In this paper, we consider relational structures arising from Comer's finite field construction, where the cosets need not be sum free. These Comer schemes generalize the notion of a Ramsey scheme and may be of independent interest. As an application, we give the first finite representation of $34_{65}$. This leaves $33_{65}$ as the only remaining relation algebra in the family $N_{65}$ with a flexible atom that is not known to be finitely representable. Motivated by this, we complement our upper bounds with some lower bounds. Using a SAT solver, we show that $33_{65}$ is not finitely representable on fewer than $24$ points, and that $33_{65}$ does not admit a cyclic group representation on fewer than $120$ points. We also employ a SAT solver to show that $34_{65}$ is not representable on fewer than $24$ points.
We introduce the general notions of an index and a core of a relation. We postulate a limited form of the axiom of choice -- specifically that all partial equivalence relations have an index -- and explore the consequences of adding the axiom to standard axiom systems for point-free reasoning. Examples of the theorems we prove are that a core/index of a difunction is a bijection, and that the so-called ``all or nothing'' axiom used to facilitate pointwise reasoning is derivable from our axiom of choice.
This paper presents the development of a software tool that enables the translation of first-order predicate logic with at most three variables into relation algebra. The tool was developed using the Z3 theorem prover, leveraging its capabilities to enhance reliability, generate code, and expedite development. The resulting standalone Python program allows users to translate first-order logic formulas into relation algebra, eliminating the need to work with relation algebra explicitly. This paper outlines the theoretical background of first-order logic, relation algebra, and the translation process. It also describes the implementation details, including validation of the software tool using Z3 for testing correctness. By demonstrating the feasibility of utilizing first-order logic as an alternative language for expressing relation algebra, this tool paves the way for integrating first-order logic into tools traditionally relying on relation algebra as input.
We show that all Sugihara monoids can be represented as algebras of binary relations, with the monoid operation given by relational composition. Moreover, the binary relations are weakening relations. The first step is to obtain an explicit relational representation of all finite odd Sugihara chains. Our construction mimics that of Maddux (2010), where a relational representation of the finite even Sugihara chains is given. We define the class of representable Sugihara monoids as those which can be represented as reducts of distributive involutive FL-algebras of binary relations. We then show that the class of representable distributive involutive FL-algebras is closed under ultraproducts. This fact is used to demonstrate that the two infinite Sugihara monoids that generate the quasivariety are also representable. From this it follows that all Sugihara monoids are representable.
We consider the two-pronged fork frame $F$ and the variety $\mathbf{Eq}(B_F)$ generated by its dual closure algebra $B_F$. We describe the finite projective algebras in $\mathbf{Eq}(B_F)$ and give a purely semantic proof that unification in $\mathbf{Eq}(B_F)$ is finitary and not unitary.
We show that every locally integral involutive partially ordered semigroup (ipo-semigroup) $\mathbf A = (A,\le, \cdot, \sim,-)$, and in particular every locally integral involutive semiring, decomposes in a unique way into a family $\{\mathbf A_p : p\in A^+\}$ of integral ipo-monoids, which we call its integral components. In the semiring case, the integral components are unital semirings. Moreover, we show that there is a family of monoid homomorphisms $Φ= \{φ_{pq}: \mathbf A_p\to \mathbf A_q : p\le q\}$, indexed over the positive cone $(A^+,\le)$, so that the structure of $\mathbf A$ can be recovered as a glueing $\int_Φ\mathbf A_p$ of its integral components along $Φ$. Reciprocally, we give necessary and sufficient conditions so that the Płonka sum of any family of integral ipo-monoids $\{\mathbf A_p : p\in D\}$, indexed over a join-semilattice $(D,\lor)$ along a family of monoid homomorphisms $Φ$ is an ipo-semigroup.
Within the tensor product $K \mathop{\otimes_{\cal R}} C_2'$ of any ${}^*$-continuous Kleene algebra $K$ with the polycyclic ${}^*$-continuous Kleene algebra $C_2'$ over two bracket pairs there is a copy of the fixed-point closure of $K$: the centralizer of $C_2'$ in $K \mathop{\otimes_{\cal R}} C_2'$. Using an automata-theoretic representation of elements of $K\mathop{\otimes_{\cal R}} C_2'$ à la Kleene, with the aid of normal form theorems that restrict the occurrences of brackets on paths through the automata, we develop a foundation for a calculus of context-free expressions without variable binders. We also give some results on the bra-ket ${}^*$-continuous Kleene algebra $C_2$, motivate the ``completeness equation'' that distinguishes $C_2$ from $C_2'$, and show that $C_2'$ already validates a relativized form of this equation.
In this note, we give a linear-size translation from formulas of first-order logic into equations of the calculus of relations preserving validity and finite validity. Our translation also gives a linear-size conservative reduction from formulas of first-order logic into formulas of the three-variable fragment of first-order logic.
Units of measure with prefixes and conversion rules are given a formal semantic model in terms of categorial group theory. Basic structures and both natural and contingent semantic operations are defined. Conversion rules are represented as a class of ternary relations with both group-like and category-like properties. A hierarchy of subclasses is explored, each satisfying stronger useful algebraic properties than the preceding, culminating in a direct efficient conversion-by-rewriting algorithm.
In this paper we continue the investigation of a real number object, i.e., an object representing the real numbers, in categories of relations. Our axiomatization is based on a relation algebraic version of Tarski's axioms of the real numbers. It was already shown that the addition of such an object forms a dense, linear ordered abelian group. In the current paper we will focus on the least-upper-bound property of such an object.