We provide new insights on the determinization and minimization of tree automata using congruences on trees. From this perspective, we study a Brzozowski's style minimization algorithm for tree automata. First, we prove correct this method relying on the following fact: when the automata-based and the language-based congruences coincide, determinizing the automaton yields the minimal one. Such automata-based congruences, in the case of word automata, are defined using pre and post operators. Now we extend these operators to tree automata, a task that is particularly challenging due to the reduced expressive power of deterministic top-down (or equivalently co-deterministic bottom-up) automata. We leverage further our framework to offer an extension of the original result by Brzozowski for word automata.
In the context of signed line graphs, this article introduces a modified inflation technique to study strong Gram congruence of non-negative (integral quadratic) unit forms, and uses it to show that weak and strong Gram congruence coincide among positive unit forms of Dynkin type A. The concept of inverse of a quiver is also introduced, and is used to obtain and analyze the Coxeter matrix of non-negative unit forms of Dynkin type A. Connected principal unit forms of such type are also classified.