Jessy Sujana G. ; T. M. Rajalaxmi ; Indra Rajasingh ; R. Sundara Rajan - Edge Forcing in Butterfly Networks

fi:8351 - Fundamenta Informaticae, November 18, 2021, Volume 182, Issue 3
Edge Forcing in Butterfly Networks

Authors: Jessy Sujana G. ; T. M. Rajalaxmi ; Indra Rajasingh ; R. Sundara Rajan

    A zero forcing set is a set $S$ of vertices of a graph $G$, called forced vertices of $G$, which are able to force the entire graph by applying the following process iteratively: At any particular instance of time, if any forced vertex has a unique unforced neighbor, it forces that neighbor. In this paper, we introduce a variant of zero forcing set that induces independent edges and name it as edge-forcing set. The minimum cardinality of an edge-forcing set is called the edge-forcing number. We prove that the edge-forcing problem of determining the edge-forcing number is NP-complete. Further, we study the edge-forcing number of butterfly networks. We obtain a lower bound on the edge-forcing number of butterfly networks and prove that this bound is tight for butterfly networks of dimensions 2, 3, 4 and 5 and obtain an upper bound for the higher dimensions.


    Volume: Volume 182, Issue 3
    Published on: November 18, 2021
    Accepted on: August 23, 2021
    Submitted on: August 11, 2021
    Keywords: Mathematics - Combinatorics

    Share

    Consultation statistics

    This page has been seen 162 times.
    This article's PDF has been downloaded 81 times.