H , where G is connected and H is not trivial, we have to take into account that the

class of graphs G◦H satisfies a certain trichotomy, as it is divided into three categories, i.e., the class

of graphs G ◦H for which P1(G,H) holds, the class of graphs G ◦H for which P2(G,H) holds, and

the class where neither P1(G,H) nor P2(G,H) holds.

Theorem 3.2. For any connected graph G and any nontrivial graph H ,

γ p(G◦H) =















γt(G) if P1(G,H) holds,

γ(G) if P2(G,H) holds,

n(G)n(H) otherwise.

Proof:

Let S be a γ p(G◦H)-set and define W0 = {x ∈V (G) : V (Hx)∩S =∅} and W1 = {x ∈V (G) : |V (Hx)∩
S|= 1}. We differentiate, the following two cases.

Case 1. There exists x ∈ V (G) such that |V (Hx)∩ S| ≥ 2. Since n(H) ≥ 2, we deduce that N[x]×
V (H)⊆ S, which implies that S =V (G◦H), i.e., γ p(G◦H) = |S|= n(G)n(H).

Case 2. |V (Hx)∩ S| ≤ 1 for every x ∈ V (G). Obviously, W1 ∈ D
p(G) and, since V (Hx) \ S 6= ∅ for

every x ∈ V (G), we conclude that S ∈℘o(G ◦H). Let (x,y) ∈ S. If x is an isolated vertex of G[W1],
then y is a universal vertex of H , while if x has degree one, then y is an isolated vertex of H . Therefore,

we have the following two complementary subcases.

Subcase 2.1. P1(G,H) holds, i.e., y is an isolated vertex of H , W1 ∈D
p(G) and G[W1]∼= ∪K2. In this

case, Remark 2.1 leads to |W1|= γt(G). Hence, γ p(G◦H) = |S|= |W1 ×{y}|= |W1|= γt(G).

Subcase 2.2. P2(G,H) holds, i.e., y is a universal vertex of H , W1 is ρ(G)-set and also a γ(G)-set. In

this case, γ p(G◦H) = |S|= |W1 ×{y}|= |W1|= γ(G). ⊓⊔

The Roman domination number of the lexicographic product of two connected graphs G and H

was studied in [30]. Obviously, the connectivity of G ◦H only depends on the connectivity of G.

Since we need to consider the case where H is not necessarily connected, we make next the necessary

modifications to adapt the results obtained in [30] to the general case in which H is not necessarily

connected.

Lemma 3.3. Let G be a graph with no isolated vertex and H a nontrivial graph. Let f (V0,V1,V2) be a

γR(G◦H)-function, A f = {x ∈V (G) : V (Hx)∩V2 6=∅} and B f = {x ∈V (G)\A f : V (Hx)∩V1 6=∅}.

If |V2| is maximum among all γR(G◦H)-functions, then A f ∈D(G) and B f =∅.

Proof:

Let f (V0,V1,V2) be a γR(G◦H)-function such that |V2| is maximum among all γR(G◦H)-functions. If

x ∈V (G)\ (A f ∪B f ), then V (Hx)⊆V0, which implies that N(x)∩A f 6=∅. Hence, A f ∪B f ∈D(G).

Now, suppose that there exists u ∈ B f . Observe that (N(u)×V (H))∩V2 =∅, and so V (Hu)⊆V1.

Given u′ ∈N(u) and v∈V (H), we define a function f ′(V ′
0,V

′
1,V

′
2) on G◦H by f ′(Hu) = 0, f ′(u′,v) = 2
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and f ′(x,y) = f (x,y) for the remaining vertices. Notice that f ′ is a RDF on G◦H with |V ′
2|> |V2| and,

since H is a nontrivial graph, f (Hu) = |V (Hu)| ≥ 2, so that ω( f ′) ≤ ω( f ), which is a contradiction.

Therefore, B f =∅ and A f ∈D(G). ⊓⊔

The following result is a direct consequence of Lemma 3.3.

Corollary 3.4. For any graph G without isolated vertices and any nontrivial graph H ,

γR(G◦H)≥ 2γ(G).

Theorem 3.5. [30] For any graph G without isolated vertices and any graph H ,

γR(G◦H)≤ 2γt(G).

Now, we introduce the definition of domination couple given in [30]. We say that an ordered

couple (A,B) of disjoint sets A,B ⊆ V (G) is a dominating couple of G if every vertex x ∈ V (G) \B

satisfies that N(x)∩ (A∪B) 6=∅. Also, we define the parameter ζ (G) as follows.

ζ (G) = min{2|A|+3|B| : (A,B) is a dominating couple of G}.

We say that a dominating couple (A,B) of G is a ζ (G)-couple if ζ (G) = 2|A|+3|B|. With this notation

in mind, we state the following result.

Theorem 3.6. For any graph G without isolated vertices and any nontrivial graph H ,

γR(G◦H) =















2γ(G) if ∆(H) = n(H)−1,

ζ (G) if ∆(H) = n(H)−2,

2γt(G) if ∆(H)≤ n(H)−3.

Proof:

As shown in [30], if γ(H) = 1 and G is a connected nontrivial graph, then γR(G◦H) = 2γ(G). Obvi-

ously, the same equality holds if G is not connected.

In order to discuss the remaining cases, let f (V0,V1,V2) be a γR(G ◦H)-function such that |V2|
is maximum. By Lemma 3.3, A f = {x ∈ V (G) : V (Hx)∩V2 6= ∅} is a dominating set of G and

B f = {x ∈V (G)\A f : V (Hx)∩V1 6=∅}=∅. Let A′
f = {x ∈ A f : N(x)∩A f =∅}.

Assume ∆(H) = n(H)− 2. Since (A f \A′
f ,A

′
f ) is a dominating couple of G, we deduce that

ζ (G) ≤ 2|A f \A′
f |+ 3|A′

f | = ω( f ) = γR(G ◦H). Now, let v ∈ V (H) be a vertex of maximum degree

and {v′} = V (H) \N[v]. Since for any ζ (G)-couple (A,B), the function g(W0,W1,W2), defined by

W2 = (A∪B)×{v} and W1 = B×{v′}, is an RDF on G ◦H , we deduce that γR(G ◦H) ≤ ω(g) =
|W1|+2|W2|= 2|A|+3|B|= ζ (G). Therefore, γR(G◦H) = ζ (G).

Finally, assume ∆(H) ≤ n(H)− 3. By Theorem 3.5 we only need to prove that γR(G ◦H) ≥
2γt(G). In this case, if x ∈ A′

f , then f (Hx) ≥ 4, while if x ∈ A f \A′
f , then f (Hx) ≥ 2. Since G does

not have isolated vertices and A f ∈D(G), we have that γt(G) ≤ |A f \A′
f |+ 2|A′

f |. Hence, 2γt(G) ≤
2|A f \A′

f |+4|A′
f | ≤ ω( f ) = γR(G◦H), which completes the proof. ⊓⊔
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Two simple characterizations of Roman graphs were given in [10], but the authors suggest finding

classes of Roman graphs. The following result is an immediate consequence of Theorems 3.1 and 3.6.

Theorem 3.7. Let G be a graph with no isolated vertex. If H is a graph such that ∆(H) 6= n(H)− 2,

then G◦H is a Roman graph.

As ζ (G) has not been extensively studied, we next obtain tight bounds on γR(G◦H) for the case

in which ∆(H) = n(H)−2.

Theorem 3.8. Let G a graph with no isolated vertex and H a graph. If ∆(H) = n(H)−2, then

max{γtR(G),γt(G)+ γ(G)} ≤ γR(G◦H)≤ min{3γ(G),2γt (G)}.

Proof:

Let f (V0,V1,V2) be a γR(G◦H)-function with |V2| maximum. As above, let A f = {x ∈V (G) : V (Hx)∩
V2 6=∅}, B f = {x ∈V (G)\A f : V (Hx)∩V1 6=∅} and A′

f = {x ∈ A f : N(x)∩A f =∅}. By Lemma 3.3,

B f =∅ and A f ∈D(G). Furthermore, if x ∈ A′
f , then f (Hx) = 3, while if x ∈ A f \A′

f , then f (Hx) = 2.

Thus,

γR(G◦H) = 3|A′
f |+2|A f \A′

f |.

We first prove the lower bounds. Let S ⊆ V (G) be a set of minimum cardinality among the sets

satisfying that A f ⊆ S and S∩N(x) 6= ∅ for every vertex x ∈ A′
f . Since S ∈ Dt(G), we deduce that

γt(G)≤|S| ≤ 2|A′
f |+ |A f \A′

f |. Hence, γt(G)+γ(G)≤ (2|A′
f |+ |A f \A′

f |)+ |A f |= 3|A′
f |+2|A f \A′

f |=
γR(G◦H).

Now, let g(W0,W1,W2) be a function on G defined by W2 = A f and W1 = S \A f . Notice that g

is a TRDF on G. Thus, γtR(G) ≤ ω(g) = 2|A f |+ |S \A f | ≤ 3|A′
f |+ 2|A f \A′

f | = γR(G ◦H), which

completes the proof of the lower bounds.

In order to prove the upper bounds, let D be a γ(G)-set, and let v,v′ ∈ V (H) such that v is a

vertex of maximum degree and {v′}=V (H)\N[v]. Notice that the function f ′(V ′
0,V

′
1,V

′
2), defined by

V ′
2 = D×{v} and V ′

1 = D×{v′}, is an RDF on G◦H . Therefore, γR(G◦H)≤ ω( f ′) = 3|D|= 3γ(G).
Finally, the bound γR(G◦H)≤ 2γt(G) is already known from Theorem 3.5. Therefore, the proof

is complete. ⊓⊔

The bounds above are tight. Notice that, if γt(G) = γ(G), then γR(G ◦H) = γtR(G) = 2γt(G),
while if γt(G) = 2γ(G), then we have γR(G◦H) = γt(G)+ γ(G) = 3γ(G).

4. Perfect Roman domination in lexicographic product graphs

This section is organised as follows. First we obtain tight bounds on γ
p
R(G ◦H) and then we give

sufficient and/or necessary conditions for the bounds to be achieved. We also discuss the case of

perfect Roman graphs and we characterize the graphs where γ
p
R(G◦H) = γR(G◦H).

Theorem 4.1. For any graph G without isolated vertices and any graph H ,

γ
p
R(G◦H)≤ γ p(G)(n(H)+1).
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Proof:

Let S be a γ p(G)-set and v ∈V (H). Let f (V0,V1,V2) be a function on G◦H defined by V2 = S×{v}
and V1 = S× (V (H) \ {v}). Clearly, f is a PRDF, which implies that γ

p
R(G ◦H) ≤ ω( f ) = 2|S|+

|S|(n(H)−1) = γ p(G)(n(H)+1). Therefore, the result follows. ⊓⊔

In order to see that the bound above is tight, we can consider the corona graph G ∼= G′ ⊙Nk,

where k ≥ 2, G′ is any graph of minimum degree at least two, and H is a nontrivial graph. In this case,

γ
p
R(G◦H) = n(G′)(n(H)+1) = γ p(G)(n(H)+1).

Theorem 4.2. Let G be a graph without isolated vertices and H a graph. The following statements

hold.

(i) For any γ
p
R(G)-function f (V0,V1,V2),

γ
p
R(G◦H)≤ γ

p
R(G)+ (|V1|+ |V2|)(n(H)−1).

(ii) If there exists a γ
p
R(G)-function f (V0,V1,V2) such that V2 is a γ(G)-set, then

γ
p
R(G◦H)≤ γ

p
R(G)n(H)− γ(G)(n(H)−1).

(iii) If S is a γ p(G)-set, S′ = {x ∈ S : epn(x,S) =∅} and S′′ = S\S′, then

γ
p
R(G◦H)≤ |S′|+2|S′′|+ γ p(G)(n(H)−1).

(iv) If there exists a γ
p
R(G)-function f (V0,V1,V2) such that V1 ∪V2 is a γ p(G)-set, then

γ
p
R(G◦H)≤ γ

p
R(G)+ γ p(G)(n(H)−1).

Proof:

From any γ
p
R(G)-function f (V0,V1,V2), we can define a function g(W0,W1,W2) on G ◦ H as W2 =

V2 ×{v} and W1 =V2 × (V (H)\{v})∪V1 ×V (H). It is readily seen that g is a PRDF and, as a result,

γ
p
R(G◦H)≤ ω(g) = 2|V2|+ |V2|(n(H)−1)+ |V1|n(H) = γ

p
R(G)+(|V1|+ |V2|)(n(H)−1). Therefore,

(i) follows.

Now, since γ
p
R(G)+ (|V1|+ |V2|)(n(H)−1) = γ

p
R(G)n(H)−|V2|(n(H)−1), from (i) we deduce

(ii).

In order to prove (iii), we only need to observe that for any γ p(G)-set S, the function h(V (G) \
S,S′,S′′) is a PRDF on G. Thus, we conclude the proof of (iii) by analogy to the proof of (i), by using

h instead of f .

Finally, (iv) follows from (i). ⊓⊔

The bounds above are tight. For instance, let G be the graph shown in Figure 2, V2 = S′′ the set

of vertices labelled with 2, V1 = S′ the set of vertices labelled with 1 and V0 =V (G)\(V1 ∪V2). In this

case, V2 is a γ(G)-set, f (V0,V1,V2) is a γ
p
R(G)-function, S = S′ ∪ S′′ is a γ p(G)-set and γ

p
R(G ◦H) =

6n(H)+3 for every graph H . Therefore, the bounds above are achieved.
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Theorem 4.3. For any graph G without isolated vertices and any graph H ,

γ
p
R(G◦H)≤ min

S∈℘o(G)
{|S0|(n(H)−∆(H)+1)+ |S1|(2+δ (H))+n(H)(n(G)−|N[S]|)}.

Proof:

Let S = S0 ∪S1 ∈℘o(G) and y1,y2 ∈V (H) such that deg(y1) = δ (H) and deg(y2) = ∆(H). From S, y1

and y2, we can construct a function f (V0,V1,V2) on G◦H as follows. Let V2 = S0×{y2}∪S1×{y1} and

V1 = S0 × (V (H)\N[y2])∪S1 ×N(y1)∪ (V (G)\N[S])×V (H). It is readily seen that f is a PRDF on

G◦H . Therefore, γ p
R(G◦H)≤ω( f )= |S0|(n(H)−∆(H)+1)+ |S1|(2+δ (H))+n(H)(n(G)−|N[S]|).

Since the inequality holds for any open packing of G, the result follows. ⊓⊔

The following result is an immediate consequence of Theorem 4.3.

Corollary 4.4. Given a graph G without isolated vertices, the following statements hold.

(i) If G is an efficient open domination graph, then for any graph H ,

γ p
R(G◦H)≤ γt(G)(2+δ (H)).

(ii) If G is an efficient closed domination graph, then for any graph H ,

γ
p
R(G◦H)≤ γ(G)(n(H)−∆(H)+1).

Proof:

First, we proceed to prove (i). Let S ∈D
p(G) such that G[S]∼= ∪K2. Notice that S = S1 ∈℘o(G) and

N[S] =V (G). Hence, by Theorem 4.3 and Remark 2.1 we deduce that γ
p
R(G◦H) ≤ |S|(2+δ (H)) =

γt(G)(2+δ (H)).

Finally, we proceed to prove (ii). Let S be a γ(G)-set which is a ρ(G)-set. Since S = S0 ∈℘o(G)
and N[S] =V (G), by Theorem 4.3 we deduce that γ

p
R(G◦H)≤ |S|(n(H)−∆(H)+1) = ρ(G)(n(H)−

∆(H)+1). ⊓⊔

As we will show in Theorems 4.5 and 4.8, the bounds above are tight.

Theorem 4.5. Given a nontrivial graph G with γ(G) = 1, the following statements hold.

(i) If δ (G)≥ 2 , then for any graph H ,

γ p
R(G◦H) = n(H)−∆(H)+1.

(ii) If δ (G) = 1, then for any graph H ,

γ
p
R(G◦H) = min{2δ (H)+4,n(H)−∆(H)+1}.

Proof:

Let f (V0,V1,V2) be a γ
p
R(G◦H)-function. We assume first that δ (G)≥ 2. Notice that, in such a case,

N(x)∩N(x′) 6=∅ for any x,x′ ∈V (G). We differentiate three cases for V2.
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Case 1. There exists x ∈ V (G) such that |V2 ∩V (Hx)| ≥ 2. In this case, f (Hx′) = n(H) for every

x′ ∈ N(x), and so γ
p
R(G ◦H) = ω( f ) ≥ f [Hx] ≥ 4+ n(H), which is a contradiction with Corollary

4.4-(ii).

Case 2: There exist two different vertices (x,y),(x′,y′)∈V2 such that x 6= x′. In this case, f (Hz) = n(H)
for any z ∈ N(x)∩N(x′), and so γ

p
R(G◦H)= ω( f )≥ f [Hz]≥ 4+n(H), which is again a contradiction

with Corollary 4.4-(ii).

Case 3: V2 = {(x,y)}. In this case, f (x,v) = 1 for every v ∈V (H)\N[y]. Hence, γ
p
R(G◦H) = ω( f )≥

f (Hx)≥ n(H)−deg(y)+1 ≥ n(H)−∆(H)+1. By Corollary 4.4-(ii) we conclude that γ
p
R(G◦H) =

n(H)−∆(H)+1.

According to the three cases above, (i) follows.

From now on we assume that δ (G) = 1 and we consider the following three cases for V2.

Case 1’: There exists x ∈V (G) such that |V2 ∩V (Hx)| ≥ 2. As in Case 1, we obtain a contradiction.

Case 2’: There exist two different vertices (x,y),(x′,y′) ∈ V2 such that x 6= x′. If deg(x) < ∆(G)− 1

and deg(x′) < ∆(G)− 1, then f (Hz) = n(H) for every z ∈ N(x)∩N(x′), and so γ
p
R(G ◦H) = ω( f ) ≥

f [Hz]≥ 4+n(H), which is a contradiction with Corollary 4.4-(ii).

Now, assume that deg(x) = ∆(G)− 1. If deg(x′) ≥ 2, then as above f (Hz) = n(H) for every

z ∈ N(x)∩N(x′), and we have again a contradiction with Corollary 4.4-(ii). Finally, if deg(x′) = 1,

then f (x,b) ≥ 1 for every b ∈ N(y) and f (x′,b′)≥ 1 for every b′ ∈ N(y′). Thus, γ
p
R(G◦H) = ω( f )≥

f (Hx)+ f (Hx′)≥ 2δ (H)+4, and by Corollary 4.4-(i) we conclude that γ
p
R(G◦H) = 2δ (H)+4.

Case 3’: V2 = {(x,y)}. As in Case 3, we deduce that γ
p
R(G◦H) = n(H)−∆(H)+1.

According to these last three cases, (ii) follows. ⊓⊔

Lemma 4.6. Let f (V0,V1,V2) be a γ
p
R(G◦H)-function and x ∈V (G). If V (Hx)∩V2 = ∅, then either

V (Hx)⊆V0 or V (Hx)⊆V1.

Proof:

Suppose that V (Hx)∩V2 = ∅ and there exist y1,y2 ∈ V (H) such that f (x,y1) = 0 and f (x,y2) = 1.

In such a case, there exists exactly one vertex (u,v) ∈ V2 which is adjacent to (x,y1). Hence, u ∈
N(x) and (u,v) is the only vertex belonging to V2 which is adjacent to (x,y2). Thus, the function

g(W0,W1,W2), defined by W2 =V2, W1 =V1 \V (Hx) and W0 =V0 ∪V (Hx), is a PRDF on G◦H , which

is a contradiction, as ω(g)< ω( f ). Therefore, the result follows. ⊓⊔

Theorem 4.7. For any graph G without isolated vertices and any nontrivial graph H ,

γ
p
R(G◦H)≥ γ(G)min{n(H)−∆(H)+1,2+δ (H)}.

Proof:

Let f (V0,V1,V2) be a γ
p
R(G◦H)-function, and define W0 = {x ∈V (G) : V (Hx)⊆V0}, W1 = {x ∈V (G) :

V (Hx)⊆V1} and W2 =V (G)\ (W0 ∪W1). In fact, by Lemma 4.6, W2 = {x ∈V (G) : V (Hx)∩V2 6= /0}.

Let W2,0 be the set of isolated vertices of G[W2], W2,1 =W2 \W2,0 and W 0
2,0 = {x ∈W2,0 : N(x)×V(H)∩

V0 6=∅}.
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Thus, if x ∈ W0, then V (Hx) ⊆ V0 and there exists exactly one vertex (u,v) ∈ V2 such that u ∈
N(x)∩W2. Also, if x ∈W2,0 \W 0

2,0, then N(x)∩W1 6=∅. Hence, W1 ∪W2,1 ∪W 0
2,0 ∈D(G). Notice that

if x ∈W 0
2,0, then f (Hx)≥ n(H)−∆(H)+1 and if x ∈W2,1, then f (Hx)≥ 2+δ (H). Therefore,

γ p
R(G◦H) = ∑

x∈V (G)

f (Hx)

≥ ∑
x∈W 0

2,0

f (Hx)+ ∑
x∈W2,1

f (Hx)+ ∑
x∈W1

f (Hx)

≥ |W 0
2,0|(n(H)−∆(H)+1)+ |W2,1|(2+δ (H))+ |W1|n(H)

≥ (|W 0
2,0|+ |W2,1|+ |W1|)min{n(H)−∆(H)+1,2+δ (H)}

≥ γ(G)min{n(H)−∆(H)+1,2+δ (H)}. ⊓⊔

From Corollary 4.4 and Theorem 4.7 we deduce the following result.

Theorem 4.8. Given a graph G without isolated vertices, the following statements hold.

(i) If G is an efficient closed domination graph, then for any graph H with 2 ≤ n(H) ≤ ∆(H)+
δ (H)+1,

γ p
R(G◦H) = γ(G)(n(H)−∆(H)+1).

(ii) If γ p(G) = γt(G) = γ(G) and G is an efficient open domination graph, then for any nontrivial

graph H with n(H)≥ ∆(H)+δ (H)+1,

γ
p
R(G◦H) = γ(G)(2+δ (H)).

Corollary 4.9. Given a graph G without isolated vertices and a nontrivial graph H , the following

statements hold.

(i) If P2(G,H) holds, then γ
p
R(G◦H) = 2γ(G).

(ii) If γ p(G) = γ(G) and P3(G,H) holds, then γ
p
R(G◦H) = 2γ(G).

Theorem 4.10. Given two nontrivial graphs G and H , the following statements hold.

(i) γ
p
R(G◦H)≥ max{γ

p
R(G),2γ(G)}.

(ii) γ
p
R(G◦H) = γ

p
R(G) if and only if γ

p
R(G) = 2γ p(G) and either P2(G,H) holds or P3(G,H) holds.

(iii) If H has order at least three, then γ
p
R(G ◦H) = 2γ(G) if and only if γ p(G) = γ(G) and either

P2(G,H) holds or P3(G,H) holds.

Proof:

By Theorem 4.7 we deduce that γ
p
R(G ◦H) ≥ 2γ(G). From now on, let f (V0,V1,V2) be a γ

p
R(G ◦H)-

function, and define the function g(W0,W1,W2) on G by W0 = {x ∈ V (G) : V (Hx) ⊆ V0}, W1 = {x ∈
V (G) : V (Hx)⊆V1} and W2 =V (G)\ (W0 ∪W1). If x ∈W0, then V (Hx)⊆V0 and there exists exactly
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one vertex (u,v) ∈ V2 such that u ∈ N(x)∩W2. Hence, g is a PRDF on G, and so γ
p
R(G) ≤ ω(g) ≤

ω( f ) = γ
p
R(G◦H). Therefore, (i) follows.

In order to prove (ii), assume γ p
R(G◦H)= γ p

R(G). Notice that in this case the function g(W0,W1,W2)
defined above is a γ

p
R(G)-function. We first show that the γ

p
R(G ◦H)-function f (V0,V1,V2) satisfies

V1 =∅. Suppose to the contrary, that there exists (u,v) ∈V1. If V (Hu)∩V2 = ∅, then by Lemma 4.6

we have that V (Hu)⊆V1 and since |V (Hu)| ≥ 2, we deduce that γ
p
R(G)≤ ω(g) < ω( f ) = γ

p
R(G◦H),

which is a contradiction. The same contradiction is reached if V (Hu)∩V2 6= ∅, as in such a case

f (Hu)≥ 3. Hence, V1 =∅, which implies that W1 =∅ and W2 ∈D
p(G).

Furthermore, 2γ p(G) ≤ 2|W2| ≤ γ p
R(G ◦H) = γ p

R(G) ≤ 2γ p(G), and so we conclude that W2 is a

γ p(G)-set and γ
p
R(G) = 2γ p(G). We differentiate two cases for x ∈W2.

Case 1. There exists x′ ∈ N(x)∩W2. In this case, there exist y,y′ ∈V (H) such that (x,y),(x′,y′) ∈V2,

and so no vertex in V (Hx)\{(x,y)} is adjacent to (x,y). Hence y is an isolated vertex of H . Notice that

N(x)∩W2 = {x′}, otherwise every vertex in V (Hx)∩V0 =V (Hx)\{(x,y)} is adjacent to two vertices

in V2, which is a contradiction.

Case 2. N(x)∩W2 = ∅. In this case, there exists y ∈ V (H) such that (x,y) ∈ V2 and every vertex in

V (Hx)∩V0 =V (Hx) \{(x,y)} has to be adjacent to (x,y). Hence, y is a universal vertex of H and so

γ(H) = 1. Notice also that N(x)∩N(x′) =∅ for every x′ ∈W2 \{x}.

According to the two cases above, either H has at least one isolated vertex or γ(H) = 1. Thus,

either Case 1 holds for every vertex x ∈W2 or Case 2 holds for every vertex x ∈W2. In the first case, it

is readily seen that P3(G,H) holds, while if Case 2 holds for every vertex x ∈W2, then W2 is a packing,

and so γ p(G) = |W2| ≤ ρ(G)≤ γ(G)≤ γ p(G), which implies that P2(G,H) holds.

Conversely, assume that γ
p
R(G) = 2γ p(G). If P3(G,H) holds, then Corollary 4.4-(i) and the

lower bound (i) lead to γ
p
R(G◦H) = γ

p
R(G). Finally, if P2(G,H) holds, then Theorem 4.8-(i) leads to

γ
p
R(G◦H) = γ

p
R(G), which completes the proof of (ii).

We proceed to prove (iii). Assume γ p
R(G◦H) = 2γ(G). Since |V (H)| ≥ 3 and W1 ∪W2 ∈D(G),

we deduce that if W1 6=∅, then 2γ(G)< |V (H)||W1|+2|W2| ≤ ω( f ) = γ
p
R(G◦H), which is a contra-

diction. Hence, W1 =∅ and W2 ∈D
p(G). Furthermore, 2γ(G)≤ 2|W2|= γ

p
R(G◦H) = 2γ(G), which

implies that W2 is a γ(G)-set and also a γ p(G)-set. We differentiate two cases for x ∈W2.

Case 1’. There exists x′ ∈ N(x)∩W2. As in Case 1, we can see that H has an isolated vertex and

N(x)∩W2 = {x′}.

Case 2’. N(x)∩W2 =∅. By analogy to Case 2 we deduce that γ(H) = 1.

Thus, either Case 1’ holds for every vertex x ∈ W2 or Case 2’ holds for every vertex x ∈W2. In

the first case, we deduce that P3(G,H) follows, while if Case 2’ holds for every vertex x ∈W2, then

W2 is a packing, and so γ p(G) = |W2| ≤ ρ(G)≤ γ(G)≤ γ p(G), which leads to P2(G,H).

Conversely, assume γ p(G) = γ(G). If P3(G,H) holds, then Corollary 4.4-(i) and the lower bound

(i) lead to γ
p
R(G◦H) = 2γ(G). Finally, if P2(G,H) holds, then Theorem 4.8-(i) leads to γ

p
R(G◦H) =

2γ(G), which completes the proof. ⊓⊔
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Theorem 4.11. Let G and H be two graphs. If G is an efficient open domination graph and n(H) ≥
∆(H)+2δ (H)+3, then

γ
p
R(G◦H) = γt(G)(2+δ (H)).

Proof:

Let S ∈D
p(G) such that G[S]∼= ∪K2 and assume that n(H)≥ ∆(H)+2δ (H)+3.

Let x,x′ ∈ S be two adjacent vertices, and define Xx = {x} ∪ epn(x,S) = N[x] \ {x′} and Xx′ =
{x′}∪ epn(x′,S) = N[x′]\{x}. Let f (V0,V1,V2) be a γ

p
R(G◦H)-function and define ε(x,x′) = f (Xx ×

V (H))+ f (Xx′ ×V (H)). In order to prove that ε(x,x′)≥ 2(2+δ (H)), we differentiate the following

cases.

Case 1: V2 ∩V (Hx) =V2 ∩V (Hx′) = ∅. By Lemma 4.6 we have that V (Hx)⊆V0 or V (Hx)⊆V1, and

also V (Hx′) ⊆ V0 or V (Hx′) ⊆ V1. The case V (Hx) ⊆ V1 and V (Hx′) ⊆ V1 leads to ε(x,x′) ≥ f (Hx)+
f (Hx′) = 2|V (H)| ≥ 2(2+δ (H)).

If V (Hx)⊆V0 and V (Hx′)⊆V1, then |V2 ∩ (epn(x,S)×V (H)) |= 1, which implies that ε(x,x′)≥
f (Xx ×V (H))+ |V (Hx′)| ≥ 2+ |V (H)| ≥ 5+2δ (H)> 2(2+δ (H)).

Finally, if V (Hx) ⊆ V0 and V (Hx′) ⊆ V0, then |V2 ∩ (epn(x,S)×V (H)) | = 1 and also

|V2∩(epn(x′,S)×V (H)) |= 1. Since n(H)≥∆(H)+2δ (H)+3, the vertex of weight two in epn(x,S)×
V (H) is not able to dominate every vertex in epn(x,S)×V (H), which implies that f (epn(x,S)×
V (H)) ≥ δ (H) + 2 or f (epn(x,S)×V (H)) ≥ n(H)− ∆(H) + 1 ≥ 2(2 + δ (H)). By applying the

same reasoning to epn(x′,S)×V (H) we conclude that ε(x,x′)≥ f (epn(x,S)×V (H))+ f (epn(x′,S)×
V (H))≥ 2(2+δ (H)).

Case 2: V2 ∩V (Hx) 6= ∅ and V2 ∩V (Hx′) = ∅. By Lemma 4.6, either V (Hx′)⊆V0 or V (Hx′) ⊆V1. If

V (Hx′)⊆V1, then ε(x,x′) ≥ 2+ |V (Hx′)| ≥ 5+2δ (H)> 2(2+δ (H)). Now, assume V (Hx′)⊆V0. In

this case,|V2 ∩V (Hx)|= 1 and, since n(H)≥ ∆(H)+2δ (H)+3, we have that (V (Hx)\N[x])∩V0 = /0

or |V2 ∩ (epn(x,S)×V (H))|= 1. In both cases we deduce that ε(x,x′)≥ 2(2+δ (H)).

Case 3: V2 ∩V (Hx) 6= ∅ and V2 ∩V (Hx′) 6= ∅. In this case, |V2 ∩V (Hx)| = 1 and |V2 ∩V (Hx)| = 1,

which implies that ε(x,x′)≥ f (Hx)+ f (Hx′)≥ 2(2+δ (H)).

According to the three cases above we conclude that ε(x,x′) ≥ 2(2 + δ (H)) for every pair of

adjacent vertices x,x′ ∈ S. Hence,

γ p
R(G◦H) = ω( f )≥ ∑

x∈S

f (Xx ×V (H))≥ |S|(2+δ (H)) = γt(G)(2+δ (H)).

Therefore, Corollary 4.4-(i) leads to γ
p
R(G◦H) = γt(G)(2+δ (H)). ⊓⊔

From the following inequalities we can derive results on the perfect Roman domination number

of G◦H .

γR(G◦H)≤ γ
p
R(G◦H)≤ 2γ p(G◦H).

Next we discuss the cases in which the bounds are sharp.
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Theorem 4.12. Given a connected nontrivial graph G and H a nontrivial graph, the following state-

ments hold.

(i) If ∆(H) = n(H)−1, then γ
p
R(G◦H) = 2γ p(G◦H) if and only if P2(G,H) holds.

(ii) If ∆(H) = n(H)−2, then the following statements hold.

(a) If γ
p
R(G ◦H) = 2γ p(G ◦H), then P1(G,H) holds and 2γt(G) ≤ 2|S1|+ 3|S0| for every S ∈

℘o(G)∩D(G).

(b) If γ p
R(G) = 2γt(G) or γt(G) = γ(G), then γ p

R(G ◦H) = 2γ p(G ◦H) if and only if P1(G,H)
holds.

(iii) If ∆(H)≤ n(H)−3, then γ
p
R(G◦H) = 2γ p(G◦H) if and only if P1(G,H) holds.

Proof:

Assume γ
p
R(G◦H)= 2γ p(G◦H). Since G is a graph without isolated vertices and H a nontrivial graph,

γ p
R(G ◦H) < n(G)n(H), so that from Theorem 3.2 we have that either P1(G,H) holds or P2(G,H)

holds. Notice that, by definition, P2(G,H) is associated with ∆(H) = n(H)−1.

Now, if P2(G,H) holds, then Theorem 3.2 leads to γ p
R(G◦H)≤ 2γ p(G◦H) = 2γ(G). In such a

case, from Theorem 4.10-(i) we conclude that γ
p
R(G◦H) = 2γ p(G◦H). Therefore, (i) follows.

From now on, assume that P1(G,H) holds. Notice that, in this case, Theorem 3.2 leads to

γ p
R(G◦H)≤ 2γ p(G◦H) = 2γt(G). (1)

First, consider the case ∆(H) = n(H)− 2. Let v,v′ ∈ V (H) such that deg(v) = n(H)− 2 and

deg(v′) = 0. Now, if there exists S ∈℘o(G)∩D(G) such that 2γt(G)> 2|S1|+3|S0| then the function

g(X0,X1,X2), defined by X2 = S1 ×{v′}∪ S0 ×{v} and X1 = S0 ×{v′}, is a PRDF on G ◦H , and so

γ
p
R(G◦H)≤ ω(g) = 2|S1|+3|S0|< 2γt(G) = 2γ p(G◦H). Therefore, (ii)-(a) follows.

Furthermore, if γ
p
R(G) = 2γt(G), then by Theorem 4.10-(i), 2γt(G) = γ

p
R(G)≤ γ

p
R(G◦H) and so

Eq. (1) implies that γ
p
R(G◦H) = 2γ p(G◦H). The case γt(G) = γ(G) is analogous to the previous one.

Therefore, (ii)-(b) follows.

Finally, if ∆(H)≤ n(H)−3, then by Theorem 4.11 we have that γ
p
R(G◦H) = 2γt(G). Hence, Eq.

(1) implies that γ
p
R(G◦H) = 2γ p(G◦H), which completes the proof of (iii). ⊓⊔

In order to state the next result, we define the following parameter.

ζ ′(G) = min
S∈℘o(G)∩D(G)

{4|S0|+2|S1|}.

A set S ∈℘o(G)∩D(G) of cardinality |S|= ζ ′(G) will be called a ζ ′(G)-set.

The following straightforward lemma will be used in the proof of our next result.

Lemma 4.13. A graph G is a perfect Roman graph if and only if there exists a γ
p
R(G)-function

f (V0,V1,V2) such that V1 =∅.
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Theorem 4.14. The following statements hold for a connected nontrivial graph G and any graph H of

order at least three.

(i) If ∆(H) = n(H)−1, then γ
p
R(G◦H) = γR(G◦H) if and only if P2(G,H) holds.

(ii) If ∆(H) = n(H)−2, then γ
p
R(G◦H) = γR(G◦H) if and only if there exists a ζ (G)-couple (A,B)

such that A∪B ∈℘o(G) and A =∅ whenever δ (H)≥ 1.

(iii) If ∆(H) = n(H)− 3, then γ
p
R(G ◦H) = γR(G ◦H) if and only if either δ (H) = 0 and ζ ′(G) =

2γt(G) or δ (H)≥ 1 and γt(G) = 2γ p(G) = 2ρ(G).

(iv) If ∆(H)≤ n(H)−4, then γ p
R(G◦H) = γR(G◦H) if and only if P1(G,H) holds.

Proof:

First, assume γ
p
R(G◦H) = γR(G◦H). Let f (V0,V1,V2) be a γ

p
R(G◦H)-function, and define W0 = {x ∈

V (G) : V (Hx) ⊆ V0}, W1 = {x ∈ V (G) : V (Hx) ⊆ V1} and W2 = V (G) \ (W0 ∪W1). Notice that f is

also a γR(G ◦H)-function. If there exists u ∈ W1, then for any u′ ∈ N(u) and v ∈ V (H), the function

g, defined by g(Hu) = 0, g(u′,v) = 2, and g(x,y) = f (x,y) for the remaining vertices, is an RDF on

G ◦H of weight ω(g) < ω( f ) = γ
p
R(G ◦H) = γR(G ◦H), which is a contradiction. Hence, W1 = ∅.

Now, suppose that G[W2] has a vertex x of degree at least two. Since f is a γ
p
R(G ◦ H)-function,

V (Hx)∩V0 = ∅ and, since f is a γR(G ◦ H)-function, V (Hx)∩V1 = ∅, which is a contradiction.

Therefore, W2 ∈℘o(G)∩D
p(G). We differentiate two cases. From each case, we will get partial

conclusions and, once both cases have been analysed, we will be able to complete the proof of each

statement separately.

Case 1. V1 = ∅. Lemma 4.13 leads to γ p
R(G◦H) = 2γ p(G◦H). Hence, if ∆(H) = n(H)−1, then by

Theorem 4.12-(i) we deduce that P2(G,H) holds. Analogously, if ∆(H)≤ n(H)−2, then by Theorem

4.12-(ii) we deduce that P1(G,H) holds. Notice that in this latter case δ (H) = 0 and also Theorem

3.2 leads to γR(G◦H) = γ
p
R(G◦H) = 2γ p(G◦H) = 2γt(G).

Case 2. V1 6= ∅. Let u ∈V (G) such that V (Hu)∩V1 6=∅. Since W1 =∅, by Lemma 4.6 we have that

u ∈ W2. Since f is also a γR(G ◦H)-function, N(u)∩W2 = ∅ and so N(u) ⊆ W0, which implies that

W ′
2 = {x ∈W2 : V (Hx)∩V1 6= ∅} is a packing. Notice also that |V (Hu)∩V2|= 1. With these facts in

mind, we differentiate the following subcases.

Subcase 2.1. ∆(H) = n(H)− 1. Let V (Hu)∩V2 = {(u,v)} and (u,v′) ∈ V (Hu)∩V1. Notice, that

v′ 6∈N(v), as f is a γR(G◦H)-function. Now, let v′′ be a universal vertex of H and define a function g′ as

g′(u,v′′)= 2, g′(u,v) = g′(u,v′)= 0 and g′(x,y) = f (x,y) for the remaining vertices. Obviously, g′ is an

RDF on G◦H with ω(g′)< ω( f ) = γR(G◦H), which is a contradiction. Therefore, ∆(H) = n(H)−1

leads to V1 =∅.

Subcase 2.2. ∆(H) = n(H)−2. By Theorem 3.6, γR(G◦H) = ζ (G), and since W2 ∈℘o(G)∩D
p(G),

we have that (W2\W ′
2,W

′
2) is a dominating couple, which implies that γR(G◦H)= ζ (G)≤ 2|W2\W ′

2|+
3|W ′

2|= 2|W2|+ |W ′
2| ≤ 2|V2|+ |V1|= γR(G◦H), which implies that (W2 \W ′

2,W
′

2) is a ζ (G)-couple.

Now, assume δ (H)≥ 1. Suppose that there exists x ∈W2 \W ′
2, and let (x,y) ∈V2. In such a case,

(V (Hx) \ {(x,y)}) ⊆ V0, which implies that N(x)∩W2 = ∅, but this is a contradiction as deg(y) ≤
n(H)−2. Thus, W2 =W ′

2.
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Subcase 2.3. ∆(H) = n(H)− 3. Assume first that δ (H) = 0. By Theorem 4.3, for any ζ ′(G)-set

S = S0 ∪S1 we have γ
p
R(G◦H)≤ 2|S1|+4|S0|= ζ ′(G). Now, from Theorem 3.6 we have that γR(G◦

H) = 2γt(G), and since W2 ∈℘o(G)∩D
p(G) and f (Hx) = 4 for every vertex x ∈ W ′

2, we have that

2γt(G) = γR(G ◦H) = γ
p
R(G ◦H) ≤ ζ ′(G) ≤ 2|W2 \W ′

2|+ 4|W ′
2| ≤ γR(G ◦H) = 2γt(G). Therefore,

ζ ′(G) = 2γt(G).

On the other side, if δ (H) ≥ 1, then we can proceed as in Subcase 2.2 to deduce that W2 = W ′
2

is a packing and also a perfect dominating set of G, which implies that γ p(G) = γ(G) = ρ(G). Thus,

f (Hx) = 4 for every vertex x ∈W2, and so by Theorem 3.6 we have that 2γt(G) = γR(G◦H) = γ p
R(G◦

H) = 4|W2|= 4γ p(G) = 4ρ(G). Therefore, γt(G) = 2γ p(G) = 2ρ(G).

Subcase 2.4. ∆(H) ≤ n(H)− 4. In this case, |V (Hu)∩V1| ≥ 3. Hence, for any u′ ∈ N(u) and v ∈
V (H), the function g′, defined by g′(Hu) = g′(Hu′) = g′(u,v) = g′(u′,v) = 2 and g′(x,y) = f (x,y) for

the remaining vertices, is an RDF on G ◦H of weight ω(g′) < ω( f ) = γR(G ◦H), which is again a

contradiction. Therefore, ∆(H)≤ n(H)−4 leads to V1 =∅.

We proceed to summarize the conclusions derived from the cases above, and to prove the state-

ments.

Proof of (i). Assume ∆(H) = n(H)− 1. As we have shown in Case 1 and Subcase 2.1, from γ
p
R(G ◦

H) = γR(G◦H) we deduce that P2(G,H) holds.

Conversely, if ∆(H) = n(H)− 1 and P2(G,H) holds, then by Theorems 4.12-(i), 3.2 and 3.6,

γ
p
R(G◦H) = 2γ p(G◦H) = 2γ(G) = γR(G◦H). Therefore, (i) follows.

Proof of (ii). Assume ∆(H) = n(H)− 2. If γ p
R(G ◦H) = γR(G ◦H), then we have to consider Case 1

and Subcase 2.2.

From Case 1, γR(G ◦ H) = 2γt(G) and P1(G,H) holds. Thus, δ (H) = 0 and there exists an

efficient open dominating set S of G with |S|= γt(G). Since (S,∅) is a dominating couple and 2|S| =
2γt(G) = γR(G ◦H), by Theorem 3.6 we conclude that (S,∅) is a ζ (G)-couple and, obviously, S ∈
℘o(G).

On the other hand, in Subcase 2.2 we concluded that (W2 \W ′
2,W

′
2) is a ζ (G)-couple and W2 ∈

℘o(G). Also, W2 =W ′
2 whenever δ (H)≥ 1.

Conversely, let (A,B) be a ζ (G)-couple such that A∪B ∈℘o(G). Let v ∈ V (H) be a vertex of

maximum degree and let {v′}=V (H)\N[v].

Notice that if v′ is an isolated vertex, then the function g(X0,X1,X2), defined by X2 = A×{v′}∪
B ×{v} and X1 = B×{v′}, is a PRDF on G ◦H . Hence, by Theorem 3.6, ζ (G) = γR(G ◦H) ≤
γ p

R(G◦H)≤ ω(g) = 2|A|+3|B|= ζ (G). Therefore, γ p
R(G◦H) = γR(G◦H).

Now, if deg(v′)≥ 1 and A =∅, then B is a packing and also a dominating set, which implies that

the function g(X0,X1,X2), defined by X2 = B×{v} and X1 = B×{v′}, is a PRDF on G ◦H . Hence,

by Theorem 3.6, ζ (G) = γR(G ◦H) ≤ γ
p
R(G ◦H) ≤ ω(g) = 3|B| = ζ (G). Therefore, γ

p
R(G ◦H) =

γR(G◦H), as required.

Proof of (iii). Assume ∆(H) = n(H)−3. If γ
p
R(G◦H) = γR(G◦H), then we have to consider Case 1

and Subcase 2.3.
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In Case 1 we deduced that δ (H) = 0, γ
p
R(G◦H) = 2|W2|= 2γt(G). Furthermore, since P1(G,H)

holds, W2 ∈℘o(G)∩D
p(G). Thus, ζ ′(G)≤ 2|W2| and, by Theorem 4.3, 2|W2|= γ

p
R(G◦H)≤ ζ ′(G)≤

2|W2|, which implies that ζ ′(G) = 2γt(G).

In Subcase 2.3, we deduced that if δ (H) = 0, then ζ ′(G) = 2γt(G), while if δ (H) ≥ 1, then

γt(G) = 2γ p(G) = 2ρ(G).

Conversely, assume that ζ ′(G) = 2γt(G) and δ (H) = 0. Let S = S0 ∪ S1 be a ζ ′(G)-set. By

Theorems 4.3 and 3.6 we have that 2γt(G) = γR(G◦H)≤ γ
p
R(G◦H)≤ 2|S1|+4|S0|= ζ ′(G) = 2γt(G),

which implies that γR(G◦H) = γ
p
R(G◦H).

Now, assume δ (H) ≥ 1 and γt(G) = 2γ p(G) = 2ρ(G). Let v ∈ V (H) be a vertex of maximum

degree, {v1,v2} = V (H) \N[v] and D a γ p(G)-set. Notice that the function g(X0,X1,X2), defined by

X2 = D×{v} and X1 = D×{v1,v2}, is a PRDF on G ◦H . Hence, by Theorem 3.6 we have that

2γt(G) = γR(G ◦ H) ≤ γ
p
R(G ◦ H) ≤ ω(g) = 2|X2|+ |X1| = 4γ p(G) = 2γt(G). Thus, γ

p
R(G ◦ H) =

γR(G◦H), which completes the proof of (iii).

Proof of (iv). Assume ∆(H) ≤ n(H)− 4. As shown in Case 1 and Subcase 2.4, from γ p
R(G ◦H) =

γR(G◦H) we deduce that P1(G,H) holds. Conversely, if P1(G,H) holds, then by Theorems 4.12-(iii),

3.2 and 3.6 it follows that γ
p
R(G◦H) = 2γ p(G◦H) = 2γt(G) = γR(G◦H). Therefore, (iv) follows. ⊓⊔

5. Concluding remarks

This paper is part of a larger project in which the aim is to propose closed formulae for the domination

parameters of product graphs. In general, these formulae are expressed in terms of various parameters

of the graphs involved in the product. The specific aim of this paper is to study the case of the perfect

domination number, the Roman domination number and the perfect Roman domination number of

lexicographic product graphs. We show that this goal can be achieved relatively easily for the case

of the first two parameters, while for the case of the perfect Roman domination number the picture

is completely different. The impossibility of achieving the target in the case of the latter parameter

led us to obtain general bounds, and then to give some sufficient and/or necessary conditions for the

bounds to be achieved. As a consequence of the results obtained, there are several challenges for

future work. Some of them are the traditional ones in domination theory and consist of improving

the obtained bounds or trying to characterise the families of graphs that reach them. In our opinion,

a more important challenge is to try to look from another angle to try to achieve the initial objective

by trying to find relationships with graph parameters that we have not considered, or with parameters

that have not yet been defined and studied.
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