We propose an interpretation of multiparty sessions with asynchronous communication as Flow Event Structures. We introduce a new notion of global type for asynchronous multiparty sessions, ensuring the expected properties for sessions, including progress. Our global types, which reflect asynchrony more directly than standard global types and are more permissive, are themselves interpreted as Prime Event Structures. The main result is that the Event Structure interpretation of a session is equivalent, when the session is typable, to the Event Structure interpretation of its global type.
This paper studies how to use relation algebras, which are useful for high-level specification and verification, for proving the correctness of lower-level array-based implementations of algorithms. We give a simple relation-algebraic semantics of read and write operations on associative arrays. The array operations seamlessly integrate with assignments in computation models supporting while-programs. As a result, relation algebras can be used for verifying programs with associative arrays. We verify the correctness of an array-based implementation of disjoint-set forests using the union-by-rank strategy and find operations with path compression, path splitting and path halving. All results are formally proved in Isabelle/HOL. This paper is an extended version of [1].