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Abstract. In this paper, we give an overview of some recent work on applying tools from cat-

egory theory in finite model theory, descriptive complexity, constraint satisfaction, and combi-

natorics. The motivations for this work come from Computer Science, but there may also be

something of interest for model theorists and other logicians.

The basic setting involves studying the category of relational structures via a resource-indexed

family of adjunctions with some process category - which unfolds relational structures into tree-

like forms, allowing natural resource parameters to be assigned to these unfoldings. One ba-

sic instance of this scheme allows us to recover, in a purely structural, syntax-free way: the

Ehrenfeucht-Fraı̈ssé game; the quantifier rank fragments of first-order logic; the equivalences

on structures induced by (i) the quantifier rank fragments, (ii) the restriction of this fragment

to the existential positive part, and (iii) the extension with counting quantifiers; and the combi-

natorial parameter of tree-depth (Nesetril and Ossona de Mendez). Another instance recovers

the k-pebble game, the finite-variable fragments, the corresponding equivalences, and the com-

binatorial parameter of treewidth. Other instances cover modal, guarded and hybrid fragments,

generalized quantifiers, and a wide range of combinatorial parameters. This whole scheme has

been axiomatized in a very general setting, of arboreal categories and arboreal covers.

Beyond this basic level, a landscape is beginning to emerge, in which structural features of the

resource categories, adjunctions and comonads are reflected in degrees of logical and computa-

tional tractability of the corresponding languages. Examples include semantic characterisation

and preservation theorems, and Lovász-type results on counting homomorphisms.

*Address for correspondence: Department of Computer Science, University College London, 66-72 Gower St., London

WC1E 6EA, U.K.
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1. Introduction

In recent work [7, 13], a program has been initiated of

Relating Structure and Power

Here we have in mind two major organizing principles in the foundations of computation:

Structure Compositionality and semantics, addressing the question of mastering the size and com-

plexity of computer systems and software.

Power Expressiveness and computational complexity, addressing the question of how we can harness

the power of computation and recognize its limits.

A striking feature of the current state of the art is that there are almost disjoint communities of re-

searchers studying Structure and Power respectively, with no common technical language or tools.

In our opinion, this is a major obstacle to fundamental progress in Computer Science.

The research program initiated in [7, 13], and developed further in [17, 18, 11], aims at relating

categorical semantics, which exemplifies Structure, to finite model theory, which exemplifies Power.

This is the focus of a current joint project with Anuj Dawar.1 Contributors to this program include Dan

Marsden, Luca Reggio, Tomáš Jakl, Tom Paine, Nihil Shah, Adam Ó Conghaile and Yoàv Montacute.

The key initial idea of this program [7, 13] is to encapsulate various forms of model compari-

son game, in which Spoiler tries to distinguish two structures, and Duplicator tries to show they are

the same, as resource-indexed comonads on the category of relational structures. Intuitively, these

comonads correspond to co-resources, which limit the ability of Spoiler to access the structure by

bounding resources of some kind. Thus, if Ck is such a comonad, with resource index k, then to have

a homomorphism

CkA→ B

means that we only have to check the homomorphism conditions against limited – k-bounded – parts

of the structure of A.

Some key features have emerged in the elaboration of this idea in subsequent work:

• This idea has proved to be extremely robust. It can be used to capture a wide range of model

comparison games, and the resource-indexed equivalences induced by the corresponding logics.

These include the quantifier rank fragments, the finite variable fragments, the modal, guarded,

hybrid and bounded fragments, generalized quantifiers, and more.

• The basic idea of coresources CkA → B seems at first blush restricted to forth-only equiva-

lences, and hence to existential positive fragments. However, the ideas in fact extend smoothly

to cover the full back-and-forth equivalences, using a refinement of the open maps formulation

of bisimulation to open pathwise embeddings. Moreover, isomorphism in the coresource setting

characterizes extensions of the logics with counting quantifiers.

1EPSRC-funded project EP/T00696X/1: Resources and Co-resources: a junction between categorical semantics and de-

scriptive complexity.
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• Coalgebras A → CkA correspond to resource-bounded structural decompositions of A. The

existence of such decompositions yields significant combinatorial invariants of A. This allows

important combinatorial parameters such as tree-width and tree-depth to be recovered.

• The whole pattern of comonads, their coalgebras, and the corresponding resolutions into co-

monadic adjunctions, forms a robust template which recurs throughout finite model theory and

descriptive complexity. This template has been axiomatized at a very general categorical level

in [11]. This provides a new kind of axiomatic basis for model theory, finite and infinite.

We can regard the axiomatization in [11] as the culmination of a “first wave” of this research program.

Results building on this initial phase of development are beginning to emerge. These include:

• General versions of model-theoretic results such as preservation theorems: Rossman’s homo-

morphism preservation theorems, the van Benthem-Rosen theorem on bisimulation invariance,

etc.

• Uniform proofs of preservation theorems in the finite and infinite cases: “model theory without

compactness”.

• Structural features of comonads (idempotence, bisimilar companions property), and their sig-

nificance for computational tractability.

• Lovász-type theorems on counting homomorphisms.

• Combinatorial parameters: concrete cases, and an axiomatic approach via density comonads.

• Feferman-Vaught-Mostowski type theorems, with applications to Courcelle’s theorem.

• New cohomological approximation algorithms for constraint satisfaction and structure isomor-

phism.

Our aim in the present paper is to give an overview of this line of research, and the new directions

currently being developed. We aim to give an accessible account, emphasising conceptual elements,

and keeping technicalities to a minimum. In particular, we aim to make this presentation accessible

both to people working in finite model theory and descriptive complexity, and to “mainstream” model

theorists.

Boaz Trakhtenbrot

This paper is submitted to a special issue in celebration of the centenary of Boaz Trakhtenbrot, one

of the founding fathers of theoretical computer science. I had the privilege of meeting Boaz on a

number of occasions, and hosted a visit by him to Imperial College in 1990. I warmly remember

the fascinating conversations I had with him. He was a unique link to the history and prehistory of

our field. Even more importantly, he lived and breathed his science in the present, with passionate

commitment.

Boaz was a pioneer of both Structure and Power. In particular, many of the renowned results

from the earlier part of his career relate to Power:

• Trakhtenbrot’s theorem
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• Büchi-Elgot-Trakhtenbrot theorem

• Borodin-Trakhtenbrot gap theorem

In his later work, Structure played an equally prominent role:

• semantics of dataflow

• behaviour structures and nets

• hybrid systems

I believe that Boaz had a unified vision of the field, and that our attempts to relate Structure to

Power are fully in the spirit of his work.

2. Background

2.1. The setting: relational structures

A relational vocabulary σ is a family of relation symbols R, each of some arity n > 0. A relational

structure for σ is (A, {RA | R ∈ σ}), where RA ⊆ An. We shall not distinguish notationally

between a structure and its underlying set. A homomorphism of σ-structures f : A→ B is a function

f : A→ B such that, for each relation R ∈ σ of arity n and (a1, . . . , an) ∈ An:

(a1, . . . , an) ∈ RA ⇒ (f(a1), . . . , f(an)) ∈ RB.

These notions are pervasive in

• logic (model theory),

• computer science (databases, constraint satisfaction, finite model theory)

• combinatorics (graphs and graph homomorphisms).

Our setting will be Struct(σ), the category of σ-structures and homomorphisms.

2.2. Remarks to model theorists

A first remark is that Struct(σ) is not the usual category (implicitly) studied in model theory. Instead,

stronger properties are required for morphisms, typically that they are embeddings or elementary

embeddings, so that truth of a larger class of first-order sentences is preserved. These categories

are “thin”, with rather few morphisms, and consequently lack interesting categorical structure. By

contrast, Struct(σ) has a rich categorical structure – it is in fact a quasitopos.2 Moreover, the fact

that we focus on this category with all homomorphisms does not at all mean that we cannot capture

elementary equivalence, as we shall see.

This difference in setting is surely part of the explanation for the strange dissociation which exists

between model theory and category theory. Both model theory and category study the structure of

2This observation is due to Dan Marsden.
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mathematical theories in general, but they do so in rather different ways, and with strikingly little

communication between them.

What makes this dissociation all the stranger is indicated by the following diagram:

Model theory Category theory

algebraic and arithmetic geometry

Algebraic and arithmetic geometry are prime foci of contemporary applied model theory. Indeed, in

an aphorism of Wilfrid Hodges [24]:

model theory = algebraic geometry - fields.

Yet contemporary arithmetic and algebraic geometry are imbued with the Grothendieck heritage: cat-

egories, sheaves, schemes, cohomology – and beyond (stacks, higher categories etc.).

In our view, just as Structure and Power can benefit from being brought together and intertwined,

so category theory and model theory can both benefit from some rapprochement.

One existing locus of interaction is between accessible categories and abstract elementary classes,

see e.g. [14]. The connections made between these theories have a heavily set-theoretic flavour.

By contrast, we aim for a resource-sensitive structure theory “down below”, capturing fine struc-

ture of resource-indexed fragments in a form relevant to computational tractability and complexity.

2.3. Brief review of adjunctions and comonads

We recall the notion of adjunction through an example which hopefully will be familiar.

Given a commutative ring R, the category of R-modules is denoted R–Mod. There is an evident

forgetful functor U : R–Mod → Set, and an adjunction

Set R–Mod

R(•)

U

⊥

R(X) is the free module generated by X (formal finite R-linear combinations over X). The unit

of the adjunction is the map ηX : X → UR(X) which sends x to 1 · x.

Freeness is captured by a universal mapping property:

Set R–Mod

X UR(X)

UM

ηX

f
Uf̂

R(X)

M

f̂

which says that every map f : X → UM factors through ηX via a unique R-module morphism

f̂ : R(X) →M .
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Given any adjunction

C D

L

R

⊥

there is an associated monad RL on C, and comonad LR on D.3 These notions are pervasive in

mathematics [28]:

• monads occur in topology, and finitary monads on Set subsume universal algebra.

• comonads feature in descent theory.

• adjunctions, monads and comonads specialize to familiar notions on posets: adjunctions spe-

cialize to Galois correspondences, monads to closure operators, and comonads to coclosures.

In our context, we can think of a resource-indexed comonad Ck as a modality:

CkA→ B

means we have a homomorphism which only needs to be checked against a limited part of the structure

of A. This is exactly what logical languages do in model theory! They calibrate limited means for

accessing structures.

2.4. The general scheme: resource-indexed adjunctions

In our approach, we build tree-structured covers of a given, purely extensional relational structure.

Such a tree cover will in general not have the full properties of the original structure, but be a “best

approximation” in some resource-restricted setting. More precisely, this means that for each integer

k > 0 we have an adjunction

Ak Struct(σ)

Lk

Rk

⊥

between the category of σ-structures, and the resource-bounded category Ak. This adjunction yields

the corresponding comonad Ck = LkRk.

The objects of the category where the approximations live have an intrinsic tree structure, which

can be captured axiomatically, as arboreal categories. The tree encodes a process for generating (parts

of) the relational structure, to which resource notions can be applied. This allows us to apply these

resource notions to the objects of the extensional category via the adjunction.

We shall now see what all this means in terms of a simple but fundamental example.

3Monads and comonads have additional structure, of a unit and multiplication, and counit and comultiplication, respectively.

We will give additional details later when we come to coalgebras, but prefer to keep the exposition simple for now.
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3. First example

We need a few notions on posets. A forest is a poset (F,≤) such that, for all x ∈ F , the set of

predecessors of x is a finite chain.4 The roots of a forest are the minimal elements. The height of

a forest is the supremum of the cardinalities of its chains (note that the branches of the forest are its

maximal chains). A tree is a forest with a unique root. A forest morphism is a map preserving roots

and the covering relation: x ≺ y if x < y, and for all z, x ≤ z ≤ y implies z = x or z = y.

The Gaifman graph of a σ-structure A has set of vertices A, and a adjacent to b if a 6= b and a, b

both occur in some tuple of one of the relations RA, R ∈ σ.

Now a forest-ordered σ-structure (A,≤) is a σ-structure A with a forest order ≤ on A. This must

satisfy the following condition:

(E) elements of A which are adjacent in the Gaifman graph of A must be comparable in the order.

The mininum height of such a forest order on A is the tree-depth of A (Nešetřil and Ossona de

Mendez [30]). This is an important combinatorial parameter, used extensively by Rossman in his

Homomorphism Preservation Theorems.

Morphisms of forest-ordered σ-structures are σ-homomorphisms which are also forest morphisms.

This gives rise to a category RE(σ), and an evident forgetful functor U : RE(σ) → Struct(σ). RE(σ)
is our first example of an arboreal category.

There is a natural resource-indexing by height. For each k > 0, if we restrict to forest orders of

height ≤ k, we get a sub-category RE
k (σ), and a functor Uk : RE

k (σ) → Struct(σ). This functor has a

right adjoint Gk, giving rise to a comonad Ek = UkGk on Struct(σ).

We describe the construction for GkA, which builds a forest-ordered σ-structure from any σ-

structure A in a “cofree” way.5

• Given a structure A, the universe of GkA is A≤k, the non-empty sequences of length ≤ k.

• This is forest-ordered by the prefix order.

• The counit map εA : A≤k → A sends a sequence [a1, . . . , an] to an.

• The key question is: how do we lift the σ-relations on A to GkA? Given e.g. a binary relation

R, we define RGkA to be the set of pairs of sequences (s, t) such that

– s ⊑ t or t ⊑ s (in the prefix order)

– RA(εA(s), εA(t)).

This generalizes straightforwardly to n-ary relations. Given an n-ary relation R,RGkA is the set

of tuples of sequences (s1, . . . , sn) such that for all i, j, si is comparable with sj in the prefix

order, and RA(εA(s1), . . . , εA(sn)).

4A chain in a poset P is a linearly ordered subset C ⊆ P .
5This is cofree since, as we will see, it has a couniversal mapping property.
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We verify the couniversal property:

Arboreal category Extensional category

GkA

T

f̂

UkGkA A

UkT

εA

Uk f̂ f

This says that any σ-homomorphism f : UkT → A factors uniquely through the counit εA via a

morphism f̂ : T → GkA of forest-ordered σ-structures. To see this, note that for each x ∈ T, its

predecessors in the forest order form a covering chain x1 ≺ · · · ≺ xn = x, with n ≤ k, and x1 a

root. We define f̂(x) = [f(x1), . . . , f(xn)]. It is easily verified that this gives a forest morphism.

Moreover, by property (E), any instance ~x ∈ RT must occur along a chain in T, and hence the image

of this tuple under f̂ will be a tuple of sequences ~s pairwise related in the prefix order. Since f is a

homomorphism, by the definition of RGkA we will have ~s ∈ RGkA. Thus f̂ is a morphism in RE(σ).

Consequences

Recall that the right adjoint is uniquely determined by the forgetful functor, and the comonad by

the adjunction. So everything follows from the delineation of the arboreal category RE
k (σ), and the

evident forgetful functor Uk : RE
k (σ) → Struct(σ).

As we shall now see, this structure gives us directly:

• The Ehrenfeucht-Fraı̈ssé game, which characterizes the elementary equivalences ≡k induced by

the quantifier-rank indexed fragments of FOL.

• This leads directly to syntax-free, purely structural descriptions of the equivalences of structures

induced by:

– the full fragment of quantifier rank ≤ k

– the existential positive part of the fragment

– the extension of the fragment with counting quantifiers.

• Note that model classes of formulas of quantifier rank k are exactly the unions of equivalence

classes of ≡k. Thus first-order definability, graded by quantifier rank, is also captured in a

syntax-free fashion.

• We also recover the important tree-depth combinatorial parameter from the coalgebras of the

comonad.

Moreover, this template can be used to give similar analyses of a wealth of other logical and

combinatorial notions.
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The Ehrenfeucht-Fraı̈ssé game ([20])

Model comparison games in general are especially important in finite model theory, where the com-

pactness theorem is not available.

The EF-game between A and B. In the i’th round, Spoiler moves by choosing an element in

A or B; Duplicator responds by choosing an element in the other structure. Duplicator wins after k

rounds if the relation {(ai, bi) | 1 ≤ i ≤ k} is a partial isomorphism.

In the existential EF-game, Spoiler only plays in A, and Duplicator responds in B. The winning

condition is that the relation {(ai, bi) | 1 ≤ i ≤ k} is a partial homomorphism.

The Ehrenfeucht-Fraı̈ssé Theorem [22, 21] says that a winning strategy for Duplicator in the k-

round EF game characterizes the equivalence ≡Lk , where Lk is the fragment of first-order logic of

formulas with quantifier rank ≤ k.

CoKleisli maps are strategies

Intuitively, an element of A≤k represents a play in A of length ≤ k. A coKleisli morphism EkA→ B

represents a Duplicator strategy for the existential Ehrenfeucht-Fraı̈ssé game with k rounds:

• Spoiler plays only in A, and bi = f [a1, . . . , ai] represents Duplicator’s response in B to the i’th

move by Spoiler.

• The winning condition for Duplicator in this game is that, after k rounds have been played, the

induced relation {(ai, bi) | 1 ≤ i ≤ k} is a partial homomorphism from A to B.

Theorem 3.1. The following are equivalent:

1. There is a homomorphism EkA→ B.

2. Duplicator has a winning strategy for the existential Ehrenfeucht-Fraı̈ssé game with k rounds,

played from A to B.

3. For every existential positive sentence ϕ with quantifier rank ≤ k, A |= ϕ ⇒ B |= ϕ.

Open pathwise embeddings and back-and-forth equivalences

How do we capture back-and-forth equivalences, and hence the whole logic rather than just the ex-

istential positive part? The idea is to work in the arboreal category RE
k (σ), where we have enough

process structure to make game and bisimulation notions meaningful. The key notions are

• paths, i.e. objects of RE
k (σ) in which the order is linear (so the forest is a single branch), and

• path embeddings, i.e. forest morphisms with paths as domains which are embeddings of rela-

tional structures.

These are special cases of notions which are axiomatised in the arboreal categories setting in great

generality in [11].
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A morphism f : X → Y in RE
k (σ) is a pathwise embedding if, for all path embeddings m : P ֌

X, the composite f ◦m is a path embedding.

To capture the “back” or p-morphism condition, we introduce a notion of open map [26] that,

combined with the concept of pathwise embedding, will allow us to define an appropriate notion of

bisimulation. A morphism f : X → Y in RE
k (σ) is said to be open if it satisfies the following path-

lifting property: Given any commutative square

P Q

X Y
f

with P,Q paths, there exists a diagonal filler Q→ X (i.e. an arrow Q→ X making the two triangles

commute). (Note that, if it exists, such a diagonal filler must be an embedding.)

If we read the embeddings from P as the current positions reached in X and Y , and the extension

from P to Q as Spoiler playing a new move in Y , then the diagonal filler witnesses the ability of

Duplicator to find a matching move in X.

A bisimulation between objects X,Y of RE
k (σ) is a span of open pathwise embeddings

R

X Y

If such a bisimulation exists, we say that X and Y are bisimilar.

Theorem 3.2. GkA and GkB are bisimilar in RE
k (σ) iff Duplicator has a winning strategy in the

k-round Ehrenfeucht-Fraı̈ssé game between A and B.

Note that we use the resource category RE
k (σ) to study logical properties of objects of the extensional

category Struct(σ).

Connection to logic

We consider the following fragments of first-order logic:

• Lk is the fragment of quantifier-rank ≤ k.

• ∃Lk is the existential positive fragment of Lk

• Lk(#) is the extension of Lk with counting quantifiers ∃≥n (“there exists at least n”).

We define three resource-indexed equivalences on structures A, B of Struct(σ) using the resource

categories RE
k (σ):

• A⇄
G
k B iff there are morphisms GkA→ GkB and GkB → GkA.

Note that there need be no relationship between these morphisms.
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• A↔G
k B iff GkA and GkB are bisimilar in RE

k (σ).

• A ∼=G
k B iff GkA and GkB are isomorphic in RE

k (σ).

Theorem 3.3. For structures A and B:

(1) A ≡∃Lk B ⇐⇒ A⇄G
k B.

(2) A ≡Lk B ⇐⇒ A↔G
k B.

(3) A ≡Lk(#) B ⇐⇒ A ∼=G
k B.

Coalgebra number and tree-depth

Another fundamental aspect of comonads is that they have an associated notion of coalgebra. To

explain this, we need to recall the detailed definition of a comonad (G, ε, δ) on a category C. As well

as an endofunctor G : C → C, we have a natural transformation εA : GA → A (the counit), and

a natural transformation δA : GA → GGA (the comultiplication). These are required to make the

following diagrams commute:

GA GGA

GGA GGGA

δA

δA GδA

δGA

GA GGA

GGA GA

δA

idGA
δA GεA

εGA

A coalgebra for a comonad (G, ε, δ) is a morphism α : A→ GA such that the following diagrams

commute:

A GA

A

α

idA

εA

A GA

GA G2A

α

α δA

Gα

Note that whereas a homomorphism EkA → B is generally easier to construct than a homomor-

phismA→ B (fewer conditions to check for the domain), a homomorphism A→ EkB will be harder

(fewer available properties of the codomain to show that relations are preserved). We should only ex-

pect a coalgebra structure α : A → EkA to exist when the k-local information on A is sufficient to

determine the structure of A.

Our use of indexed comonads Ck opens up a new kind of question for coalgebras. Given a structure

A, we can ask: what is the least value of k such that a Ck-coalgebra exists on A? We call this the

coalgebra number of A.

Theorem 3.4. For the Ehrenfeucht-Fraı̈ssé comonad Ek, the coalgebra number of A corresponds pre-

cisely to the tree-depth of A.

This follows directly from the following result.
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Theorem 3.5. The category of coalgebras for Ek is isomorphic to RE
k (σ), the category of forest-

ordered σ-structures.6

This says that Ek-coalgebras on A correspond bijectively to witnesses for the tree-depth of A being

≤ k.

4. Establishing the template

The rich connections we found in the example of the Ehrenfeucht-Fraı̈ssé comonad are no accident.

They instantiate a pattern which recurs throughout model theory, capturing in particular the resource-

sensitive aspects important in finite model theory and descriptive complexity.

The pebbling comonad

To show how the same pattern occurs in a significantly different example, we look at the pebbling

comonad.

Pebble games are similar but subtly different to EF-games. Spoiler moves by placing one from a

fixed set of k pebbles on an element of A or B; Duplicator responds by placing their matching pebble

on an element of the other structure. Duplicator wins if after each round, the relation defined by the

current positions of the pebbles is a partial isomorphism. Thus there is a “sliding window” on the

structures, of fixed size. It is this size which bounds the resource, not the length of the play.

Whereas the k-round EF game corresponds to bounding the quantifier rank, k-pebble games cor-

respond to bounding the number of variables which can be used in a formula.

Just as for EF-games, there is an existential-positive version, in which Spoiler only plays inA, and

Duplicator responds in B.

The pebbling adjunction

We define a k-pebble forest-ordered σ-structure (A,≤, p) to be a forest-ordered σ-structure (A,≤)
together with a pebbling function p : A → k, where k := {1, . . . , k}. In addition to condition (E), it

must also satisfy the following condition:

(P) if a is adjacent to b in the Gaifman graph of A, and a < b in the forest order, then for all

x ∈ (a, b], p(a) 6= p(x).

Morphisms of these structures are morphisms of forest-ordered structures which additionally preserve

the pebbling function.

This defines a category RP
k (σ) (where k bounds the number of pebbles, rather than the height of

the forest order), and there is an evident forgetful functor Vk : RP
k (σ) → Struct(σ).

Theorem 4.1. For each k > 0, the functor Vk has a right adjoint Hk.

The corresponding comonad is Pk, the pebbling comonad.

6More specifically, the comparison functor from RE
k (σ) to the category of coalgebras for Ek is an isomorphism. Thus the

adjunction Uk ⊣ Gk is comonadic [28].
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The pebbling comonad

Given a structure A, the universe of PkA is (k×A)+, the set of finite non-empty sequences of moves

(p, a). Note this will be infinite even if A is finite. The counit map εA : PkA → A sends a sequence

[(p1, a1), . . . , (pn, an)] to an.

To lift the relations on A to PkA we have the following condition in addition to those for Ek:

• If s ⊑ t, then the pebble index of the last move in s does not appear in the suffix of s in t.

We can now run exactly the same script as for the Ehrenfeucht-Fraı̈ssé case:

• We can define paths, pathwise embeddings, open maps, bisimilarity in RP
k (σ) in exactly the

same fashion as we did for RE
k (σ).

• Hence we can define bisimulations between object of the extensional category Struct(σ) using

the resource category RP
k (σ).

• We can define the equivalence relations A⇄
H
k B, A↔H

k B, A ∼=H
k B with respect to RP

k (σ).

We now take Lk to be the k-variable fragment of first-order logic. ∃Lk is the existential-positive

part of this fragment, Lk(#) the extension of Lk with counting quantifiers. With this notation, we get

the same result as Theorem 3.3:

Theorem 4.2. For structures A and B:

(1) A ≡∃Lk B ⇐⇒ A⇄H
k B.

(2) A ≡Lk B ⇐⇒ A↔H
k B.

(3) A ≡Lk(#) B ⇐⇒ A ∼=H
k B.

Coalgebra number and tree-width

We can define the coalgebra number for the pebbling comonad exactly as done before for the Ehrenfeucht-

Fraı̈ssé comonad.

A slightly more subtle argument is needed to show:

Theorem 4.3. For the pebbling comonad Pk, the coalgebra number of A corresponds precisely to the

tree-width of A.7

The modal comonad

We briefly summarize another important example, for basic modal logic. This exemplifies both vari-

ation, since it has significantly different properties to the Ehrenfeucht-Fraı̈ssé and pebbling cases, and

also the underlying structural uniformity, since again we can run exactly the same script.

• In this case, the modal comonad Mk corresponds to k-level unravelling of a Kripke structure.

7Strictly speaking, to treewidth + 1, since by convention 1 is subtracted from the “natural” measure in defining treewidth.
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• Open pathwise embedding bisimulation recovers standard modal bisimulation.

• The logical equivalences are the modal versions of those previously considered:

– full modal logic of depth ≤ k,

– the diamond-only positive fragment, and

– graded modal logic [19] for the counting case.

• The coalgebra number in this case recovers the property of being a synchronization tree of

height ≤ k.

• The fact that it is a property rather than a structure in this case follows from the fact that this

comonad is idempotent, and hence corresponds to a coreflective subcategory (the tree-structured

models as a full sub-category of the category of all Kripke structures).

Examples galore

Subsequent work has made detailed studies of a considerable number of examples of game comonads

corresponding to various logic fragments and corresponding model comparison games:

• pebbling games and finite variable fragments [7]

• Ehrenfeucht-Fraı̈ssé games and quantifier rank fragments [13]

• basic modal logic and modal depth fragments [13]

• guarded quantifier fragments (atom, loose and clique guards) [9]

• generalized quantifier fragments [17]

• hybrid and bounded fragments [10]

• bounded conjunction finite variable logic (motivated by pathwidth) [29]

Ck Logic κC →C

k ↔C

k
∼=C

k

Ek FOL w/ qr ≤ k tree-depth X X X

Pk k-variable logic treewidth +1 X X X

Mk ML w/ md ≤ k sync. tree-depth X X X

G
g

k g-guarded logic w/ width

≤ k

guarded

treewidth

X X ?

Hn,k k-variable logic w/ Qn-

quantifiers

n-ary general

treewidth

X X X

PRk k-variable logic

restricted-∧
pathwidth +1 X ? X

Figure 1. Summary table
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In each case, we have tight connections with logical fragments, and with combinatorial invariants,

following exactly the same pattern we have already seen. We get direct descriptions of the coalgebras

in terms of comonadic forgetful functors. These are important both for formulating bisimulation, and

for the connection with combinatorial invariants.

The situation is summarized in Figure 1.

5. Arboreal categories

Arboreal categories and arboreal covers provide an axiomatic framework which can be instantiated

to yield the wide range of examples described in the previous section. More broadly, they provide

an axiomatic setting for model theory in general, with particular support for fine-grained analysis of

resource-bounded aspects and combinatorial invariants.

In this section, we provide a brief overview of these notions, minimising technical details while

emphasising the main concepts and results. For details, see [11].

The key notion in arboreal categories is that of path. This can be formulated in any category C

equipped with a reasonable factorization system.8 We refer to the monomorphisms in this factorization

system as embeddings. If X is an object of C, we write SX for the poset of subobjects determined by

embeddings.

Definition 5.1. An object X of C is called a path if the poset SX is a finite chain.

Paths will be denoted by P,Q,R, . . .. A path embedding is an embedding P ֌ X whose domain

is a path. Given any object X of C, we let PX be the sub-poset of SX determined by the path

embeddings.

We say that a category C equipped with a factorization system is a path category if it has coproducts

of families of paths, as well as satisfying an additional technical condition (“2 out of 3 condition”). It

follows from the axioms that, for any object X in a path category, PX is a tree. (We allow the empty

path, given by the initial object (the empty coproduct of paths), which forms the root.)

We can define open pathwise embeddings and bisimulation in any path category. To show that

these notions have the expected properties, we need additional axioms, motivated by the fact that trees

are the colimits of their branches and the embeddings between them. We say that an object X in a

path category is path-generated if it is the colimit of its path embeddings.

An arboreal category is a path category in which every object is path-generated, and moreover

paths are connected in the sense that any arrow P →
∐

i Pi factors through one of the coproduct

injections Pi →
∐

i Pi.

These axioms are sufficient to allow operational or dynamic notions such as games to be defined,

and shown to be equivalent to the open pathwise embedding notion of bisimulation.

5.1. Back-and-forth games

Let C be an arboreal category and let X,Y be any two objects of C. We define a back-and-forth

game G(X,Y ) played by Spoiler and Duplicator on X and Y as follows. Positions in the game

8More precisely, a stable proper factorization system [11].
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are pairs of (equivalence classes of) path embeddings (m,n) ∈ PX × PY . The winning relation

W(X,Y ) ⊆ PX × PY consists of the pairs (m,n) such that dom(m) ∼= dom(n).

Let ⊥X : P ֌ X and ⊥Y : Q ֌ Y be the roots of PX and PY , respectively. If P 6∼= Q, then

Duplicator loses the game. Otherwise, the initial position is (⊥X ,⊥Y ). At the start of each round, the

position is specified by a pair (m,n) ∈ PX × PY , and the round proceeds as follows: Either Spoiler

chooses some m′ ≻ m and Duplicator must respond with some n′ ≻ n, or Spoiler chooses some

n′′ ≻ n and Duplicator must respond with m′′ ≻ m. Duplicator wins the round if they are able to

respond and the new position is in W(X,Y ). Duplicator wins the game if they have a strategy which

is winning after t rounds, for all t ≥ 0.

Example 5.2. It is shown in [13] that the abstract game G(X,Y ) specialises, in the case of the arboreal

categories RE
k (σ), R

P
k (σ) and RM

k (σ), to the usual k-round Ehrenfeucht-Fraı̈ssé, k-pebble and k-

round bisimulation games, respectively.

Theorem 5.3. Let X and Y be any two objects of an arboreal category such that the product X × Y

exists. Then X and Y are bisimilar if and only if Duplicator has a winning strategy in the game

G(X,Y ).

5.2. Arboreal covers

We now return to the underlying motivation for the axiomatic development. Arboreal categories have

a rich intrinsic process structure, which allows “dynamic” notions such as bisimulation and back-and-

forth games, and resource notions such as the height of a tree, to be defined. A key idea is to relate

these process notions to extensional, or “static” structures. In particular, much of finite model theory

and descriptive complexity can be seen in this way.

In the general setting, we have an arboreal category C, and another category E, which we think of

as the extensional category.

Definition 5.4. An arboreal cover of E by C is given by a comonadic adjunction

C E.

L

R

⊥

As for any adjunction, this induces a comonad on E. The comonad is (G, ε, δ), where G := LR, ε is

the counit of the adjunction, and δa : LRa→ LRLRa is given by δa := L(ηRa), with η the unit of the

adjunction. The comonadicity condition states that the Eilenberg-Moore category of coalgebras for

this comonad is isomorphic to C. The idea is then that we can use the arboreal category C, with its rich

process structure and all the associated notions, to study the extensional category E via the adjunction.

We now bring resources into the picture.

Definition 5.5. Let C be an arboreal category, with full subcategory of paths Cp. We say that C is

resource-indexed by a resource parameter k if for all k ≥ 0, there is a full subcategory Ck
p of Cp closed
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under embeddings9 with

C0
p →֒ C1

p →֒ C2
p →֒ · · ·

This induces a corresponding tower of full subcategories Ck of C, with the objects of Ck those which

are the colimit of their path embeddings with domain in Ck
p.

Example 5.6. One resource parameter which is always available is to take Ck
p to be given by those

paths in C whose chain of subobjects is of length ≤ k. We can think of this as a temporal parameter,

restricting the number of sequential steps, or the number of rounds in a game. For the Ehrenfeucht-

Fraı̈ssé and modal comonads, we recover RE
k and RM

k as described in sections 3 and 4, corresponding

to k-round versions of the Ehrenfeucht-Fraı̈ssé and modal bisimulation games respectively [13]. How-

ever, note that for the pebbling comonad, the relevant resource index is the number of pebbles, which

is a memory restriction along a computation or play of a game. This leads to RP
k as described in sec-

tion 4.

Proposition 5.7. Let {Ck} be a resource-indexed arboreal category. Then Ck is an arboreal category

for each k.

Definition 5.8. Let {Ck} be a resource-indexed arboreal category. We define a resource-indexed ar-

boreal cover of E by C to be an indexed family of comonadic adjunctions

Ck E

Lk

Rk

⊥

with corresponding comonads Gk on E.

Example 5.9. Our key examples arise by taking the extensional category E to be Struct(σ). For each

k ≥ 0, there are evident forgetful functors

LE
k : RE

k (σ) → Struct(σ), LP
k : RP

k (σ) → Struct(σ)

which forget the forest order, and in the case of RP
k , also the pebbling function. These functors are both

comonadic over Struct(σ). The right adjoints build a forest over a structure A by forming sequences

of elements over the universe A, suitably labelled and with the σ-relations interpreted so as to satisfy

the conditions (E) and (P) respectively. In the modal logic case, the extensional category E is the

category Struct⋆(σ) of pointed σ-structures (A, a) with a ∈ A, and morphisms the σ-homomorphisms

preserving the distinguished point. There is a forgetful functor

LM
k : RM

k → Struct⋆(σ)

sending (A,≤) ∈ RM
k to (A, a), where a is the unique root of (A,≤). This functor is comonadic and

its right adjoint sends a pointed σ-structure (A, a) to the tree-ordered structure obtained by unravelling

9That is, for any embedding P ֌ Q in C with P,Q paths, if Q ∈ C
k
p then also P ∈ C

k
p .
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the structure A, starting from a, to depth k, and with the σ-relations interpreted so as to satisfy the

condition (M), which is a suitable “local” version of condition (E) [13].

These constructions yield the comonads described concretely in [7, 13]. The sequences correspond

to plays in the Ehrenfeucht-Fraı̂ssé and pebbling games respectively. The work needed to show the

correspondence between each of these games and the generic game G(X,Y ) consists only in matching

the winning conditions, which is quite straightforward; see [13].

We now show how resource-indexed arboreal covers can be used to define important notions on

the extensional category. For a resource-indexed arboreal cover of E by C, with adjunctions Lk ⊣ Rk

and comonads Gk, we define three resource-indexed relations on objects of E, in terms of their images

in Ck under Rk.

Definition 5.10. Consider a resource-indexed arboreal cover of E by C, and any two objects a, b of E.

We define:

• a⇄R
k b iff there are morphisms Rka→ Rkb and Rkb→ Rka in Ck.

• a↔R
k b iff there is a bisimulation between Rka and Rkb in Ck.

• a ∼=R
k b iff Rka and Rkb are isomorphic in Ck.

Proposition 5.11. Assume E has binary products. For objects a and b of E, a↔R
k b iff Duplicator has

a winning strategy in the game G(Rka,Rkb).

Once the correspondence between the abstract games G(Rka,Rkb) (and variants for the existential

positive and counting quantifier cases) and the standard model comparison games has been established,

we obtain the connections to logical equivalences as in Theorems 3.3 and 4.2 as corollaries.

6. Homomorphism preservation theorems: towards axiomatic resource-

indexed model theory

As we have seen, comonadic semantics has now been given for a number of important fragments

of first-order logic, including the quantifier rank fragments, the finite variable fragments, the modal

fragment, and guarded fragments. In the landscape emerging from these constructions, some salient

properties have come to the fore. These are properties which a comonad, arising from an arboreal

cover in the sense of [11], may or may not have:

• The comonad may be idempotent, meaning that the comultiplication is a natural isomorphism.

Idempotent comonads correspond to coreflective subcategories, which form the Eilenberg-Moore

categories of these comonads. The modal comonads Mk are idempotent. The corresponding

coreflective subcategories are of those modal structures which are tree-models to depth k [13].

• The comonad C may satisfy the following property: for each structure A, CA↔C A, where ↔C

is the bisimulation equivalence defined for C in terms of open pathwise embeddings. We shall

call this the bisimilar companion property. Note that an idempotent comonad, such as Mk, will
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automatically have this property. The guarded comonads Gk from [9] are not idempotent, but

have the bisimilar companion property, which is thus strictly weaker.

• Finally, the comonads Ek and Pk have neither of the above properties. Unlike the modal and

guarded fragments, the quantifier rank and finite variable fragments cover the whole of first-

order logic, so we call these comonads expressive.

Thus we have a strict hierarchy of comonads in the arboreal categories framework:

idempotent ⇒ bisimilar companions ⇒ arboreal.

This hierarchy is correlated with tractability: the modal and guarded fragments are decidable, and

have the tree-model property [35, 23], while the expressive fragments do not. We can regard these

observations as a first step towards using structural properties of comonadic semantics to classify

logic fragments and their expressive power.

6.1. Model classes

Suppose we are given a resourced-indexed arboreal cover between an extensional category E and an

arboreal category C. As explained in section 5, this induces resource-indexed bisimulation relations

↔C
k on E. In the examples, E is typically the category Struct(σ) of relational structures, and the

relations ↔C
k coincide with equivalence in logic fragments Lk. There is also the homomorphism

relation →C, where A→C B iff CA→ B, and the resource-indexed version →C
k .

Given a formula φ ∈ Lk, we consider its “model-class” Mod(φ), i.e. the full subcategory of

Struct(σ) defined by the σ-structures A such that A |= φ. In the next lemma we show that, if Lk

is finite10, these model-classes can be characterised in terms of the relations ↔C
k . For simplicity, we

restrict to the case where E = Struct(σ), but extensions are available, e.g. to pointed versions as for

the modal fragment.

Lemma 6.1. Consider an arboreal adjunction between Struct(σ) and an arboreal category C, and let

L be a finite logic fragment such that ↔C coincides with ≡L. The following statements are equivalent

for any full subcategory D of Struct(σ):

1. D is saturated under ↔C, i.e. for all σ-structures A,B, if A ∈ D and A↔C B, then B ∈ D.

2. D = Mod(φ) for some φ ∈ L.

For applications to homomorphism preservation theorems, the following variant of the previous

lemma will be useful, where ∃L denotes the existential positive fragment of L.

Lemma 6.2. Consider an arboreal adjunction between Struct(σ) and an arboreal category C, and let

L be a finite logic fragment such that →C coincides with ≡∃L. The following statements are equivalent

for any full subcategory D of Struct(σ):

1. D is upwards closed with respect to →C, i.e. for all σ-structures A,B, if A ∈ D and A →C B,

then B ∈ D.

10Up to logical equivalence.
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2. D = Mod(ψ) for some ψ ∈ ∃L.

Remark 6.3. The previous lemmas can be extended to the case of pointed (or, more generally, n-

pointed) structures.

6.2. Homomorphism preservation theorems

Homomorphism preservation theorems relate the syntactic shape of a sentence with the semantic prop-

erty of being preserved under homomorphisms between structures. We are especially interested in

refinements of these results whereby resources (e.g. the quantifier-rank or number of variables in a

formula) are preserved. Using the characterisations of model-classes given in Section 6.1, we can

capture the content of homomorphism preservation theorems at an abstract level, as we now explain.

Fix an arbitrary resource-indexed arboreal adjunction between an extensional category E and a

resource-indexed arboreal category C, with adjunctions

Ck E

Lk

Rk

⊥ (1)

and associated comonads Gk := LkRk on E. Furthermore, let us say that a full subcategory D of E is

closed under morphisms if, whenever there is an arrow a→ b in E with a ∈ D, also b ∈ D. Note that,

when E = Struct(σ) and D = Mod(φ), the category D is closed under morphisms precisely when φ

is preserved under homomorphisms between σ-structures.

Consider the following statement:

(HP) For any full subcategory D of E saturated under ↔C
k , D is closed under morphisms iff it is

upwards closed with respect to →C
k .

E.g., for the Ehrenfeucht-Fraı̈ssé resource-indexed arboreal adjunction, the statement (HP) is precisely

Rossman’s equirank homomorphism preservation theorem [34].

Replacing the relation ↔C
k with the equivalence relation ∼=C

k , we obtain a strengthening of (HP),

namely:

(HP#) For any full subcategory D of E saturated under ∼=C

k , D is closed under morphisms iff it is

upwards closed with respect to →C
k .

Remark 6.4. Any full subcategory of E that is upwards closed with respect to →C
k is closed under

morphisms. Hence, the right-to-left implications in (HP) and (HP#) are always satisfied.

In Section 6.3 we define the bisimilar companion property for resource-indexed arboreal adjunc-

tions, and show that this property entails (HP). This leads to homomorphism preservation theorems

for guarded logics.

In Section 6.4 we show that a strengthening of the bisimilar companion property, namely idem-

potency, implies (HP#). We thus obtain equi-depth homomorphism preservation theorems for graded

modal formulas, which hold uniformly at the general and finite levels.
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Let us point out that the bisimilar companion property does not hold for the Ehrenfeucht-Fraı̈ssé resource-

indexed arboreal adjunction, so we cannot deduce Rossman’s equirank homomorphism preservation

theorem in this way. However, in Section 6.5 we explain how to “force” this property to obtain a

refinement of Rossman’s result.

6.3. The bisimilar companion property

Definition 6.5. A resource-indexed arboreal adjunction between E and C, with induced comonads Gk ,

has the bisimilar companion property if a↔C
k Gka for all a∈E and k≥ 0.

Proposition 6.6. Consider any resource-indexed arboreal adjunction between E and C with the bisim-

ilar companion property. Then (HP) holds.

Proof:

Let D be a full subcategory of E closed under morphisms and saturated under ↔C
k . If a→C

k b, there is

a morphism Gka→ b and so, using the bisimilar companion property,

a ↔C
k Gka → b.

Therefore, if a ∈ D then also b ∈ D. That is, D is upwards closed with respect to →C
k .

The converse direction follows from Remark 6.4. ⊓⊔

We can now use Proposition 6.6 to obtain a homomorphism preservation theorem for guarded

logics.

6.4. Idempotency

Definition 6.7. A resource-indexed arboreal adjunction between E and C is idempotent if so are the

induced comonads Gk, i.e. GkGka ∼= Gka for all a ∈ E and k≥ 0.

Proposition 6.8. Consider any idempotent resource-indexed arboreal adjunction between E and C.

Then (HP#) holds.

Proof:

Recall that Gk is idempotent if, and only if, ηRk is a natural isomorphism, where η is the unit of the

adjunction Lk ⊣ Rk. In particular, for any a ∈ E, the component of ηRk at a yields an isomorphism

Rka ∼= RkGka. Hence, a ∼=C
k Gka for all a ∈ E. Reasoning as in the proof of Proposition 6.6, it is

easy to see that (HP#) holds. ⊓⊔

Graded Modal Logic Let σ be an arbitrary finite vocabulary consisting of relation symbols of arity at

most 2. We consider the resource-indexed relations ∼=k and →k on the category Struct⋆(σ) of pointed

Kripke structures induced by the modal resource-indexed arboreal cover, cf. section 4.

Proposition 6.8 entails the following equidepth homomorphism preservation theorem for graded

modal formulas:
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Theorem 6.9. The following statements are equivalent for any graded modal formula φ ∈ MLk(#):

1. φ is preserved under homomorphisms between pointed Kripke structures.

2. φ is logically equivalent to an existential positive modal formula ψ ∈ ∃MLk.

Proof:

Fix an arbitrary formula φ ∈ MLk(#). By [12, Proposition 15] and [19, Proposition 3.6], there is an

inclusion

∼=k ⊆ ≡MLk(#)

and so Mod(φ) is saturated under ∼=k. As the comonad Mk is idempotent, Proposition 6.8 entails that

Mod(φ) is closed under morphisms if, and only if, it is upwards closed with respect to →k. Thus, the

statement follows from Lemma 6.2 and Remark 6.3, setting L = MLk. ⊓⊔

Remark 6.10. Forgetting about both graded modalities and modal depth, Theorem 6.9 implies that

a modal formula is preserved under homomorphisms if, and only if, it is equivalent to an existential

positive modal formula. This improves the well known result that a modal formula is preserved under

simulations precisely when it is equivalent to an existential positive modal formula (see e.g. [15,

Theorem 2.78]).

Since the modal comonad Mk restricts to finite pointed Kripke structures, the resource-indexed

arboreal cover given by RM
k restricts to the full subcategory of Struct⋆(σ) defined by the finite Kripke

structures. Reasoning as above, we obtain a variant of Theorem 6.9 for finite structures:

Theorem 6.11. The following statements are equivalent for any graded modal formula φ ∈ MLk(#):

1. φ is preserved under homomorphisms between finite pointed Kripke structures.

2. φ is logically equivalent over finite pointed Kripke structures to an existential positive modal

formula ψ ∈ ∃MLk.

6.5. Forcing the bisimilar companion property

When a resource-indexed arboreal adjunction does not have the bisimilar companion property, Propo-

sition 6.6 cannot be applied to obtain an equi-resource homomorphism preservation theorem. This is

the case, e.g., for Rossman’s equirank homomorphism preservation theorem:

Theorem 6.12. ([34])

The following statements are equivalent for any first-order sentence φ with quantifier-rank at most k:

1. φ is preserved under homomorphisms between σ-structures.

2. φ is equivalent to an existential positive sentence with quantifier rank at most k.
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Rossman’s strategy is to construct a bisimilar companion for a structure A. A categorical view of

Rossman’s construction as a colimit in a coslice category is outlined in [3]. A “semi-axiomatic” proof

of Rossman’s theorem, in the arboreal categories framework but where the extensional category E is

fixed to be Struct(σ), is given in [1]. In [2], a purely axiomatic proof of Rossman’s theorem is given

in the arboreal categories setting.

In [32], the following refinement of Rossman’s equirank homomorphism preservation theorem is

obtained:

Theorem 6.13. (Equirank-variable HPT)

The following statements are equivalent for any first-order sentence φ in n variables with quantifier-

rank at most k, where n ≥ k − 2:

1. φ is preserved under homomorphisms between σ-structures.

2. φ is equivalent to an existential positive sentence in n variables with quantifier rank at most k.

7. Current developments

The research program we have described in this paper is in a very lively and active state. We shall

briefly describe a few of the current lines of research.

• Homomorphism preservation theorems are only one example of semantic characterizations of

various types of formulas. Many of the classical results of this kind rely crucially on compact-

ness, and fail for finite models. However, there are results which not only hold in the finite

as well as the infinite, but admit uniform proofs which apply to both cases. One well-known

example is the van Benthem-Rosen theorem, which characterises the modal fragment in terms

of bisimulation invariance. A uniform proof of this result was given by Otto [31]. A detailed

version, extracting an important general result on Ehrenfeucht-Fraı̈ssé games (the Workspace

Lemma), and clarifying the use of the bisimilar companions property, is given in [2]. In [10],

game comonads are developed for hybrid logic and the bounded fragment.11 This logic lacks

the bisimilar companion property, but it still has a local character. In [10], a uniform proof, cov-

ering both finite and infinite cases, is given for a semantic characterization of this fragment. This

uses the Workspace Lemma, but replaces the appeal to bisimilar companions made in the van

Benthem Rosen theorem by a different argument, again using properties of model comparison

games.

These uniform arguments point towards the possibility of a resource-sensitive model theory

without compactness.

• A classic result of Lovász [27] says that two finite structures are isomorphic if and only if

they admit the same number of homomorphisms from all finite structures. This result has been

extended in many different ways. In one type of generalisation, isomorphisms are replaced by

11In the bounded fragment, quantifiers are relativised to atomic predicates, but by contrast with the guarded fragment,

variables in the guarded formulas do not have to appear in the guards. This makes the logic undecidable.
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a specified equivalence relation ≍ on finite structures, and the class of all finite structures by

a specified class of finite structures ∆. Then a typical Lovász-type theorem expresses that, for

finite structures A,B,

A ≍ B ⇐⇒ hom(C,A) ∼= hom(C,B) for every C ∈ ∆.

In [18], the game comonads framework is used to give an axiomatic account, leading to several

new Lovász-type theorems. This is further extended in [33] using Joyal’s theory of polyadic

spaces, leading to results which apply also in infinite cases.

• The comonadic analysis of both combinatorial parameters such as treewidth, and Lovász-type

theorems, leads to the question: when are such characterisations possible? In [8], very general

conditions are identified under which there is a comonad which classifies a given quantitative

parameter. The same analysis leads to general Lovász-type results. The conditions cover a huge

range of concrete examples. The construction which establishes the result is a Kan extension

leading to a discrete density comonad construction, which is weakly initial among solutions to

the problem.

A question for further work is to relate this construction to the arboreal categories framework,

with the aim of establishing general conditions for transfer results, which relate different param-

eters or counting theorems by varying the comonad.

• In [25], an axiomatic account is given of Feferman-Vaught-Mostowski composition theorems

within the game comonad framework, parameterized by the model comparison game. Compo-

sitionality results for the corresponding logic, and its positive existential and counting quantifier

variants, are obtained in a uniform manner. The game comonads are extended to a monadic

second order version, and used to obtain an abstract version of Courcelle’s theorem, which can

be specialised to yield the standard concrete versions of this result.

• In [16, 4], new cohomological approximation algorithms for constraint satisfaction and structure

isomorphism are introduced, and are shown to properly extend standard local consistency and

Weisfeiler-Leman algorithms. These results make use of the sheaf-theoretic and cohomological

methods originally developed for quantum contextuality in [6, 5].
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