We show that the equational theory of the structure $\langle ω^ω: (x,y)\mapsto x+y, x\mapsto ωx \rangle $ is finitely axiomatizable and give a simple axiom schema when the domain is the set of transfinite ordinals. We give an algorithm that given a pair of terms $(E,F)$ decides in linear time with respect of their common length whether or not $E=F$ is a consequence of the axioms.
Let $G$ be a graph and $S\subseteq V(G)$ with $|S|\geq 2$. Then the trees $T_1, T_2, \cdots, T_\ell$ in $G$ are \emph{internally disjoint Steiner trees} connecting $S$ (or $S$-Steiner trees) if $E(T_i) \cap E(T_j )=\emptyset$ and $V(T_i)\cap V(T_j)=S$ for every pair of distinct integers $i,j$, $1 \leq i, j \leq \ell$. Similarly, if we only have the condition $E(T_i) \cap E(T_j )=\emptyset$ but without the condition $V(T_i)\cap V(T_j)=S$, then they are \emph{edge-disjoint Steiner trees}. The \emph{generalized $k$-connectivity}, denoted by $κ_k(G)$, of a graph $G$, is defined as $κ_k(G)=\min\{κ_G(S)|S \subseteq V(G) \ \textrm{and} \ |S|=k \}$, where $κ_G(S)$ is the maximum number of internally disjoint $S$-Steiner trees. The \emph{generalized local edge-connectivity} $λ_{G}(S)$ is the maximum number of edge-disjoint Steiner trees connecting $S$ in $G$. The {\it generalized $k$-edge-connectivity} $λ_k(G)$ of $G$ is defined as $λ_k(G)=\min\{λ_{G}(S)\,|\,S\subseteq V(G) \ and \ |S|=k\}$. These measures are generalizations of the concepts of connectivity and edge-connectivity, and they and can be used as measures of vulnerability of networks. It is, in general, difficult to compute these generalized connectivities. However, there are precise results for some special classes of graphs. In this paper, we obtain the exact value of $λ_{k}(S(n,\ell))$ for $3\leq k\leq \ell^n$, and the exact value of $κ_{k}(S(n,\ell))$ for $3\leq k\leq \ell$, where $S(n, \ell)$ is the […]
We investigate the computational power of particle methods, a well-established class of algorit hms with applications in scientific computing and computer simulation. The computational power of a compute model determines the class of problems it can solve. Automata theory allows describing the computational power of abstract machines (automata) and the problems they can solve. At the top of the Chomsky hierarchy of formal languages and grammars are Turing machines, which resemble the concept on which most modern computers are built. Although particle methods can be interpreted as automata based on their formal definition, their computational power has so far not been studied. We address this by analyzing Turing completeness of particle methods. In particular, we prove two sets of restrictions under which a particle method is still Turing powerful, and we show when it loses Turing powerfulness. This contributes to understanding the theoretical foundations of particle methods and provides insight into the powerfulness of computer simulations.
We establish various complexity results for the entailment problem between formulas in Separation Logic with user-defined predicates denoting recursive data structures. The considered fragments are characterized by syntactic conditions on the inductive rules that define the semantics of the predicates. We focus on so-called P-rules, which are similar to (but simpler than) the PCE rules introduced by Iosif et al. in 2013. In particular, for a specific fragment where predicates are defined by so-called loc-deterministic inductive rules, we devise a sound and complete cyclic proof procedure running in polynomial time. Several complexity lower bounds are provided, showing that any relaxing of the provided conditions makes the problem intractable.