Volume 191, Issues 3-4: Iiro Honkala's 60 Birthday

Codes, Graphs, Coverings, and Identification: Special Issue Honoring the 60-th Birthday of Professor Iiro Honkala


1. On Iiro Honkala's contributions to identifying codes

Olivier Hudry ; Ville Junnila ; Antoine Lobstein.
A set $C$ of vertices in a graph $G=(V,E)$ is an identifying code if it is dominating and any two vertices of $V$ are dominated by distinct sets of codewords. This paper presents a survey of Iiro Honkala's contributions to the study of identifying codes with respect to several aspects: complexity of computing an identifying code, combinatorics in binary Hamming spaces, infinite grids, relationships between identifying codes and usual parameters in graphs, structural properties of graphs admitting identifying codes, and number of optimal identifying codes.

2. On three domination-based identification problems in block graphs

Dipayan Chakraborty ; Florent Foucaud ; Aline Parreau ; Annegret K. Wagler.
The problems of determining the minimum-sized \emph{identifying}, \emph{locating-dominating} and \emph{open locating-dominating codes} of an input graph are special search problems that are challenging from both theoretical and computational viewpoints. In these problems, one selects a dominating set $C$ of a graph $G$ such that the vertices of a chosen subset of $V(G)$ (i.e. either $V(G)\setminus C$ or $V(G)$ itself) are uniquely determined by their neighborhoods in $C$. A typical line of attack for these problems is to determine tight bounds for the minimum codes in various graphs classes. In this work, we present tight lower and upper bounds for all three types of codes for \emph{block graphs} (i.e. diamond-free chordal graphs). Our bounds are in terms of the number of maximal cliques (or \emph{blocks}) of a block graph and the order of the graph. Two of our upper bounds verify conjectures from the literature - with one of them being now proven for block graphs in this article. As for the lower bounds, we prove them to be linear in terms of both the number of blocks and the order of the block graph. We provide examples of families of block graphs whose minimum codes attain these bounds, thus showing each bound to be tight.

3. Descriptional Complexity of Finite Automata -- Selected Highlights

Arto Salomaa ; Kai Salomaa ; Taylor J. Smith.
The state complexity, respectively, nondeterministic state complexity of a regular language $L$ is the number of states of the minimal deterministic, respectively, of a minimal nondeterministic finite automaton for $L$. Some of the most studied state complexity questions deal with size comparisons of nondeterministic finite automata of differing degree of ambiguity. More generally, if for a regular language we compare the size of description by a finite automaton and by a more powerful language definition mechanism, such as a context-free grammar, we encounter non-recursive trade-offs. Operational state complexity studies the state complexity of the language resulting from a regularity preserving operation as a function of the complexity of the argument languages. Determining the state complexity of combined operations is generally challenging and for general combinations of operations that include intersection and marked concatenation it is uncomputable.

4. Nonatomic Non-Cooperative Neighbourhood Balancing Games

David Auger ; Johanne Cohen ; Antoine Lobstein.
We introduce a game where players selfishly choose a resource and endure a cost depending on the number of players choosing nearby resources. We model the influences among resources by a weighted graph, directed or not. These games are generalizations of well-known games like Wardrop and congestion games. We study the conditions of equilibria existence and their efficiency if they exist. We conclude with studies of games whose influences among resources can be modelled by simple graphs.

5. Decision Problems on Copying and Shuffling

Vesa Halava ; Tero Harju ; Dirk Nowotka ; Esa Sahla.
We study decision problems of the form: given a regular or linear context-free language $L$, is there a word of a given fixed form in $L$, where given fixed forms are based on word operations copy, marked copy, shuffle and their combinations.

6. Commuting upper triangular binary morphisms

Juha Honkala.
A morphism $g$ from the free monoid $X^*$ into itself is called upper triangular if the matrix of $g$ is upper triangular. We characterize all upper triangular binary morphisms $g_1$ and $g_2$ such that $g_1g_2=g_2g_1$.

7. Strong regulatory graphs

Patric Gustafsson ; Ion Petre.
Logical modeling is a powerful tool in biology, offering a system-level understanding of the complex interactions that govern biological processes. A gap that hinders the scalability of logical models is the need to specify the update function of every vertex in the network depending on the status of its predecessors. To address this, we introduce in this paper the concept of strong regulation, where a vertex is only updated to active/inactive if all its predecessors agree in their influences; otherwise, it is set to ambiguous. We explore the interplay between active, inactive, and ambiguous influences in a network. We discuss the existence of phenotype attractors in such networks, where the status of some of the variables is fixed to active/inactive, while the others can have an arbitrary status, including ambiguous.

8. Complexity and equivalency of multiset dimension and ID-colorings

Anni Hakanen ; Ismael G. Yero.
This investigation is firstly focused into showing that two metric parameters represent the same object in graph theory. That is, we prove that the multiset resolving sets and the ID-colorings of graphs are the same thing. We also consider some computational and combinatorial problems of the multiset dimension, or equivalently, the ID-number of graphs. We prove that the decision problem concerning finding the multiset dimension of graphs is NP-complete. We consider the multiset dimension of king grids and prove that it is bounded above by 4. We also give a characterization of the strong product graphs with one factor being a complete graph, and whose multiset dimension is not infinite.

9. Finding codes on infinite grids automatically

Ville Salo ; Ilkka Törmä.
We apply automata theory and Karp's minimum mean weight cycle algorithm to minimum density problems in coding theory. Using this method, we find the new upper bound $53/126 \approx 0.4206$ for the minimum density of an identifying code on the infinite hexagonal grid, down from the previous record of $3/7 \approx 0.4286$.

10. Optimal local identifying and local locating-dominating codes

Pyry Herva ; Tero Laihonen ; Tuomo Lehtilä.
We introduce two new classes of covering codes in graphs for every positive integer $r$. These new codes are called local $r$-identifying and local $r$-locating-dominating codes and they are derived from $r$-identifying and $r$-locating-dominating codes, respectively. We study the sizes of optimal local 1-identifying codes in binary hypercubes. We obtain lower and upper bounds that are asymptotically tight. Together the bounds show that the cost of changing covering codes into local 1-identifying codes is negligible. For some small $n$ optimal constructions are obtained. Moreover, the upper bound is obtained by a linear code construction. Also, we study the densities of optimal local 1-identifying codes and local 1-locating-dominating codes in the infinite square grid, the hexagonal grid, the triangular grid, and the king grid. We prove that seven out of eight of our constructions have optimal densities.