Samson Abramsky - Structure and Power: an emerging landscape

fi:9712 - Fundamenta Informaticae, October 21, 2022, Volume 186, Issues 1-4: Trakhtenbrot's centenary
Structure and Power: an emerging landscapeArticle

Authors: Samson Abramsky

    In this paper, we give an overview of some recent work on applying tools from category theory in finite model theory, descriptive complexity, constraint satisfaction, and combinatorics. The motivations for this work come from Computer Science, but there may also be something of interest for model theorists and other logicians. The basic setting involves studying the category of relational structures via a resource-indexed family of adjunctions with some process category - which unfolds relational structures into treelike forms, allowing natural resource parameters to be assigned to these unfoldings. One basic instance of this scheme allows us to recover, in a purely structural, syntax-free way: the Ehrenfeucht-Fraisse~game; the quantifier rank fragments of first-order logic; the equivalences on structures induced by (i) the quantifier rank fragments, (ii) the restriction of this fragment to the existential positive part, and (iii) the extension with counting quantifiers; and the combinatorial parameter of tree-depth (Nesetril and Ossona de Mendez). Another instance recovers the k-pebble game, the finite-variable fragments, the corresponding equivalences, and the combinatorial parameter of treewidth. Other instances cover modal, guarded and hybrid fragments, generalized quantifiers, and a wide range of combinatorial parameters. This whole scheme has been axiomatized in a very general setting, of arboreal categories and arboreal covers. Beyond this basic level, a landscape is beginning to emerge, in which structural features of the resource categories, adjunctions and comonads are reflected in degrees of logical and computational tractability of the corresponding languages. Examples include semantic characterisation and preservation theorems, and Lovasz-type results on counting homomorphisms.


    Volume: Volume 186, Issues 1-4: Trakhtenbrot's centenary
    Published on: October 21, 2022
    Accepted on: June 21, 2022
    Submitted on: June 16, 2022
    Keywords: Computer Science - Logic in Computer Science

    Consultation statistics

    This page has been seen 114 times.
    This article's PDF has been downloaded 211 times.