
Fundamenta Informaticae 185(4) : 285–311 (2022) 285
Available at IOS Press through:
https://doi.org/10.3233/FI-222111

On Random Number Generation for Kernel Applications

Kunal Abhishek*

Society for Electronic Transactions and Security (SETS)

Chennai, India

kunalabh@gmail.com

E. George Dharma Prakash Raj
School of Computer Sciences, Engineering and Applications

Bharathidasan University, Tiruchirappalli, India

georgeprakashraj@yahoo.com

Abstract. An operating system kernel uses cryptographically secure pseudorandom number
generator (CSPRNG) for creating address space layout randomization (ASLR) offsets to protect
memory addresses of processes from exploitation, storing users’ passwords securely and creating
cryptographic keys. However, at present, popular kernel CSPRNGs such as Yarrow, Fortuna and
/dev/(u)random which are used by MacOS/iOS/FreeBSD, Windows and Linux/Android kernels
respectively lack the very crucial property of non-reproducibility of their generated bitstreams
which is used to nullify the scope of predicting the bitstream. This paper proposes a CSPRNG
called Cryptographically Secure Pseudorandom Number Generator for Kernel Applications
(KCS-PRNG) which generates non-reproducible bitstreams. The proposed KCS-PRNG presents
an efficient design uniquely configured with two new non-standard and verified elliptic curves and
clock-controlled Linear Feedback Shift Registers (LFSRs) and a novel method to consistently
generate non-reproducible random bitstreams of arbitrary lengths. The generated bitstreams
are statistically indistinguishable from true random bitstreams and provably secure, resilient to
important attacks, exhibits backward and forward secrecy, exhibits exponential linear complexity,
large period and huge key space.

Keywords: Random Number Generator, CSPRNG, LFSR, Elliptic Curve, Kernel Applications
*Address of correspondence: Society for Electronic Transactions and Security (SETS), MGR Knowledge City, C.I.T.

Campus, Taramani, Chennai, 600113 - India.

Received June 2021; accepted April 2022.

ar
X

iv
:2

20
4.

06
88

2v
2 

 [
cs

.C
R

] 
 3

 J
un

 2
02

2



286 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

1. Introduction

A random number generator (RNG) is classified in two basic classes [1]: first, a deterministic random
number generator (DRNG) or a pseudorandom number generator (PRNG) which needs a seed value
as input and produces random looking bitstreams using some deterministic algorithm. Second, a
true random number generator (TRNG) which uses physical and non-physical sources to generate
true randomness. It is imperative to note that unlike PRNG or DRNG, TRNG does not need any
seed but uses non-deterministic effects or physical experiments to generate the true random bits [1].
The significant differences between TRNG and PRNG are that TRNG generates non-reproducible
arbitrary length random bitstreams without using any seed or initializer whereas the PRNG generates
arbitrary length pseudorandom bitstreams using a seed value or initializer. TRNG is slow, having
infinite period, costly in deployment and has the possibility of manipulation. Unlike TRNG, PRNG
has less development and deployment cost (no need of dedicated hardware) but can produce reasonably
good random looking bitstreams.

The design goals of RNG heavily depend on its target applications. A simple application like
stochastic simulations or Monte Carlo integrations may require RNG to generate nothing more than
a random looking bitstream [1]. However, a sensitive application of RNG like an operating system
kernel on top of which entire critical systems or applications run, certainly requires RNG to generate
high quality pseudorandom bitstreams which are also provably secure, unpredictable and must be
non-reproducible.

A kernel uses a RNG to create ASLR offsets [2], generate salts to securely store users passwords
[3] and generate random keys to implement various cryptographic primitives such as authentication
etc. The ASLR is one of the most important techniques used by the kernel (in special cases termed
as Kernel-ASLR or KASLR) which randomizes the process layout to protect the locations of the
targeted functions such as stack, heap, executable, dynamic linker/loader etc. [2]. The ASLR not
only demands statistically qualified high quality pseudorandom number generator but also requires
the output bitstream to be provably secure and unpredictable. Hence, a CSPRNG (or simply a PRNG
with regular entropy inputs for unpredictability) is a preferred type of RNG for kernel applications.
There are many good CSPRNGs which are implemented in various operating systems and are used
by their kernels. Fortuna, Yarrow and /dev/(u)random are the popular CSPRNGs which are currently
implemented by Windows, MacOs/iOS/FreeBSD and Linux/Android operating systems respectively
[4, 5]. In this paper, a new CSPRNG which exhibits ‘non-reproducibility’ property of a TRNG is
proposed taking security of the above kernel applications into consideration.

In particular, the key contributions of this paper are as follows:

• A novel CSPRNG design comprises of two non-standard and verified secure elliptic curves
and nine LFSRs uniquely configured in a clock-controlled fashion to attain exponential linear
complexity is used to construct the proposed KCS-PRNG.

• A novel architecture of the KCS-PRNG is proposed to mitigate the gap of ‘non-reproducibility’
property.

• Two new non-standard and verified elliptic curves are introduced in this paper which are
used by the proposed KCS-PRNG to mitigate the gap of ‘non-reproducibility’ property. Both



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 287

elliptic curves are generated randomly over 256-bit prime fields to ensure cryptographic and
implementation security.

• Extensive security analysis of the proposed KCS-PRNG is carried out to ensure theoretical
security.

• Experimental validation and demonstration of statistical qualities of randomness using National
Institute of Standards and Technology (NIST), Diehard, TestU01 test suites.

• Experimental validation and demonstration of ‘non-reproducibility’ property of the proposed
KCS-PRNG.

• The proposed KCS-PRNG is compared with present kernel CSPRNGs such as Fortuna, Yarrow
and dev/random and an existing PRNG [6]. The KCS-PRNG is also compared with an existing
TRNG [7] in context of non-reproducibility of the generated random bitstreams.

Rest of the paper is organized as follows: Section 2 briefly discusses the randomness requirements
of the kernel applications and standard RNG requirements. Section 3 reviews current CSPRNGs
implemented by popular operating system kernels. Section 4 presents the proposed design of
the KCS-PRNG. Subsequently, Section 5 presents the security analysis and Section 6 elaborates
experimental validation and demonstration of the proposed KCS-PRNG. Section 7 presents the
details of the two new elliptic curves selected over large prime fields for use in the proposed
KCS-PRNG. Section 8 shows the important obtained results of the proposed KCS-PRNG. Section
9 briefly analyses the performance of KCS-PRNG. Section 10 compares KCS-PRNG with existing
kernel CSPRNGs as well as recent PRNG, CSPRNG and TRNG used by various cryptographic
applications. Finally, Section 11 concludes the findings of this paper.

2. Preliminaries

2.1. Randomness for Kernel Applications

One of the most important kernel applications that requires high quality randomness is ASLR [2]
which is an efficient mitigation technique against remote code execution attacks by randomizing the
memory address of processes to disable memory exploitation. The ASLR currently uses CSPRNG
to randomize the logical elements contained in the memory objects at the time of pre-linking (at the
time of installation of the application), per-boot (on every time the system boots), per-exec (when new
executable image is loaded in memory called pre-process randomization), per-fork (every time a new
process is created) and per-object (every time a new object is created). Figure 1 shows the Per-boot
versus Per-exec randomization to point out when randomization takes place in both the per-boot and
per-exec processes. Similarly, Figure 2 shows thatmmap() system call allocates all the objects side by
side in the mmap area area during the per-object randomization taking place. The rand() provides
random bits of desired length to the objects as shown in Figure 2.

Moreover, the degree of security provided by ASLR technique depends on the predictability of the
random memory layout of a program and therefore, ‘non-reproducibility’ of the random sequences
used in ASLR needs to be additonally ensured. This particular requirement is also attended in the
present work.



288 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

Figure 1: Per-boot versus Per-exec randomization [2]

Figure 2: Per-object randomization [2]

Another important kernel application is the Morris-Thompson scheme [3, 8] which associates a
n-bit random number with each password and concatenate and then encrypt together before storing it
in the password file. A CSPRNG is used whenever a password is changed and a random number is
required.

2.2. RNG requirements

Koc [1] and Schneier [9] collated the properties that various classes of RNG exhibit and formulated
the following requirements:

1. R1 : A random sequence generated by a RNG should have good statistical properties.

This requirement enables a RNG with a large period.

2. R2 : A random sequence generated by a RNG should be unpredictable.

This requirement makes the prediction of the next bit infeasible in the stream, given the complete
knowledge of the algorithm or hardware which generates the sequence and all of the previous
bits in the stream. This gives the notion of Backward Secrecy.

3. R3 : A random sequence generated by a RNG should not allow to compute previous internal
state or values of the generator even if the internal state is known.

This gives the notion of Forward Secrecy.



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 289

4. R4 : A random sequence generated by a RNG should not be reliably reproduced.

If the RNG is run twice with exactly the same input, it should produce two completely unrelated
random sequences.

From definition, a PRNG meets only R1 requirement whereas CSPRNG meets R1, R2 and R3
requirements of RNG [9]. However, a TRNG meets R2, R3 and R4 requirements of the RNG [9].
In this paper, the proposed KCS-PRNG is designed in such a way that it meets the R1, R2 and R3
requirements along with the R4 requirement of RNG to a practical extent.

3. Cryptographically secure random number generators for kernels

Linux and Android kernels use /dev/random and /dev/urandom which are considered as CSPRNG i.e.
the PRNG with inputs (meeting the requirement R2) for randomness generation. The limitations of
these CSPRNGs are that they do not have enough entropy in the pool and they are not generating keys
larger than the hash function that they used internally [10]. /dev/random keeps awaiting for the entropy
pool to get sufficiently filled in, which results in diminished performance of the generator. /dev/random
meets the RNG requirements R1, R2 and R3 but does not meet the R4 requirement. Though
/dev/urandom has provision for unblocked fast supply of random sequences through unblocking pool
of entropy but faces predictability issues [11]. /dev/urandom meets the requirements R1 and R3 but
does not meet the requirement R2 and R4.

Yarrow [12] is a PRNG with true random inputs used by MacOS/iOS/FreeBSD kernels. This
CSPRNG is too complex and under-specified in entropy handling context and also slow to provide
an initial seed [10]. It uses Triple Data Encryption Standard (DES) block cipher for pseudorandom
bitstream generation. Like /dev/random, Yarrow meets the requirements R1, R2 and R3 but does not
meet the requirement R4.

Fortuna [13] is a popular CSPRNG and a refinement over Yarrow, used by the Windows kernel
which uses its entropy effectively. It uses Advanced Encryption Standard (AES)-like cipher for the
generator with 256-bit size of the block cipher key and a 128-bit counter. Fortuna produces a very good
throughput of 20 clock cycles per byte on CPU type PC [13] and 7.2 Mbps throughput in software [14].
Fortuna implicitly accumulates entropy through hash, partitions the incoming entropy into multiple
entropy pools and uses its pools at different rate for output generation in order to guarantee that at least
one pool will remain available for use [4]. Though Viega [10] observed that it completely foregoes the
entropy estimation and Fortuna and Yarrow both do not exhibit information-theoretic security. Like
Yarrow, Fortuna also meets the requirements R1, R2 and R3 but does not meet ‘non-reproducibility’
i.e., the requirement R4.

It is imperative to note that the present kernel CSPRNGs do not meet the requirement of
‘non-reproducibility’ i.e., the requirement R4 which is a crucial feature that helps to prevent the
kernel better from exploitation as discussed in Section 2.1. In this work, the proposed KCS-PRNG is
designed in such a way that all the four requirements (R1 to R4) of an ideal RNG are met to ensure
better prevention of the kernel from exploitation.



290 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

4. The proposed design of KCS-PRNG

Generation of high quality cryptographically secure pseudorandom bitstreams is an intricate task
which needs efficient design of the generator taking statistical properties of randomness (R1),
unpredictability (R2,R3) and non-reproducibility (R4) of the output bitstreams into consideration. For
this reason, the proposed KCS-PRNG binds two modules in its design: first, a combination of
two cryptographically safe elliptic curves and a nonlinear Sequence Generator consisting of nine
clock-controlled LFSRs in alternating step configuration. Following are the design decisions and
assumptions of the proposed KCS-PRNG:

4.1. Selection of elliptic curves

The main motivation of using elliptic curves in the proposed KCS-PRNG instead of stream
ciphers/block ciphers like ChaCha20 and Triple DES or AES respectively as used by /dev/(u)random
[10], Yarrow [12] and Fortuna [13] respectively is that one can choose different points on the selected
elliptic curve to generate completely unrelated bitstreams under identical start conditions. Hence, the
combination of elliptic curves and clock-controlled LFSRs in the proposed KCS-PRNG generates
non-reproducible cryptographically secure pseudorandom bitstreams. Moreover, the combination of
elliptic curve and LFSR has been proven to exhibit enhanced randomness properties [15]. Two elliptic
curves are used in KCS-PRNG for added complexity where each elliptic curve provides nearly 2128

key space. The advantages of keeping elliptic curves with the clock-controlled LFSRs are twofold:
first, the elliptic curves are used for mitigating the gap of ‘non-reproducibility’ property (R4) by the
proposed method of replacing them periodically from a look-up table. Second, elliptic curves are
used to generate bitstreams which are non-invertible due to underlying hard Elliptic Curve Discrete
Logarithm Problem (ECDLP) and hence, they make the proposed KCS-PRNG provably secure as well
as forward secure to resist backtracking attacks. However, the choice of elliptic curves is considered
to be a randomly generated one rather than the standard elliptic curves with fixed coefficients as being
recommended by agencies like NIST [16], Brainpool [17] etc., so that a look-up table can be created
consisting of reasonably large number of cryptographically secure elliptic curves of one’s choice. The
random derivation of elliptic curve parameters ensures trust and transparency in the implementation
of elliptic curves [18]. The details of the two elliptic curves selected for use in the KCS-PRNG are
presented in Section 7. One can create a look-up table consisting of elliptic curves of 256 bit field
order of one’s choice for use in the KCS-PRNG. The discussion on generation mechanism of elliptic
curves is outside the scope of this paper due to space limitation.

4.2. Selection of clock-controlled LFSRs

The proposed KCS-PRNG is targeted for integration in the operating system kernel and therefore,
it is implemented in software. However, implementation of LFSR in software is slower than its
hardware implementation [9, 19]. To address this performance issue, the Galois scheme is selected for
optimal performance gain by the LFSRs in software without compromising the LFSR period and its
cryptographic properties [9]. The chosen Galois configuration also saves excess operations as all the
XOR operations are performed as a single operation [9]. A nonlinear Sequence Generator consisting of



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 291

nine LFSRs L1, L2, L3, L4, L5, L6, L7, L8 and L9 with corresponding primitive polynomial degrees
29, 31, 37, 41, 43, 47, 53, 59 and 61 respectively is designed. The primitive polynomials for these
LFSRs feedback functions are

L1 = x29 + x25 + x21 + x17 + x14 + x10 + x6 + x3 + 1,
L2 = x31 + x27 + x23 + x19 + x15 + x11 + x7 + x3 + 1,
L3 = x37 + x32 + x27 + x23 + x18 + x13 + x9 + x5 + 1,
L4 = x41 + x36 + x31 + x26 + x20 + x15 + x10 + x5 + 1,
L5 = x43 + x37 + x31 + x25 + x20 + x15 + x10 + x5 + 1,
L6 = x47 + x41 + x35 + x29 + x23 + x17 + x11 + x5 + 1,
L7 = x53 + x46 + x40 + x33 + x26 + x19 + x13 + x7 + 1,
L8 = x59 + x52 + x44 + x36 + x29 + x22 + x14 + x7 + 1,
L9 = x61 + x53 + x45 + x38 + x30 + x23 + x15 + x7 + 1.

These primitive polynomials used by the nine LFSRs have uniformly distributed feedback coefficients
selected from [20]. These nine LFSRs L1, L2, · · · , L9 are further divided into three groups called
Sequence Generator 1 (SG1), Sequence Generator 2 (SG2) and Sequence Generator 3 (SG3). SG1

has three LFSRs L1, L2 and L3 whose output streams x1, x2 and x3 are combined nonlinearly using
nonlinear function

y1 : f(x1, x2, x3) = x1x2 ⊕ x2x3 ⊕ x3x1 (1)

The resulting sequence y1 has period (2L1 − 1)(2L2 − 1)(2L3 − 1) and linear complexity (L1L2 +
L2L3 + L1L3). Similarly, the period and linear complexity of the sequence y2 generated from SG2

using L4, L5, L6 are (2L4 − 1)(2L5 − 1)(2L6 − 1) and (L4L5 +L5L6 +L6L4) respectively whereas
the period and linear complexity of the sequence y3 generated from SG3 using L7, L8, L9 are (2L7 −
1)(2L8 − 1)(2L9 − 1) and (L7L8 + L8L9 + L9L7) respectively. It may be noted that the initial state
bits of all LFSRs together are

∑9
i=1 Li = 401 bits.

SG1, SG2 and SG3 are configured in alternating step scheme to provide high linear complexity
and large period of the Sequence Generator [21]. SG1 is considered as the Controller of the Sequence
Generator in the alternating step mode. It is known that the linear complexity LC(x) of the overall
alternating step generator is bounded as follows [21]:

(LC2 + LC3)
2LC1−1 < LC(x) ≤ (LC2 + LC3)

2LC1 (2)

where LC1, LC2 and LC3 are the linear complexities of SG1, SG2 and SG3 respectively. The
Alternating Step Sequence Generator used in the proposed KCS-PRNG is depicted in Figure 3 and
described in Algorithm 1 [21].

4.3. The proposed novel KCS-PRNG architecture

The proposed KCS-PRNG architecture is shown in Figure 4. The KCS-PRNG uses a Field converter,
Elliptic curve Point Multiplication and a Selector in addition to the Sequence Generator and two
elliptic curves in its design.



292 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

Figure 3: Sequence Generator in Alternating Step Configuration

Algorithm 1: Alternating Step Sequence Generator using Clock-controlled LFSRs
Input : Sequence Generators SG1, SG2 and SG3

Output: bit length n
for i← 1 to n do

SG1 is clocked
if SG1 == 1 then

SG2 is clocked. /* SG3 is not clocked but its previous output bit is

repeated. In case of the first clock cycle, previous output

bit of SG3 is taken as 0. */

else
SG3 is clocked /* SG2 is not clocked but its previous output bit is

repeated. In case of the first clock cycle, previous output

bit of SG2 is taken as 0. */

end
return y2 ⊕ y3 // Output of Sequence Generator in alternating step

end

The two elliptic curves are selected using the procedure as shown in Algorithm 2. A look-up table
T with tuples (EC, EC ID Status) is created where EC is the elliptic curve and EC ID Status
is the flag value to mark 0 for ‘un-used curve’ and 1 for the ‘used curve’. T consists of 256 elliptic
curves initially which are randomly generated and are cryptographically secure non-standard curves.
All elliptic curves in T are initially marked withEC ID Status = 0. On each reboot of the proposed
KCS-PRNG, it picks up two elliptic curves from T using Algorithm 2 and sets the corresponding



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 293

Figure 4: The proposed KCS-PRNG Architecture

Algorithm 2: Selection of 2 Elliptic curves
Input : Look-up Table T (ECn, ECn ID Status) where n is number of elliptic curves
Output: Elliptic curves ECr, ECs from T where r, s ∈ [1, n] and r 6= s
Count n // Elliptic curves with ECn ID Status = 0 ∀ n in T
if n ≥ 2 then

Fetch ECr, ECs from T where ECr ID Status = 0 and ECs ID Status = 0
Set ECr ID Status←− 1, ECs ID Status←− 1
Update T
return ECr, ECs

else
Set ECn ID Status = 0 ∀ n in T
Go to previous step

end

EC ID Status = 1 of both the used elliptic curves in T . The advantage of T is that even if the
same seed (entropy) is supplied to the proposed KCS-PRNG on reboot of the generator, two new
elliptic curves with EC ID Status = 0 will be selected from T . The change of elliptic curves on
each reboot of the KCS-PRNG changes the final output by altering the masking value between the
output bits of the elliptic curves and the Sequence Generator. Hence, entirely unrelated bitstream are
obtained as the output of the proposed generator even using exactly the same seed as input. When all
elliptic curves in T are used then EC ID Status flags are reset to 0 for all elliptic curves in T in
order to maintain unblocked supply of elliptic curves to the KCS-PRNG. More elliptic curves can be
inserted into T to consistently mitigate the requirement of ‘non-reproducibility’ property R4 of the
KCS-PRNG. Here, the mitigating factor of the the RNG requirement R4 is directly proportional to
the number of un-used elliptic curves available in T . This idea makes the proposed KCS-PRNG to
mitigate the RNG requirement R4 to a practical extent.



294 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

Figure 5: Initialization Stage 1: Loading and diffusion of the key

Figure 6: Initialization Stage 2: Loading of IV

4.4. Initialization of KCS-PRNG

The proposed KCS-PRNG uses two phases of pseudorandom bitstreams generation. In the first phase,
the Sequence Generator is initialized whereas in the second phase, the desired number of bits of the
pseudorandom sequence are generated using the Sequence Generator and the elliptic curves. The
initialization phase involves two stages which includes, first, loading the key and initialization vector
(IV) into the generator and second, diffusing the key-IV pair across the entire states of the Sequence
Generator [22] as shown in Figure 5 and Figure 6 described in the Algorithm 3.

Algorithm 3 takes 574-bit of entropy bits which are harvested from various physical non-
deterministic noise sources and generates 401-bit of key and 173-bit of Initialization Vector (IV).
The key is first parallelly loaded into SG1, SG2 and SG3 of the Sequence Generator. It is ensured
that all the Most Significant Bits (MSBs) of L1, L2 and L3 will be set to 1. The Sequence Generator
is then clocked 128 times so that the key is diffused across the entire states of all the nine LFSRs
L1, L2, · · · , L9 and a new state of the Sequence Generator is obtained as shown in Figure 5. Further,
a 173-bit IV is loaded into L1, L2 and L3 of SG1 in bitwise fashion by XORing with the feedback
bit of the LFSR and the output bit of the Sequence Generator as shown in Figure 6. The Sequence
Generator is once again clocked 128 times to diffuse the IV completely among the LFSRs in SG1

and gets entirely new states of all the nine LFSRs. It is ensured that the MSBs of all the nine LFSRs
L1, L2, · · · , L9 are set to 1. Finally, the initialized Sequence Generator is returned.



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 295

Algorithm 3: Initialization of Sequence Generator
Input : 401-bit entropy for Key and 173-bit entropy for Initialization Vector (IV)
Output: Initialized Sequence Generator
// Stage 1: Loading LFSRs from the input Key

Initialize SG1, SG2 and SG3 with 401-bit Key
if MSB of any LFSR == 0 then

Ensure MSB of LFSR as 1
end
// Stage 2: Diffusion of key into all LFSRs states

Clock Sequence Generator 128 times
// Stage 1: Loading 173-bit IV to SG1

for i← 1 to 173 do
Clock SG1 with feedback = Feedback bit ⊕ IV bit ⊕ output bit of Sequence Generator

end
// Stage 2: Diffusion of IV into all LFSRs states in SG1

Clock Sequence Generator 128 times
if MSB of the Sequence Generator == 0 then

Ensure MSB of the Sequence Generator as 1
end
return Initialized Sequence Generator

4.5. KCS-PRNG bitstream generation

The Sequence Generator generates two sequences z1 and z2 of 256-bit length each, which are used
by the field converter as the inputs. The field converter transforms z1 and z2 into integers and then
transforms them into the field elements Pr1 and Pr2 of the two elliptic curves. These field elements or
the secrets Pr1 and Pr2 are given as inputs to the two elliptic curve point multiplication functions as
described in Algorithm 4. The secrets Pr1 and Pr2 are multiplied with their corresponding base points
G1 and G2 which yields a new point on each of the elliptic curves respectively. The x-coordinates of
the two points obtained are the two integers Pb1 and Pb2 after transformation from the field elements. A
selector is used to switch between the outputs of the two elliptic curves point multiplication functions
to double the size of key space offered by the proposed KCS-PRNG.

Algorithm 4: Elliptic curve point multiplication
Input: Secrets Pr1 and Pr2 for 2 elliptic curves
Output: Points Pb1 and Pb2 of 2 elliptic curves in integer form
Pb1 ←− G1 × Pr1 /* G1 is the base point selected on first elliptic curve and

Pb1 is the x-coordinate of the resultant point */

Pb1 ←− Integer(Pb1) // Function to transform field to integer

Pb2 ←− G2 × Pr2 /* G2 is the base point selected on second elliptic curve and

Pb2 is the x-coordinate of the resultant point */

Pb2 ←− Integer(Pb2)
return Pb1 , Pb2



296 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

Algorithm 5: The proposed KCS-PRNG bitstream generation
Input: Desired length of bitstream n, (574× r)-bit entropy for key and IV where r =

⌈
n

100000

⌉
= number of

(re)seeding required for KCS-PRNG
Output: n-bit cryptographically secure pseudorandom bitstream
Run Algorithm 2 to select two elliptic curves from T
// Perform (Re)seeding to initialize the Sequence Generator

Run Algorithm 3 with input of 401-bit key and 173-bit IV to initialize the Sequence Generator
Run Algorithm 1 to generate 256-bit sequence z1
Transform z1 into field element Pr1 of first elliptic curve using field converter
Run Algorithm 4 with Pr1 as input to generate the integer Pb1

Run Algorithm 1 to generate 256-bit sequence z2
Transform z2 into field element Pr2 of second elliptic curve using field converter
Run Algorithm 4 with Pr2 as input to generate the integer Pb2

Set countSel = 1
Set bitCount = 1
Set t = 1 where t = 1 to

⌈
n

256

⌉
for i← 1 to

⌈
n

256

⌉
do

if countSel == t× 256 then
// Use Selector to select between the two elliptic curves

if t is even then
Set el = Pb2

else
Set el = Pb1

end
countSel = 0
t++

end
Clock Sequence Generator 256 times to generate 256-bit sequence s
if n < 256 then

return X ⊕ ith position of el from LSB (i = 0) to MSB (i = 255) where X is 1-bit output from
Sequence Generator and i = 0 to 255 // Output of KCS-PRNG

else
return el ⊕ s // Output of KCS-PRNG

end
i++

if i == 255 then
i = 0

end
countSel++

bitCount++

if bitCount == j × 100000 where j = 1 to r then
n = n− (j × 100000)
j++

// Reseed the KCS-PRNG on every 100000 bits of output

Go to reseeding step in the beginning
end

end

Algorithm 5 describes the cryptographically secure pseudorandom bitstream generation scheme
of the proposed KCS-PRNG. Initially, two elliptic curves with hard ECDLP are selected from T . The



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 297

Sequence Generator is then initialized with 401-bit key and 173-bit IV as discussed in Algorithm 3.
The Sequence Generator is used to generate 256-bit sequence z1 by clocking 256 times. Further, z1 is
converted into the field element of the first elliptic curve and considered as the secret Pr1 . The integer
Pb1 is generated by using elliptic curve point multiplication function taking the secret Pr1 as input.
Similarly, the integer Pb2 is also generated from the second elliptic curve point multiplication function.
The Sequence Generator continuously generates n-bit length sequences as bounded by

⌈
n
256

⌉
times

loop. The proposed KCS-PRNG uses a selector iteratively select among Pb1 and Pb2 . The Sequence
Generator is then clocked 256 times to generate 256-bit sequence s. The integers Pb1 or Pb2 is masked
with s to produce 256-bit output by the KCS-PRNG. If n < 256, then 1-bit output of the Sequence
Generator is masked with 1-bit of Pb1 or Pb2 (as decided by the selector) traversing from its Least
Significant Bit (LSB) to MSB and result is returned. Once MSB of the Pb1 or Pb2 is used, the masking
of the output of the Sequence Generator starts from the LSB of the Pb1 or Pb2 once again in rotating
fashion. The KCS-PRNG is reseeded on every 100000 bit of output to maintain backward secrecy as
shown in Algorithm 5.

4.6. Assumptions

Following assumptions are made in the proposed design of KCS-PRNG:

• KCS-PRNG always maintains 574-bit initial entropy.

• KCS-PRNG expects high per-bit entropy u 1 for initialization. The generation details of entropy
used in KCS-PRNG is outside the scope of this work.

• The Key and IV are parts of the seed and hence, they are immediately shredded after use and is
non-recoverable.

• The (Re)keying and (Re)IVing are done using different TRNGs or entropy harvesters using
various different physical noise sources.

• Elliptic curves used in KCS-PRNG are randomly generated, cryptographically safe and
trustworthy.

• Look-up Table T has authorized access only.

5. Security analysis of the proposed KCS-PRNG

5.1. Linear complexity analysis

Let linear complexities of the Sequence Generators SG1, SG2 and SG3 be LC1, LC2 and LC3

respectively and following equation (1), are given by

LC1 = L1L2 + L2L3 + L1L3 = 3119

LC2 = L4L5 + L5L6 + L4L6 = 5711

LC3 = L7L8 + L8L9 + L7L9 = 9959

(3)

where L1, L2, · · · , L9 are the lengths of the LFSRs.



298 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

Moreover, while SG1 is clocked regularly, SG2 and SG3 are connected in alternating step
configuration. Thus, following equation (2), the overall linear complexity (LC) of the scheme is
given by

(5711 + 9959)2×3119−1 < LC(x) ≤ (5711 + 9959)2×3119

=⇒ 156706237 < LC(x) ≤ 156706238
(4)

It is imperative to note that the Sequence Generator of the proposed KCS-PRNG exhibits exponentially
large linear complexity as demonstrated in equation (4) and therefore, the proposed generator is
resistant to the Berlekamp-Massey attack [21].

5.2. Correlations test

We conducted two correlation tests of random bitstreams generated by the proposed KCS-PRNG to
verify non-correlation in the bitstream. The first test conducted was Serial or Autocorrelation test
(sstring−AutoCor test) which measures the correlation between the bits with the lag d [23]. In this
test, a n-bit string is generated by the KCS-PRNG at the first level and the test statistic is computed
such that it has the binomial distribution with the parameters being approximately standard normal for

Table 1: Correlation test of the proposed KCS-PRNG.
sstring-AutoCor test N = 1, n = 1048513, r = 0, s = 32, d = 1

Normal statistic 0.41
p-value of test 0.34
Number of bits used 1048544
Result Passed the test
sstring-AutoCor test N = 1, n = 1048514, r = 0, s = 32, d = 2

Normal statistic 0.80
p-value of test 0.21
Number of bits used 1048544
Result Passed the test

sstring-HammingCorr test N = 1, n = 32768, r = 0, s = 32, L = 32

Normal statistic -0.56
p-value of test 0.71
Number of bits used 1048576
Result Passed the test

sstring-HammingCorr test N = 1, n = 16384, r = 0, s = 32, L = 64

Normal statistic 0.45
p-value of test 0.33
Number of bits used 1048576
Result Passed the test

sstring-HammingCorr test N = 1, n = 8192, r = 0, s = 32, L = 128

Normal statistic 1.57
p-value of test 0.06
Number of bits used 1048576
Result Passed the test



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 299

large n − d. The restriction imposed were r + s ≤ 32 and 1 ≤ d ≤ bn2 c where r be the number of
MSBs which are eliminated from the output before applying the test, s be the MSBs chosen from each
generated random number and N be second-level number of replications [23, 24]. The second test
conducted was the Hamming Correlation test (sstring−HammingCorr) [25] was used to measure
bitwise correlation in the random bitstream file of 1GB size generated by the proposed KCS-PRNG
which was estimated to be 0.000034. The obtained correlation is very close to the ideal correlation
value of 0.0 and thus, concludes that the proposed design of the KCS-PRNG has no correlation issues
and their results are shown in Table 1.

5.3. Period analysis (validation of requirement R1)

The Sequence Generator used in the KCS-PRNG comprises of nine LFSRs whose lengths
L1, L2, · · · , L9 are coprime to each other. Hence, the period (P ) of the Sequence Generator is given
by

P =

9∏
i=1

(2Li − 1) (5)

As the output of the Sequence Generator is masked with the integer obtained from the x-coordinate of
the public key of one of the two elliptic curves, therefore, the period P of the proposed KCS-PRNG
is given by

P =


N1 × (

9∏
i=1

(2Li − 1)) if(n ≤ 256)

(N1 +N2)× (
9∏

i=1
(2Li − 1)) if(n > 256)

(6)

where n be the number of output bits and N1, N2 are the order of the two elliptic curves and let
N1 < N2.

It is prudent from equation (6) that the period P of the proposed KCS-PRNG approximately lies in
the range [N1×2401, (N1+N2)×2401] per boot which enables the proposed KCS-PRNG to generate
very large bitstream without compromising the statistical properties of randomness.

5.4. Key space analysis

It is evident from equation (5) that the Sequence Generator in KCS-PRNG has a period of 2401

and thus, provides 2401 key space in case the generator gets seeded once and no reseeding happens.
Moreover, the KCS-PRNG also uses two elliptic curves which provides 2128 and 2256 key space for
n ≤ 256 and n > 256 bits of output respectively to impose a successful Pollard’s rho attack to solve
the ECDLP. Hence the key space offered by the proposed KCS-PRNG is given by

K =

{
(2401 × 2128)r = 2529r if(n ≤ 256)

(2401 × 2256)r = 2657r if(n > 256)
(7)

where r be the number of (re)seeding the KCS-PRNG and n be the number of output bits of the
proposed KCS-PRNG.



300 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

It is imperative to note that the key space offered by the proposed KCS-PRNG depends on the
number of times the KCS-PRNG (re)seeds itself in single boot and therefore, exhibits virtually infinite
key space in the range K ∈ [2529,∞) which is quite higher than the safe key space threshold of 2128

as recommended by [6, 26]. Therefore, the proposed KCS-PRNG comfortably resists brute force
attacks.

5.5. Cross layer attack on kernel PRNG

A practical attack [27] using the weakness in the Linux Kernel PRNG is discovered that allowed
the hackers to mount the cross-layer attacks against the Linux kernel to retrieve the internal states
of the PRNG. The internal states of the kernel PRNG were compromised due to the linearity, same
set of instances being used by the applications of the kernel PRNG and partially re-seeding issues
respectively. The attackers were able to extract data from one PRNG consumer (network protocols
like IPv4/IPv6, UDP etc.) in one Open Systems Interconnection (OSI) layer and used them to
exploit another PRNG consumer in difference OSI layer. This weakness in the PRNG also allowed
hackers to identify and track both the Linux and the Android devices. The compromised kernel
was then used to downgrade E-mail security, hijack E-mails, hijack Hyper Text Transport Protocol
(HTTP) traffic, circumvent E-mail anti-spam and blacklisting mechanisms, mount a local Denial of
Service (DoS) attack (blackhole hosts), poison reverse Domain Name Server (DNS) resolutions and
attack the machine’s Network Time Protocol (NTP) client which is responsible for the machine’s
clock.

It is imperative to note that the compromised internal states of the kernel PRNG enabled the
attackers to predict entire random sequences generated by it. However, the proposed KCS-PRNG does
not allow such leakage of its internal states due to its unique design that leverages very high degree
of non-linearity (as given in equation (4)) of the generator and generates non-reproducible random bit
sequences to provide entirely unrelated pseudorandom sequences for each user applications.

6. Experimental validation of the proposed KCS-PRNG

6.1. Experimental validation of requirement R1

i. NIST statistical test results
NIST test suite consists of 15 statistical tests to certify statistical strength of randomness of
the RNG. An output bitstream of 1GB file size is generated by the proposed KCS-PRNG and
subjected to the NIST tests using NIST statistical test suite SP 800-22 version 2.1.2 [28]. The
input block size was set to be 1000000 bits and 1000 bitstreams. The significance level α was
selected as 99% to conduct the test. The proposed KCS-PRNG passed all the NIST statistical
tests and the details of test results obtained are depicted in Table 2.

The p-value measures randomness and supposed to be greater than 0.01 i.e., the confidence
level to conclude that the sequence is uniformly distributed whereas the proportion i.e., the
minimum pass rate for the test should fall in the range [0.98056, 0.99943] having the confidence



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 301

interval α=0.01 and 1000 bitstreams [7]. As indicated in Table 2, the proposed KCS-PRNG not
only qualifies the pass rate threshold of 0.98056 but also reports better pass rate of 0.9896 as
compared to the pass rates of 0.987 and 0.9887 reported by the TRNG [7] and the PRNG [6]
respectively.

Table 2: NIST test results of the proposed KCS-PRNG output bitstreams of 1GB file size with the
input of 1000000-bit block size and 1000 bitstreams.

Statistical Test P − value Proportion Result

Frequency 0.737915 0.991 Pass
Block Frequency 0.591409 0.988 Pass
CumulativeSums* 0.680755 0.993 Pass
Runs 0.281232 0.992 Pass
Longest Run 0.526105 0.996 Pass
Rank 0.036113 0.996 Pass
FFT 0.103138 0.990 Pass
NonOverlappingTemplate* 0.794391 0.990 Pass
Overlapping 0.779188 0.987 Pass
Universal 0.773405 0.991 Pass
Approx Entropy 0.653773 0.989 Pass
RandomExcursions* 0.489508 0.983 Pass
RandomExcursionsVariant* 0.163362 0.985 Pass
Serial* 0.680755 0.988 Pass
Linear Complexity 0.682823 0.985 Pass

*Only the result of first test instance is indicated here from the original results due to limitation of space

ii. Diehard test results [29]
Diehard version 3.31.1 tests conduct a series of statistical tests and determine the p-values of
the output bitstreams. The p-values indicate deviation of bit prediction from ideally expected
probability of half. The expected p-value of a test should be in the range [0.025, 0.975] [30].
The proposed KCS-PRNG passed all the diehard tests as shown in Table 3.

iii. TestU01 test results [23]
TestU01 is believed to impose the toughest tests to evaluate the statistical quality of random
bitstreams [6]. The binary bitstream of 1GB file size generated by the proposed KCS-PRNG is
subjected to the Rabbit and Alphabit test batteries of TestU01. The Rabbit and the Alphabit, by
default, selected 1048576 bits (220 bits) for SmallCrush (a fast statistical test battery) evaluation
and applied 38 and 17 statistical tests respectively to the proposed KCS-PRNG output bitstream.
The output bitstreams of KCS-PRNG are found to have p-values within the acceptable range of
[0.001, 0.999] [30] which proved that the proposed KCS-PRNG exhibits long period, good
structure and non-linearity.



302 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

Table 3: Diehard test results of the proposed KCS-PRNG output bitstreams of 1GB file size.

test-name ntup tsamples psamples p-value Assessment

diehard-birthdays 0 100 100 0.27561288 Passed
diehard-operm5 0 1000000 100 0.13184067 Passed
diehard-rank-32x32 0 40000 100 0.44295780 Passed
diehard-rank-6x8 0 100000 100 0.88076181 Passed
diehard-bitstream 0 2097152 100 0.42947798 Passed
diehard-opso 0 2097152 100 0.12604767 Passed
diehard-oqso 0 2097152 100 0.94641900 Passed
diehard-dna 0 2097152 100 0.24390543 Passed
diehard-count-1s-str 0 256000 100 0.62287409 Passed
diehard-count-1s-byt 0 256000 100 0.91047395 Passed
diehard-parking-lot 0 12000 100 0.79390338 Passed
diehard-2dsphere 2 8000 100 0.17731451 Passed
diehard-3dsphere 3 4000 100 0.45129204 Passed
diehard-squeeze 0 100000 100 0.53561994 Passed
diehard-sums 0 100 100 0.94209561 Passed
diehard-runs* 0 100000 100 0.14811353 Passed
diehard-craps* 0 200000 100 0.92115680 Passed
marsaglia-tsang-gcd* 0 10000000 100 0.53120802 Passed
sts-monobit 1 100000 100 0.64501072 Passed
sts-runs 2 100000 100 0.94961272 Passed
sts-serial* 1 100000 100 0.62077367 Passed
rgb-bitdist* 1 100000 100 0.95378266 Passed
rgb-minimum-distance* 2 10000 1000 0.87517368 Passed
rgb-permutations* 2 100000 100 0.75286377 Passed
rgb-lagged-sum* 0 1000000 100 0.00308570 Passed
rgb-kstest-test 0 10000 1000 0.03414230 Passed
dab-bytedistrib 0 51200000 1 0.17158919 Passed
dab-dct 256 50000 1 0.07312246 Passed
dab-filltree* 32 15000000 1 0.61801753 Passed
dab-filltree2* 0 5000000 1 0.69361846 Passed
dab-monobit2 12 65000000 1 0.42742922 Passed

*Only the result of first test instance is indicated here from the original results due to limitation of space

6.2. Validation of requirements R2 and R3

i. Next bit test
This test states that if a sequence of m-bits is generated by a generator, there should not be any
feasible method which can predict the (m + 1)th bit with the probability significantly higher
than half [31, 32]. This test is associated with predictability of the successive bits generated by
the KCS-PRNG.



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 303

Since the KCS-PRNG is reseeded with fresh additional entropy of 574 bits (401 bits of key and
173 bits of IV), therefore, it maintains backward security [13].

ii. Test for state compromise extension attacks
This test states that if some state of a generator is leaked at a given time to an attacker, it would
not be possible to recover unknown PRNG outputs from that known state [33]. Fundamentally,
the state compromise extension imposes two kinds of attack: first, a backtracking attack to learn
previous outputs of the generator knowing some internal state of the generator at a particular
time and second, the permanent compromise attack which enables all the future and past states
of the generator vulnerable with the knowledge of some state at a given time [33].

Since the proposed KCS-PRNG is forward secure and provably secure due to underlying
ECDLP intractability, therefore, it is resistant to the backtracking attack. Furthermore, as
discussed in the next bit test, the proposed KCS-PRNG is (re)seeded on every 100000 bits
of output generation, therefore, it exhibits backward secrecy and thus, resists the permanent
compromise attack as well.

iii. Entropy Estimation (Experimental Validation of Requirement R2, R3) Entropy is the
measurement of unpredictability or uncertainty. For an ideal TRNG, the expected entropy is
1 per bit which means that each bit i.e., ‘0’ or ‘1’ have equal proportion 0.5 in the file containing
random bitstream [7]. The proposed KCS-PRNG is subjected to ENT tool [25] for estimation
of the entropy of the KCS-PRNG generated 1GB file of random bitstream. The observed
value of the entropy of output bitstream generated by the proposed KCS-PRNG is found to
be 0.99999975 per bit which asserts that the design of KCS-PRNG maintains nearly an ideal
unpredictability.

6.3. Experimental validation of requirement R4

6.3.1. Non-reproducibility test

The non-reproducibility test is conducted to validate if the RNG requirement R4 is met by the
proposed KCS-PRNG. This test is conducted by running the generator twice with exactly the same
input and verifying if the output sequences are completely unrelated. Authors [7] have referred the
non-reproducibility test as the restart test and they validated the first 20 bit output sequences of the
generator six times under identical start conditions. Table 4 shows that the proposed KCS-PRNG has
passed the non-reproducibility test six times by producing six completely unrelated 32 bits using the
same inputs to the proposed generator.

Moreover, the KCS-PRNG uses two different elliptic curves on each boot and therefore, the
output bitstream would be entirely unrelated even generated under identical start conditions. Hence,
it is inferred that the proposed KCS-PRNG generates non-reproducible pseudorandom bitstreams,
provided it maintains minimum number of un-used elliptic curves (i.e., t + 1 where t ≥ 1 is the
number of (re)boots made by the KCS-PRNG such that the generator gets at least two un-used elliptic
curve on each (re)boot) in the look-up table consisting of elliptic curves.



304 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

Table 4: Non-reproducibility test of the proposed KCS-PRNG under identical start conditions.

Key Input (401-bit entropy)

1905119BCDC809077DB45D
1B3921DB5C06D11 C56C7FE
B4F8EE935A2FB16B055281816
DFC551AC73C3BBF76EE26B13
0B8F5E68

IV Input (173-bit entropy)
190B6B491CDD9E97E6AB
26552990F5481183DEF9AE55

Check First run of KCS-PRNG

32-bit Output 01010100111011111110001110100100

Check Second run of KCS-PRNG

32-bit Output 00010010000100001111001111111110

Check Third run of KCS-PRNG

32-bit Output 11000101110001101011100101111101

Check Fourth run of KCS-PRNG

32-bit Output 01101010010110101011000010110101

Check Fifth run of KCS-PRNG

32-bit Output 10110001000111011001101100011011

Check Sixth run of KCS-PRNG

32-bit Output 01001100110010111100010011100110

Table 5: Details of first elliptic curve with verification details [34] used in the proposed KCS-PRNG
Elliptic curve parameter/Validation Value

Equation Model Short Weierstrass
Prime field p 0xEEAA0DB0A46CE48AFCD288C714939E4063E1D801C55D1118202C76798B62B483
Coefficient a 0x33866AAA5914BC27D9ED986D7AF431BD8FC217D8E07D5BA5E44C1A4A355C7DD4
Coefficient b 0xCAA0537DF123F85EC185A991B7200396B996C7921E6A7E07F08ED2A4801B0CA2
Co-factor h 0x1
Base Point Gx 0x3FBE1FF3CC8A893B2B018CC7D3D61961233F87F66FCB257D21805D1327426DE9
Base Point Gy 0xC5B219E84B008A4CB36CDF05B44E95354913756FCD92251F90BFB0A4F4D84AD8
Rho 127.8 // Key space of 2127.8 for Pollard’s Rho attack on ECDLP

Twist− rho 127.8
Joint− rho 127.8
verify − isElliptic True // Ensuring elliptic curve

verify − Pr1 isOnCurve True // Ensuring private key as an elliptic curve group element

verify − Pb1 isOnCurve True // Ensuring public key as an elliptic curve group element

verify − safeF ield True // Elliptic curve defined over a suitable prime field

verify − safeEquation True // Ensuring short Weierstrass equation

verify − safeBase True // Ensuring base point with prime order

verify − safeRho True // Ensuring ECDLP security

verify − safeTransfer True // Ensuring ECDLP security from MOV attacks

verify − safeDiscriminant True // Ensuring cubic curve

verify − safeRigid True // Ensuring elliptic curve is generated using explained procedure

verify − safeTwist True // Ensuring twist of the elliptic curve is safe

verify − safeCurve True // if and only if all the other validations return ‘True’



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 305

Table 6: Details of second elliptic curve with verification details [34] used in the proposed KCS-PRNG

Elliptic curve parameter/
Validation

Value

Equation Model Short Weierstrass

Prime field p 0xF2A284E729748EA8BE82173F13412FC257C42095408D706528F5D8964BF2E237

Coefficient a 0xB29C202E105FE4C7EE5DECAF48258BFAB2E890AF5D96DE4553D82C3EC5D03C06

Coefficient b 0xC36BBDD9EE50EF046EA1D4DA85300673531B323B013043F9DC97B2FDD6A807B4

Co-factor h 0x1

Base Point Gx 0x1216C78C1FB8707C6B7B2496226B6F13CE25347DD9283A36FA354D09E2CDF4C3

Base Point Gy 0xA0AC0431A50C5DA5D25DCA1026946A2AADA19756ED326DA85A203B4A0B2BE342

Rho 127.8 // Key space of 2127.8 for Pollard’s Rho attack on ECDLP

Twist− rho 127.8
Joint− rho 127.8
verify − isElliptic True // Ensuring elliptic curve

verify − Pr1 isOnCurve True // Ensuring private key as an elliptic curve group element

verify − Pb1 isOnCurve True // Ensuring public key as an elliptic curve group element

verify − safeF ield True // Elliptic curve defined over a suitable prime field

verify − safeEquation True // Ensuring short Weierstrass equation

verify − safeBase True // Ensuring base point with prime order

verify − safeRho True // Ensuring ECDLP security

verify − safeTransfer True // Ensuring ECDLP security from MOV attacks

verify − safeDiscriminant True // Ensuring cubic curve

verify − safeRigid True // Ensuring elliptic curve is generated using explained procedure

verify − safeTwist True // Ensuring twist of the elliptic curve is safe

verify − safeCurve True // if and only if all the other validations return ‘True’

7. Details of two elliptic curves used in the proposed KCS-PRNG

Elliptic curves over 256-bit prime fields whose ECDLPs are found to be hard and method of
computation is transparent and trustworthy, are selected for use in the proposed KCS-PRNG. The
elliptic curves are generated randomly over the 256-bit prime field size in order to build the trust as
indicated in [18, 35, 36, 37]. The generation mechanism of cryptographically safe elliptic curves is
referred from [34, 38, 39, 40, 41, 42, 43] and followed with the procedure suggested in [44] to achieve
trusted security. The proposed KCS-PRNG uses two elliptic curves which are generated randomly and
verified for their cryptographic security as per the recommendations given in [34]. The verification
details against the criteria as suggested in [34] of the two elliptic curves selected for experimentation
purposes in this work are summarized in Table 5 and Table 6 respectively. A look-up table T used in
the proposed KCS-PRNG is created with 256 such elliptic curves initially as discussed in Section 4.3.

8. Results

The security analysis carried out in Section 5 has proved that the proposed KCS-PRNG exhibits:
higher security property (from RNG requirements R1 to R4), provably secure, very high per bit



306 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

entropy rate, minimal bitwise correlation, highly nonlinear with linear complexity LC(x) bounded
as 156706237 < LC(x) ≤ 156706238, very large period in the range [N1 × 2401, (N1 + N2) × 2401]
per boot where N1 < N2 being the order of two elliptic curves used, huge key space in the range
[2529,∞) and impressive throughput of 2.5 Megabits per second as discussed in Section 9 to generate
uninterrupted cryptographically secure bitstreams.

The proposed KCS-PRNG passed all the tests of NIST, Diehard and TestU01 test suites
along with other tests to validate statistical qualities of randomness, cryptographic security and
non-reproducibility as discussed in Section 6. The NIST test also proved that the proposed
KCS-PRNG exhibits impressive and the highest proportion i.e., the pass rate of 0.9896 as compared
to the existing PRNG [6] with 0.9887 and TRNG [7] with 0.987 proportion values. The KCS-PRNG
demonstrated to exhibit nearly an ideal 0.99999975 per bit entropy and minimal serial correlation of
0.000034 in its generated bitstream.

9. Performance analysis of the proposed KCS-PRNG

The proposed KCS-PRNG was run on Intel® CoreTM i7-7700 CPU @ 3.60GHz processor. The
source code of the KCS-PRNG is developed in C++ and extensively used CryptoPP version
8.2.1 library. The KCS-PRNG software program was run on Ubuntu version 16.04.1 with kernel
version 4.15.0-96-generic. The KCS-PRNG program was (re)seeded on every 100000 bits output
in generation of 1GB file of pseudorandom bitstream. It gave an impressive throughput of 2.5
Mbps in software which asserts its high throughput-oriented design. The proposed KCS-PRNG for
kernel applications offers a better security by meeting all the RNG requirements from R1 to R4 as
compared to the existing PRNG [6] and kernel CSPRNGs like/dev/random [10, 11], Yarrow [12], and
Fortuna [13].

10. Comparison of proposed KCS-PRNG with recent CSPRNGs for
kernel applications

The proposed KCS-PRNG is designed to meet all the requirements of a RNG as discussed in Section
2.2. The features of the proposed KCS-PRNG are compared with the popular CSPRNGs used by the
current operating system kernels and a recently well acknowledged TRNG [7] in Table 7. The reason
behind the comparison of KCS-PRNG with TRNG is that, it meets the RNG requirement R4 which
a TRNG only meets. Table 7 also consolidates interesting comparison results of KCS-PRNG with an
existing TRNG based on Oscillator-Rings [7].

The KCS-PRNG is compared with popular kernel CSPRNGs namely /dev/(u)random used by
Linux and Android kernels, Yarrow used by MacOS/iOS/FreeBSD kernel and Fortuna used by
Windows kernel respectively on the basis of various criteria related to cryptographic security,
randomness tests and throughput to conclude their suitability for strategic applicatons such as kernel
applications.



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 307

Ta
bl

e
7:

C
om

pa
ri

so
n

of
th

e
pr

op
os

ed
K

C
S-

PR
N

G
w

ith
re

ce
nt

K
er

ne
lC

SP
R

N
G

s
an

d
T

R
N

G

C
ri

te
ri

an
/d

ev
/(u

)r
an

do
m

Ya
rr

ow
Fo

rt
un

a
K

C
S-

PR
N

G
T

R
N

G

H
ar

d
pr

ob
le

m
us

ed
C

ha
C

ha
20

St
re

am
ci

ph
er

3D
E

S
A

E
S1

28
in

co
un

te
rm

od
e

E
C

D
L

P
Ph

ys
ic

al
pr

op
er

ty
of

O
sc

ill
at

or
-R

in
gs

H
as

h
fu

nc
tio

n
SH

A
16

0,
M

D
5

[4
5]

SH
A

16
0

SH
A

25
6

SH
A

25
6

N
ot

ap
pl

ic
ab

le

R
N

G
re

qu
ir

em
en

ts
m

et
R
1
,R

2
,R

3
R
1
,R

2
,R

3
R
1
,R

2
,R

3
R
1
,R

2
,R

3
,

R
4

(M
iti

ga
te

d)
R
1
,R

2
,R

3
,R

4

U
nb

lo
ck

ed
su

pp
ly

of
ra

nd
om

bi
ts

N
o

N
o

Y
es

Y
es

Y
es

C
or

re
la

tio
n

Te
st

*
*

*
Pa

ss
ed

(s
er

ia
lc

or
re

la
tio

n
of

0.
00

00
34

)
Pa

ss
ed

Pe
rb

it
en

tr
op

y
ra

te
*

*
*

0.
99

99
99

75
0.

99
93

L
in

ea
rc

om
pl

ex
ity

L
C
(x
)

*
*

*
1
5
6
7
0
6
2
3
7
<

L
C
(x
)
≤

1
5
6
7
0
6
2
3
8

N
ot

ap
pl

ic
ab

le

Pe
ri

od
*

*
2
1
2
8

in
si

ng
le

ca
ll

[1
4]

[N
1
×

2
4
0
1
,(
N

1
+

N
2
)
×

2
4
0
1
]

In
fin

ite

K
ey

sp
ac

e
*

*
*

[2
5
2
9
,∞

)
In

fin
ite

T
hr

ou
gh

pu
t

8-
12

K
bp

s
[4

5]
N

o
re

su
lts

[4
5]

7.
2

M
bp

s
2.

5
M

bp
s

6
M

bp
s

on
X

ili
nx

Sp
ar

ta
n-

3A
FP

G
A

St
at

is
tic

al
te

st
s

pa
ss

ed
D

ie
ha

rd
[4

5]
N

ot
av

ai
la

bl
e

[4
5]

D
ie

ha
rd

[1
4]

N
IS

T,
D

ie
ha

rd
,T

es
tU

01
N

IS
T

N
IS

T
pr

op
or

tio
n

ob
ta

in
ed

*
*

*
0.

98
96

0.
98

7
R

es
ta

rt
/N

on
-r

ep
ro

du
ci

bi
lit

y
Te

st
*

*
*

Pa
ss

ed
Pa

ss
ed

*N
o

re
fe

re
nc

e
av

ai
la

bl
e



308 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

11. Conclusion

The operating system kernel demands a high quality CSPRNG for its randomness requirements. A
novel CSPRNG called KCS-PRNG is presented in this paper which exhibits qualities of a CSPRNG
as well as of a TRNG (i.e., it also includes non-reproducibility of the generated random bitstreams)
for use in kernel and in various other cryptographic applications. The combination of clock-controlled
LFSRs as a nonlinear sequence generator and two non-standard and trusted elliptic curves is proven
to be an excellent choice of designing a CSPRNG. An extensive security analysis of the proposed
KCS-PRNG was performed which proved that the proposed generator is resistant to important attacks
like Berlekamp-Massey attacks, brute force attacks, next-bit tests, state compromise extension attacks
and correlation attacks on the proposed generator. The proposed design of the KCS-PRNG allows
periodic change of elliptic curves in the elliptic curve look-up table maintained by the generator to
mitigate the gap of the security propertyR4 i.e., ‘non-reproducibility’ requirement to a practical extent
for the first time in the literature. The use of elliptic curves from its look-up table makes the proposed
KCS-PRNG customizable than the current popular kernel CSPRNGs like /dev/random, Yarrow and
Fortuna whose designs are based on block ciphers like Triple DES and AES respectively. Hence, it is
inferred that the proposed KCS-PRNG qualifies as a competent CSPRNG for adoption in the kernel
applications.

Acknowledgements

The authors thank Society for Electronic Transactions and Security (SETS), Chennai for providing the
research opportunity to carry out this proposed work. The authors show their deepest gratitude to Dr.
P. V. Ananda Mohan and Dr. Reshmi T. R. for their inputs and anonymous reviewers for their review
and Mr. T. Santhosh Kumar for help in experimentation. Authors also thank to Mr. Ritesh Dhote, Mr.
Aditya Saha, Ms. Sonal Priya Kamal and Ms. Diya V. A. for help in final formatting.

References

[1] Koç ÇK. About cryptographic engineering. In: Cryptographic engineering, pp. 1–4. Springer,
2009. doi:10.1007/978-0-387-71817-0 1.

[2] Marco-Gisbert H, Ripoll Ripoll I. Address space layout randomization next generation. Applied
Sciences, 2019. 9(14):2928. doi:10.3390/app9142928.

[3] Tanenbaum AS, Woodhull AS. Operating Systems Design and Implementation (3rd Edition)
(Prentice Hall Software Series). Prentice Hall, 2006. ISBN:0131429388.

[4] Dodis Y, Shamir A, Stephens-Davidowitz N, Wichs D. How to eat your entropy and have it too:
Optimal recovery strategies for compromised RNGs. Algorithmica, 2017. 79(4):1196–1232.
doi:10.1007/978-3-662-44381-1 3.

[5] Dörre F, Klebanov V. Pseudo-random number generator verification: A case study. In: VSSTE.
Springer, 2015 pp. 61–72. doi:10.1007/978-3-319-29613-5 4.



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 309

[6] Alhadawi HS, Zolkipli MF, Ismail SM, Lambić D. Designing a pseudorandom bit
generator based on LFSRs and a discrete chaotic map. Cryptologia, 2019. 43(3):190–211.
doi:10.1080/01611194.2018.1548390.

[7] Anandakumar NN, Sanadhya SK, Hashmi MS. FPGA-based true random number generation
using programmable delays in oscillator-rings. IEEE Transactions on Circuits and Systems II:
Express Briefs, 2019. 67(3):570–574. doi:10.1109/TCSII.2019.2919891.

[8] Silberschatz A. Instructor’s Manual to Accompany: Operating System Concepts. 2015.

[9] Schneier B. Applied cryptography: protocols, algorithms, and source code in C. john wiley &
sons, Second edition, 2007.

[10] Viega J. Practical random number generation in software. In: 19th Annual Computer Security
Applications Conference, 2003. Proceedings. IEEE, 2003 pp. 129–140.

[11] Dodis Y, Pointcheval D, Ruhault S, Vergniaud D, Wichs D. Security analysis of pseudo-random
number generators with input: /dev/random is not robust. In: Proceedings of the 2013
ACM SIGSAC conference on Computer & communications security. 2013 pp. 647–658.
doi:10.1145/2508859.2516653.

[12] Kelsey J, Schneier B, Ferguson N. Yarrow-160: Notes on the design and analysis of the yarrow
cryptographic pseudorandom number generator. In: International Workshop on Selected Areas
in Cryptography. Springer, 1999 pp. 13–33. doi:10.1007/3-540-46513-8 2.

[13] Ferguson N, Schneier B, Kohno T. Cryptography engineering: design principles and practical
applications. John Wiley & Sons, 2011. ISBN-10:0470474246, 13:978-0470474242.

[14] McEvoy R, Curran J, Cotter P, Murphy C. Fortuna: cryptographically secure pseudo-random
number generation in software and hardware. In: 2006 IET Irish Signals and Systems
Conference. IET, 2006 pp. 457–462. ISBN-0-86341-665-9.

[15] Gong G, Lam CC. Linear recursive sequences over elliptic curves. In: Sequences and their
applications, pp. 182–196. Springer, 2002. doi:10.1007/978-1-4471-0673-9 13.

[16] Kerry CF, Gallagher PD. Digital signature standard (DSS). FIPS PUB, 2013. pp. 186–4.

[17] Brainpool E. Brainpool Standard Curves and Curve Generation, 2005.

[18] Bernstein DJ, Chou T, Chuengsatiansup C, Hülsing A, Lambooij E, Lange T, Niederhagen
R, Vredendaal Cv. How to Manipulate Curve Standards: A White Paper for the Black Hat
http://bada55. cr. yp. to. In: International Conference on Research in Security Standardisation.
Springer, 2015 pp. 109–139. doi:10.1007/978-3-319-27152-1 6.

[19] Mukhopadhyay S, Sarkar P. Application of LFSRs for parallel sequence generation in
cryptologic algorithms. In: International Conference on Computational Science and Its
Applications. Springer, 2006 pp. 436–445. doi:10.1007/11751595 47.



310 K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications

[20] Rajski J, Tyszer J. Primitive polynomials over GF (2) of degree up to 660 with uniformly
distributed coefficients. Journal of Electronic testing, 2003. 19(6):645–657. doi:10.1023/
A:1027422805851.

[21] Menezes AJ, Van Oorschot PC, Vanstone SA. Handbook of applied cryptography. CRC press,
2018. ISBN-0-8493-8523-7.

[22] Teo SG. Analysis of nonlinear sequences and streamciphers. Ph.D. thesis, Queensland University
of Technology, 2013.

[23] L’ecuyer P, Simard R. TestU01: AC library for empirical testing of random number generators.
ACM Transactions on Mathematical Software (TOMS), 2007. 33(4):1–40. doi:10.1145/
1268776.1268777.

[24] L’Ecuyer P, Simard R. TestU01: A Software Library in ANSI C for Empirical Testing of Random
Number Generators–User’s Guide, Compact Version. 2013. doi:10.1145/1268776.1268777.

[25] Walker J. ENT: a pseudorandom number sequence test program. Software and documentation
available at/www. fourmilab. ch/random/S, 2008.

[26] II E, Sym D. ECRYPT II. 2010.

[27] Klein A. Cross layer attacks and how to use them (for dns cache poisoning, device tracking and
more). In: 2021 IEEE Symposium on Security and Privacy (SP). IEEE, 2021 pp. 1179–1196.
doi:10.1109/SP40001.2021.00054.

[28] Bassham III LE, Rukhin AL, Soto J, Nechvatal JR, Smid ME, Barker EB, Leigh SD, Levenson
M, Vangel M, Banks DL, et al. Sp 800-22 rev. 1a. a statistical test suite for random and
pseudorandom number generators for cryptographic applications, 2010.

[29] Marsaglia G. DIEHARD Test suite. 1998. 8(01):2014. Online:http://www.stat.fsu.edu/
pub/diehard/.Lastevisited,

[30] Bhattacharjee K, Maity K, Das S. A search for good pseudo-random number generators: Survey
and empirical studies. 2018. arXiv preprint arXiv:1811.04035.

[31] Lavasani A, Eghlidos T. Practical next bit test for evaluating pseudorandom sequences. 2009.
ID:37894176.

[32] GG Rose AG, Xiao L. Cryptographically secure pseudo-random number generator, U.S. Patent,
2011.

[33] Kelsey J, Schneier B, Wagner D, Hall C. Cryptanalytic attacks on pseudorandom number
generators. In: International workshop on fast software encryption. Springer, 1998 pp. 168–188.
doi:10.1007/3-540-69710-1 12.

[34] Bernstein DJ, Lange T, et al. SafeCurves: choosing safe curves for elliptic curve cryptography.
2014. 9. URL https://safecurves.cr.yp.to.Citationsinthisdocument,



K. Abhishek and E.G. Dharma Prakash Raj / On Random Number Generation for Kernel Applications 311

[35] Shumow D, Ferguson N. On the possibility of a back door in the NIST SP800-90 Dual Ec Prng.
In: Proc. Crypto, volume 7. 2007 .

[36] Hales TC. The NSA back door to NIST. Notices of the AMS, 2013. 61(2):190–192. doi:10.1090/
NOTI1078.

[37] Bernstein DJ, Lange T. Security dangers of the NIST curves. In: Invited talk, International State
of the Art Cryptography Workshop, Athens, Greece. 2013.

[38] Konstantinou E, Kontogeorgis A, Stamatiou YC, Zaroliagis C. On the efficient generation
of prime-order elliptic curves. Journal of cryptology, 2010. 23(3):477–503. doi:10.1007/
s00145-009-9037-2.

[39] Menezes AJ, Okamoto T, Vanstone SA. Reducing elliptic curve logarithms to logarithms in a
finite field. IEEE Transactions on information Theory, 1993. 39(5):1639–1646. doi:10.1109/
18.259647.

[40] Cheng Q. Hard problems of algebraic geometry codes. IEEE Transactions on Information
Theory, 2008. 54(1):402–406.

[41] Bos JW, Costello C, Longa P, Naehrig M. Selecting elliptic curves for cryptography: an
efficiency and security analysis. Journal of Cryptographic Engineering, 2016. 6(4):259–286.
doi:10.1007/s13389-015-0097-y.

[42] Smart NP. The discrete logarithm problem on elliptic curves of trace one. Journal of cryptology,
1999. 12(3):193–196. doi:10.1007/s001459900052.

[43] Koblitz N, Menezes A, Vanstone S. Guide to elliptic curve cryptography. 2004. doi:10.1007/
b97644.

[44] Abhishek K, Raj EGDP. Computation of Trusted Short Weierstrass Elliptic Curves for
Cryptography. Cybernetics and Information Technologies, 2021. 21(2):70–88. doi:10.2478/cait-
2021-0020.

[45] Röck A. Pseudorandom number generators for cryptographic applications. 2005. doi:10.1007/
0-387-23483-7 330.


